al

Transport stream generating device, transmitting device, receiving device, and a digital broadcast system having the same, and method thereof

A transport stream (TS) generating apparatus, a transmitting apparatus, a receiving apparatus, a digital broadcast system having the above, and a method thereof are provided. The digital broadcast system includes a transport stream (TS) generating apparatus which generates a multi transport stream (TS) by multiplexing a normal stream and a turbo stream having a variable coding rate, a transmitting apparatus which re-constructs the multi TS by processing the turbo stream, and transmits the re-constructed multi TS, and a receiving apparatus which receives the re-constructed multi TS, and decodes the normal stream and the turbo stream respectively, to recover normal data and turbo data. Accordingly, a multi TS, which includes normal stream and a turbo stream of various coding rates, can be transmitted and received efficiently.




al

Display apparatus, electronic apparatus, and image forming apparatus that hides non-specified images at the same hierarchical level as a specified image

A display apparatus includes a display section, a display control section, a distance detection section, and a coordinate detection section. The display section has a display area in which a selection image is displayed. When the selection image is formed by a plurality of images hierarchically associated with one another, the display control section displays consecutively the images configuring the selection image in accordance with the hierarchical association. The distance detection section detects a spatial distance between a pointer and the display area. The coordinate detection section detects coordinates which correspond to a position of the pointer. The display control section displays, together with a specified image displayed at a position corresponding to the coordinates detected by the coordinate detection section, related images in an immediately lower level in the hierarchy associated with the specified image, when the spatial distance detected is shorter than a preset threshold distance.




al

Material templates for automatic assignment of materials to a 3D CAD model

The present invention relates to a system, method, and apparatus that include a novel way of automatically assigning materials to 3D CAD models. A predefined material template specifies that a particular part or material name is assigned to a particular material such that all instances of the particular part name are assigned or modified automatically by the material template. By having a consistent naming convention for the parts in the CAD file, this material assignment can be performed automatically when the CAD file is imported or viewed.




al

Memory training results corresponding to a plurality of memory modules

Methods, apparatuses, and computer program products for improving memory training results corresponding to a plurality of memory modules are provided. Embodiments include detecting a hardware configuration change upon initiating a boot sequence of a system that includes the plurality of memory modules; generating for a plurality of training iterations, reference training values corresponding to aligning of a data strobe (DQS) signal with a data valid window of data (DQ) lines of the plurality of memory modules; identifying for each training iteration, any outer values within the reference training values generated for that training iteration; eliminating the identified outer values from the reference training values; generating a final reference training value based on an average of the remaining reference training values; and using the final reference training value as the DQ-DQS timing value for the boot sequence of the system.




al

Weighted N-finger scaling and scrolling

In one example, a method includes receiving an indication of an input gesture detected at a presence-sensitive input device, where the input gesture includes one or more input points and each input point is detected at a respective location of the presence-sensitive input device. The method may also include determining a focal point of the input gesture, and determining a radius length. The method may also include determining a shape centered at the focal point and having a size determined based on the radius length. The method may also include responding to a change in a geometric property of the shape by scaling information included in a graphical user interface, where the scaling of the information being centered at the focal point.




al

Creating dynamic interactive views from trace events for performing deterministic performance analysis

View definitions are created for deterministic performance analysis in real-time computing systems, and can then be used to present views for analyzing outliers that occur during run-time execution. Trace data created by a real-time application is compared to a set of view definitions to determine whether the trace data matches the view definition. If so, then related records from the trace are gathered according to specifications in the matched view definition, and calculations (such as elapsed time) can then be performed using the related records. A view definition may be created by prompting a user for selection of parameters to be programmatically inserted into a markup language document. A capability may be provided whereby a user can receive additional information (which is extracted from the trace data, according to specifications in the matched view definition) upon a user gesture such as hovering a selection means over a displayed view.




al

Methods for external display resolution selection

A user may couple an external display to an electronic device using a communications path. Extended display identification data or other information on the capabilities of the external display may be provided to the electronic device over the communications path. The extended display identification data may include a list of timing elements including display parameters such as a horizontal active pixel count, a vertical active pixel count, and a pixel clock. The electronic device may tag the timing elements with their type and may flag certain timing elements as being native to the display. A scoring function may then be used to rate each timing element. A scored list of timing elements may be sorted by score. The sorted scored list may be filtered to remove inappropriate timing elements. The electronic device may automatically use a selected one of the filtered timing elements in displaying information on the external display.




al

Method for adjusting soft keyboard layout and mobile terminal

Embodiments of the present invention disclose a method for adjusting soft keyboard layout. The method includes: displaying an option for adjusting a soft keyboard layout; receiving information that a user selects the option for adjusting the soft keyboard layout, and after receiving the information that the user selects the option for adjusting the soft keyboard layout, displaying a soft keyboard adjustment interface on a touch screen, and receiving an adjustment scheme input by the user; and modifying the soft keyboard layout according to the adjustment scheme. In this way, a requirement of a user for adjusting a keyboard according to personal preference is satisfied.




al

Coalescing to avoid read-modify-write during compressed data operations

Sequential write operations to a unit of compressed memory, known as a compression tile, are examined to see if the same compression tile is being written. If the same compression tile is being written, the sequential write operations are coalesced into a single write operation and the entire compression tile is overwritten with the new data. Coalescing multiple write operations into a single write operation improves performance, because it avoids the read-modify-write operations that would otherwise be needed.




al

Method for driving liquid crystal display device

In a first subframe period, light sources of a first region and a third region emit lights at the same time; light sources of a second region and a fourth region emit no light at the same time, in which light emission of different colors is performed in the first region and the third region. In a second subframe period, light sources of the second region and the fourth region emit lights at the same time; light sources of the first region and the third region emit no light at the same time, in which light emission of different colors is performed in the second region and the fourth region. The first region and the third region are separated from each other with the second region interposed therebetween; and the second region and the fourth region are separated from each other with the third region interposed therebetween.




al

Method and device for optical focusing

A device for optically focusing a projection image projected by a projector includes a detector for controlled creation of at least one observation shot of the projection image over a time period, a processing unit for defining at least one image section within the projection image generated by the projector, where the image section is modulated over the time period with respect to the optical power and/or the optical spectrum thereof, and the at least one image section of the projection image is essentially synchronous compared with the corresponding respective image section of the observation shot, where the processing unit also calculates a variable derived from the comparison of the respective image sections and a control signal derived from the derived variable, and outputs the control signal to a focusing device of the projector.




al

Liquid crystal pixel correction using pixel boundary detection

A video processing circuit detects a risk boundary that is a part of a boundary between a dark pixel and a bright pixel, and is determined in accordance with the tilt azimuth of liquid crystal molecules from a boundary changed over the previous frame to the current frame and, for at least one side of dark pixels and bright pixels brought into contact with the detected risk boundary, corrects a video signal designating the application voltage of a liquid crystal element corresponding to the pixel of the frame brought into contact with the risk boundary out of a plurality of frames from the current frame to k frames (here, k is a natural number) following the current frame such that a lateral direction electric field generated between the dark pixel and the bright pixel decreases.




al

Methods, apparatus and systems for generating digital-media-enhanced searchable electronic records of underground facility locate and/or marking operations

Generating a digital-media-enhanced electronic record of a locate and/or marking operation performed by a locate technician. The locate and/or marking operation comprises locating and/or identifying, using at least one physical locate mark, a presence or an absence of at least one underground facility within a dig area, wherein at least a portion of the dig area may be excavated or disturbed during excavation activities. A location of the at least one underground facility and/or the at least one physical locate mark is electronically rendered on a display device so as to generate an electronic visual representation of the locate and/or marking operation. At least one digital media file representation of a corresponding digital media file relating to at least one aspect of the locate and/or marking operation or an environment of the dig area is also electronically rendered on the display device, so as to generate a digital-media-annotated representation of the locate and/or marking operation. Information relating to the digital-media-annotated representation of the locate and/or marking operation is electronically transmitted and/or stored so as to generate the digital-media-enhanced electronic record of the locate and/or marking operation.




al

Liquid crystal display device

A liquid crystal display device comprising a backlight and a pixel portion including first to 2n-th scan lines, wherein, in a first case of expressing a color image, first pixels controlled by the first to n-th scan lines are configured to express a first image using at least one of first to third hues supplied in a first rotating order, and second pixels controlled by the (n+1)-th to 2n-th scan lines are configured to express a second image using at least one of the first to third hues supplied in a second rotating order, wherein, in a second case of expressing a monochrome image, the first and second pixels controlled by the first to 2n-th scan lines are configured to express the monochrome image by external light reflected by the reflective pixel electrode, and wherein the first rotating order is different from the second rotating order.




al

Conductor winding and inductors arranged to form a balun having a figure eight shape

A balun including a first conductor winding, a first inductor, a second inductor, a third inductor, and a fourth inductor. The first conductor winding has a figure eight shape including a first loop and a second loop. The first inductor and the second inductor substantially surround the first loop. The third inductor and the fourth inductor substantially surround the second loop.




al

Balun transformer

A balun transformer includes an unbalanced terminal, two balanced terminals, a directional coupler, a low pass filter, and a high pass filter. The directional coupler includes first, second, third and fourth terminals. The first terminal is connected to the unbalanced terminal. A predetermined phase difference exists between the output signal of the second terminal and the output signal of the third terminal. The second terminal is connected to the first terminal by a line constituting the directional coupler. The low pass filter is connected between the second terminal and one of the balanced terminals. The high pass filter is connected between the third terminal and the other balanced terminal.




al

Directional coupler

A directional coupler includes in a laminate block, a first main line, a first sub-line, a second sub-line, and a second main line sequentially provided in a lamination direction of layers. Further, each of the first main line, the first sub-line, the second sub-line, and the second main line is divided into at least two divided coil conductors. Furthermore, at least two divided ground conductors are provided between the first sub-line and the second sub-line.




al

Three dimensional branchline coupler using through silicon vias and design structures

A three dimensional (3D) branchline coupler using through silicon vias (TSV), methods of manufacturing the same and design structures are disclosed. The method includes forming a first waveguide structure in a first dielectric material. The method further includes forming a second waveguide structure in a second dielectric material. The method further includes forming through silicon vias through a substrate formed between the first dielectric material and the second dielectric material, which connects the first waveguide structure to the second waveguide structure.




al

Virtual RF sensor

A radio frequency (RF) generation system includes an impedance determination module that receives an RF voltage and an RF current. The impedance determination module further determines an RF generator impedance based on the RF voltage and the RF current. The RF generation system also includes a control module that determines a plurality of electrical values based on the RF generator impedance. The matching module further matches an impedance of a load based on the RF generator impedance and the plurality of electrical components. The matching module also determines a 2 port transfer function based on the plurality of electrical values. The RF generation system also includes a virtual sensor module that estimates a load voltage, a load current, and a load impedance based on the RF voltage, the RF generator, the RF generator impedance, and the 2 port transfer function.




al

Artificial microstructure and artificial electromagnetic material using the same

The present invention provides an artificial microstructure employed in an artificial electromagnetic material. The artificial microstructure includes a first segment, a second segment, and a third segment. The first segment is parallel to the second segment, and the third segment is connected between the first segment and the second segment. The artificial electromagnetic material has a special electromagnetic effect. The artificial electromagnetic material can be applied to various electromagnetic application systems instead of the typical electromagnetic material.




al

Attenuation reduction control structure for high-frequency signal transmission lines of flexible circuit board

An attenuation reduction control structure for high-frequency signal transmission lines of a flexible circuit board includes an impedance control layer formed on a surface of a substrate. The impedance control layer includes an attenuation reduction pattern that is arranged in an extension direction of the high-frequency signal transmission lines of the substrate and corresponds to bottom angle structures of the high-frequency signal transmission lines in order to improve attenuation of a high-frequency signal transmitted through the high-frequency signal transmission lines. An opposite surface of the substrate includes a conductive shielding layer formed thereon. The conductive shielding layer is formed with an attenuation reduction pattern corresponding to top angle structures of the high-frequency signal transmission lines.




al

Signal transmission cable and flexible printed board

A signal transmission cable includes a multi-layer parallel transmission path, a single-layer parallel transmission path, and a single-layer/multi-layer conversion section. The multi-layer parallel transmission path includes two or more dielectric waveguides stacked in upper and lower directions. Each dielectric waveguide includes a dielectric layer formed of a dielectric substance, two conductive layers formed to sandwich the dielectric layer, and two quasi-conductive walls. The two quasi-conductive walls include a plurality of via-holes electrically connected to the two conductive layers. The dielectric waveguides are arranged sharing the conductive layers in contact in the upper and lower directions. The single-layer parallel transmission path includes the two or more dielectric waveguides arranged in left- and right-hand directions on the same dielectric layer and conductive layer. The single-layer/multi-layer conversion section transmits a signal transmitted by each dielectric waveguide in the single-layer parallel transmission path to each dielectric waveguide in the multi-layer parallel transmission path.




al

De-noise circuit and de-noise method for differential signals and chip for receiving differential signals

A de-noise circuit and a de-noise method for differential signals and a chip for receiving differential signals are provided. The de-noise circuit includes a filter and a register. Both the filter and the register are disposed in the chip. The chip receives a differential signal through a first input terminal and a second input terminal. The filter is coupled between the first input terminal and the second input terminal of the chip. The filter filters out noises in the differential signal. The filter includes at least one filter unit. Each filter unit has at least one resistance value or at least one capacitance value. The register is coupled to the filter. The register receives and stores a control value. The register controls the resistance value or the capacitance value of at least one of the filter units based on the control value.




al

Minimal intrusion very low insertion loss technique to insert a device to a semi-rigid coaxial transmission line

A signal conditioning apparatus can include a coaxial cable having at least one slot formed therein. A conductive film can be applied to the coaxial cable so as to cover each slot. A device mounting surface can be formed within the slot and a protection device can be mounted on the device mounting surface. A housing consisting of one or more interlockable portions can be coupled to the coaxial cable.




al

Mechanically short multi-carriage tuner

Mechanically short multi-carriage impedance tuners use meandering slabline structures. The meandering structure reduces the overall tuner length by a factor of 2.5 at 0.4 GHz. The critical issue of slabline bends is addressed with several low loss, low reflection alternatives. A preferred configuration comprises a vertical-horizontal slabline transition. Cable connections are discarded because of reflections and insertion loss. Measured results show acceptable performance. The tuner is mostly interesting for relatively lower microwave frequencies, such as 1 GHz.




al

Localized wave generation via modal decomposition of a pulse by a wave launcher

Implementations for exciting two or more modes via modal decomposition of a pulse by a wave launcher are generally disclosed.




al

Unbalanced-balanced conversion circuit element

An unbalanced-balanced conversion circuit element includes an inductor connected in series between an unbalanced terminal and a first balanced terminal. The first balanced terminal side of the inductor is grounded via a capacitor. A capacitor is connected in series between the unbalanced terminal and a second balanced terminal. An inductor is connected between the first balanced terminal side of the inductor and the second balanced terminal side of the capacitor. In a laminate defining the unbalanced-balanced conversion circuit element, the capacitor is spaced far from a mounting surface of the laminate in comparison with other circuit elements.




al

Liquid crystal display

In a liquid crystal display according to an exemplary embodiment of the present invention, a shielding electrode applied with the same voltage as a common voltage and overlapping a data line is not formed. Instead, an opening is formed at a position corresponding to a data line disposed proximate to a sub-pixel charged with a relatively low voltage. In this manner, luminance deterioration of a liquid crystal display may be reduced or prevented, and a short defect between the shielding electrode and the data line may also be prevented.




al

Industrial two-layer fabric

An industrial two-layer fabric includes an upper side fabric and a lower side fabric. The upper side warps of the upper side fabric comprise a first warp set and a second warp set. The first warp set contains two upper side warps and a warp binding yarn that binds the upper side fabric and the lower side fabric. The two upper side warps are woven with the same upper side wefts. The second warp set contains one upper side warp. At a position where the warp binding yarn passes above one of the upper side wefts, the warp binding yarn is placed between the two upper side warps of the first warp set and pass below the same one of the upper side wefts, whereby the two upper side warps and the warp binding yarn of the first warp set form the upper side warp design.




al

High-speed safety heald shaft

Guard elements (31) are provided for the corner connectors (16 through 19) of a heald shaft (10) of a shedding unit, the guard elements covering the open space formed between the two legs (26, 27) and thus providing a grip protection.




al

Woven fabric having composite yarns for endoluminal devices

A woven fabric for a low profile implantable medical device includes a plurality of textile strands of a composite yarn aligned in a first direction interlaced with a plurality of textile strands of the composite yarn aligned in a second direction. The composite yarn includes a combination of a first material and a second material. The textile strands have a size between about 10 denier to about 20 denier. The first material has at least one characteristic different from the second material and the second material reacts favorably with blood when placed within an artery.




al

Multidirectional fiber-reinforced tape/film articles and the method of making the same

High tenacity, high elongation multi-filament polymeric tapes as well as ballistic resistant fabrics, composites and articles made therefrom. The tapes are fabricated from multi-filament fibers/yarns that are twisted together, bonded together, compressed and flattened.




al

Industrial two-layer fabric

An industrial two-layer fabric includes a first warp set and a second warp set that are placed alternately and form a weave design of the upper side fabric. The first warp set contains two upper side warps. At least one of the upper side warps of the first warp set functions as a warp binding yarn that binds the upper side fabric and the lower side fabric. The second warp set contains one of upper side warps and one of lower side warps placed below the one of the upper side warps. At a position where two adjacent lower side warps are woven with one of the lower side wefts, the warp binding yarn placed between the two adjacent lower side warps is woven with the same one of the lower side wefts.




al

Crimp-imbalanced fabrics

Crimp-imbalanced fabric systems are accomplished by varying the levels of yarn crimp within a single fabric layer and across layers of a multi-layer fabric system. The method includes developing a crimp in the yarn (utilized for producing a fabric layer) by optionally pulling the yarn through a solution that substantially coats the yarn. The optionally removable coating has a thickness that ensures a proper amount of crimp in the yarn. The tension in the yarn is controlled; the yarn is weaved; and a crimp is applied in the yarn. Once the crimp is applied, families of the crimped yarn are utilized as a single layer or multiple layer system to increase performance attributes including enhanced energy absorption.




al

Joining loop structure of industrial multilayer fabric

A multilayer fabric is joined by engaging joining loops formed at both ends of a disjoined industrial multilayer fabric having wefts and warps in layers. The joining loops are formed by folding back some or all the end portions of warps. The both ends of the fabric are joined by engaging the loops to form a common hole and inserting a core wire into the common hole. At least one upper side weft remains while a lower side weft below the remaining upper side weft is removed at the both ends of the fabric. The common hole and the core wire inserted therein are located below the remaining upper side weft. The folded portions of the warps are interwoven with wefts of a normal portion of the fabric.




al

Manufacturing method of medical textiles woven from chitosan containing high wet modulus rayon fibre

An anti-“Methicillin-Resistant Staphylococcus Aureus (MRSA)” chitosan containing antibacterial High Wet Modulus (HWM) rayon fiber textile for medical usage is made of the steps as following: chitin flakes made from natural shrimp or crab shells are deacetylated to generate chitosan with a high deacetylation degree of 90% or more. Next chitosan is dissolved in acetic acid and regenerated by caustic soda to form a chitosan antibacterial nanoparticles slurry, then added to HWM viscose rayon process, and spinning to produce a chitosan containing antibacterial HWM rayon fiber. The antibacterial amino groups of chitosan and the hydroxyl groups of rayon cellulose combine together via hydrogen bonding. Therefore, the fiber becomes the anti-MRSA antibacterial HWM rayon fiber containing amino groups (—NH3+). Finally the resulting HWM rayon fiber is conducted via a yarn spinning or/and weaving process to procure a medical textile with chitosan content.




al

X weave of composite material and method of weaving thereof

An X weave of composite material has multiple latitudinal fibers, multiple longitudinal fibers, and a woven center. Each longitudinal fiber is layered on two of the latitudinal fibers and then is woven through and layered under two of the latitudinal fibers. The longitudinal fibers are each woven by shifting in relative alignment position from one of the latitudinal fibers sequentially and woven radially with respect to the woven center, such that the longitudinal fibers form an X woven structure. Therefore, the intensity of the X weave can be enhanced by the X woven structure.




al

Three-dimensional woven fabric and method for producing the same

A three-dimensional woven fabric including front layer, rear layer, and light-shielding layer connecting front layer to rear layer and a method thereof are disclosed. The light-shielding layer is formed by repeatedly overlapping first, second, and third light-shielding layers with another light-shielding layer with adjacent ones among the first to the third light-shielding layers overlapped. The front layer includes front parts formed by weaving front layer wrap threads and weft threads, the front parts have front layer-connecting parts formed by sequentially and repeatedly weaving front layer wrapwrap threads and weft threads and light-shielding layer wrap threads, the rear layer includes rear layer-connecting parts formed by weaving sequentially and repeatedly the rear layer wrap threads and weft threads and light-shielding layer wrap threads. The light-shielding layers are formed by weaving light-shielding layer wrap threads and the weft threads, and the light-shielding layers are sequentially and repeatedly connected to front layer-connecting parts and rear layer-connecting parts. Three-dimensional shapes are implemented without adhesive. Various designs and light-shielding control are available.




al

Industrial two-layer fabric

An industrial two-layer fabric has an inner space between an upper side fabric and a lower side fabric. Some or all of upper side wefts or lower side wefts are secondary wefts interwoven with upper side warps or lower side warps so as to make the number of warps passing on an upper surface of the upper side fabric or passing on a lower surface of the lower side fabric larger than that on an inner space side of the upper or lower side fabric and a long crimp in the inner space is formed by the secondary weft.




al

Parallel circuit of accumulator lines

A circuit for connecting a first accumulator line to a second accumulator line from an accumulator is described. The accumulator is provided for charging and discharging electrical energy via the accumulator lines. Each accumulator line has a positive pole and a negative pole for charging and discharging electrical energy. The circuit has at least one first switch which is provided for disconnecting and connecting two similar poles of the two accumulator lines.




al

Method and circuitry to calculate the state of charge of a battery/cell

The present inventions, in one aspect, are directed to techniques and/or circuitry to adapt the charging of a battery using data which is representative of an overpotential or relaxation time (full or partial) of the battery. In another aspect the present inventions are directed to techniques and/or circuitry to calculate data which is representative of an overpotential or relaxation time (full or partial) of the battery. In yet another aspect the present inventions are directed to techniques and/or circuitry to calculate data which is representative of a state of charge of the battery using an overpotential or relaxation time (full or partial) of the battery.




al

Method for operating an automated guided, mobile assembly and/or material transport unit and automated guided, mobile assembly and/or material transport unit therefor

A method for operating a driverless, mobile assembly and/or material transport unit as a driverless transport system (DTS) with fixed assembly and/or warehousing stations. In this method, a system control device is used for the entire assembly process. The driverless, mobile assembly and/or material transport units comprises a travel device for the traveling movement of the unit, a drive device for the travel device, an energy storage device for providing the energy for the drive device and a control device for controlling the traveling movement in coordination with the system control device.




al

Systems and methods for determining cell capacity values in a multi-cell battery

Systems and methods to determine cell capacities of a vehicle battery pack. Cell capacities may be determined using state of charge (SOC) estimates for the cells and a charge count for the battery pack. The SOC estimates may be determined when the SOC of the battery pack is below a lower threshold and above an upper threshold. Error values may also be generated for the cell capacity values.




al

Systems and methods for in-vehicle charging of pallet jack batteries

Systems and methods for in-vehicle charging of pallet jack batteries are provided. An example system allows using a power source of a host vehicle configured to provide power at voltage levels lower than the operating voltage of the pallet jack battery stack. The system may allow, for example, charging a 24 volts pallet jack battery stack from a 12 volts power source of the host vehicle. The system may further comprise an interconnecting circuit having a plurality of contactors electrically coupling the batteries in parallel for charging and serially for discharging. The system may further comprise a voltage monitoring circuit to detect whether the pallet jack is connected to the host vehicle power source for charging. Based on the detection, the voltage monitoring circuit may reconfigure the interconnecting circuit to electrically couple the pallet jack batteries in parallel.




al

Battery pack with integral non-contact discharging means and electronic device including the same

A battery pack and an electronic device are disclosed. The battery pack includes a battery for storing electric energy, and a non-contacting discharging unit for receiving the stored electric energy from the battery and for transferring the stored electric energy to a power receiving unit in a non-electrically contacting manner. The electronic device includes a main body and the battery pack. The main body includes a power receiving unit. The battery pack is for mounting to and supplying power to the main body.




al

Available charging/discharging current calculation method and power supply device

A method includes steps of dividing resistance R into a physical and chemical resistances Ro and Rp, obtaining corrected open-circuit voltages Vo corresponding to setting currents Ia to Ix, acquiring predicted reaching voltages Va to Vx corresponding to the setting currents Ia to Ix, and creating a current-voltage curve. The corrected open-circuit voltages Vo are obtained to predict available maximum currents I—target in a particular time t2. The predicted reaching voltages Va to Vx are acquired based on corrected physical and chemical resistances Ro and Rp, and the corrected open-circuit voltages Vo. The current-voltage curve is creased based on the setting currents Ia to Ix and the predicted reaching voltages Va to Vx to acquire upper and lower limit voltages Vmax and Vmin, and upper and lower limit currents Imax and Imin at a temperature whereby assigning these limit currents to available maximum currents I—target in charging and discharging operations, respectively.




al

System and method for non-sinusoidal current waveform excitation of electrical generators

An electrical generator includes a stator having fractional-slot concentrated windings and a rotor having field windings. A drive is provided having a circuit to control current flow to the field windings and a controller to input an initial DC field current demand to the circuit to cause the circuit to output an initial DC field current representative of a DC field current demand that would cause an electrical generator having sinusoidal stator windings to output a desired AC power. The controller receives feedback on the magnetic field generated by the initial DC field current, isolates an ideal fundamental component of the magnetic field based on the feedback and to generate a modified DC field current demand, and inputs the modified DC field current demand to the circuit, thereby causing the circuit to output an instantaneous non-sinusoidal current to the field windings to generate a sinusoidal rotating air gap magnetic field.




al

Fault tolerant electrical machine

A fault tolerant electrical machine including: a plurality of phases; a detector arranged to detect a fault in at least one of the phases; and a controller arranged to intentionally cause a fault in at least one other of the phases such that the vector sum of the second harmonic power vectors of the remaining phases is zero.




al

Wind energy plant with dynamic power distribution between the pitch system and supplementary electrical load

A wind energy plant comprising a rotor having blades and a generator driven by said rotor for generating electric energy. The pitch of the blades can be adjusted and a pitch system for adjusting the pitch angle of the blades is provided, which is supplied by a hub power source. An additional electric load is provided on the hub. A pitch power control device is provided which dynamically distributes the power of the hub power source between the pitch system and the additional electric load and further acts on the pitch system such that its power consumption during high-load operation is reduced. Thus, the power consumption of the pitch system during high-load operation can be reduced and additional power provided for operating the additional load. Even large additional loads, such as a blade heater, can be operated in this way, without having to boost the hub power source.




al

Method and apparatus for generating electricity by thermally cycling an electrically polarizable material using heat from condensers

A method for converting heat to electric energy is described which involves thermally cycling an electrically polarizable material sandwiched between electrodes. The material is heated by extracting thermal energy from a gas to condense the gas into a liquid and transferring the thermal energy to the electrically polarizable material. An apparatus is also described which includes an electrically polarizable material sandwiched between electrodes and a heat exchanger for heating the material in thermal communication with a heat source, wherein the heat source is a condenser. An apparatus is also described which comprises a chamber, one or more conduits inside the chamber for conveying a cooling fluid and an electrically polarizable material sandwiched between electrodes on an outer surface of the conduit. A gas introduced into the chamber condenses on the conduits and thermal energy is thereby transferred from the gas to the electrically polarizable material.