de ASÍ QUE LO LOGRASTE QUIÉN IBA A DECIRLO. FELICIDADES Y ¡BIENVENIDO! S V By www.yhchang.com Published On :: Full Article
de cunnilingus en corea del norte buenos aires tango version v By www.yhchang.com Published On :: Full Article
de Wintrust Financial Corporation Announces the Closing of the Acquisition of Countryside Bank By www.snl.com Published On :: Fri, 01 Nov 2019 20:10:00 GMT To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452. Full Article
de Wintrust Financial Corporation Announces Cash Dividends, Increasing Quarterly Common Stock Dividend Rate 12% By www.snl.com Published On :: Thu, 23 Jan 2020 22:32:00 GMT To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452. Full Article
de Wintrust Financial Corporation Announces Precautionary Decision to Help Achieve Community Health Objectives By Temporarily Closing Selected Branches By www.snl.com Published On :: Tue, 17 Mar 2020 11:00:00 GMT To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452. Full Article
de Wintrust Financial Corporation Announces Cash Dividends By www.snl.com Published On :: Thu, 23 Apr 2020 20:23:00 GMT To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452. Full Article
de DEFA14A By www.snl.com Published On :: Thu, 09 Apr 2020 04:00:00 GMT To view more documents, please visit http://www.snl.com/irweblinkx/docs.aspx?IID=1024452. Full Article
de DEF 14A By www.snl.com Published On :: Thu, 09 Apr 2020 04:00:00 GMT To view more documents, please visit http://www.snl.com/irweblinkx/docs.aspx?IID=1024452. Full Article
de Academy funds three leading engineers to tackle major industry challenges By www.raeng.org.uk Published On :: Mon, 09 Mar 2020 10:29:19 +00:00 Full Article
de Academy welcomes budget announcements on infrastructure and research By www.raeng.org.uk Published On :: Wed, 11 Mar 2020 16:40:30 +00:00 Full Article
de Academy responds to novel coronavirus and calls for ideas By www.raeng.org.uk Published On :: Thu, 26 Mar 2020 17:03:57 +00:00 Full Article
de Academy President comments on postponement of COP26 By www.raeng.org.uk Published On :: Thu, 02 Apr 2020 16:30:00 +01:00 Full Article
de Academy launches online events programme By www.raeng.org.uk Published On :: Fri, 17 Apr 2020 11:28:31 +01:00 Full Article
de Academy comments on government support for entrepreneurs By www.raeng.org.uk Published On :: Wed, 22 Apr 2020 09:15:34 +01:00 Full Article
de Seeking 'Engineers in the Making': Academy sets engineering challenges children can do at home By www.raeng.org.uk Published On :: Thu, 23 Apr 2020 11:37:27 +01:00 Full Article
de Academy maps out engineering challenges for recovery from COVID-19 By www.raeng.org.uk Published On :: Mon, 04 May 2020 10:14:10 +01:00 Full Article
de New Engineering X Pandemic Preparedness programme to support global innovation and knowledge sharing By www.raeng.org.uk Published On :: Mon, 04 May 2020 13:00:00 +01:00 Full Article
de National Engineering Policy Centre to provide advice to government on reaching net zero emissions By www.raeng.org.uk Published On :: Wed, 06 May 2020 00:01:54 +01:00 Full Article
de Ad Makers Use Deepfakes to 'Refresh' Old Content By www.technewsworld.com Published On :: 2020-04-28T11:05:35-07:00 With measures to stem the spread of COVID-19 putting a chokehold on their filming capabilities, advertising agencies are enhancing old content with new tech, including deepfakes. Deepfakes typically blend one person's likeness, or parts thereof, with the image of another person. Ad agencies are so restricted in how they can generate content, they'll explore anything that can be computer-generated. Full Article
de EndeavourOS 2020: Possibly the Best Arch Linux Option By www.technewsworld.com Published On :: 2020-05-01T06:00:00-07:00 EndeavourOS is a rolling release Arch Linux-based distribution with some handy new features that improve the user experience. This latest version comes with graphical install options and preconfigured desktop environments. Several new in-house utilities improve package management and error reporting. There are lots of installation tips with the Calamares installer, which has a new look and feel. Full Article
de 3 Improvements the COVID-19 Pandemic May Force By www.technewsworld.com Published On :: 2020-05-04T11:29:30-07:00 The pandemic may force certain improvements but I'm not sure that it will, because political distractions are doing a rather good job of drawing our focus away from fixing things now. For instance, we should be ramping domestic manufacturing of PPEs and ventilators permanently to prepare for a likely huge fall spike in COVID-19 infections. Still, we aren't. Full Article
de Far-Right Spreads COVID-19 Disinformation Epidemic Online By www.technewsworld.com Published On :: 2020-05-05T10:14:48-07:00 Far-right groups and individuals in the United States are exploiting the COVID-19 pandemic to promote disinformation, hate, extremism and authoritarianism. "COVID-19 has been seized by far-right groups as an opportunity to call for extreme violence," states a report from ISD, based on a combination of natural language processing, network analysis and ethnographic online research. Full Article
de Oculus Quest Production Stymied by Pandemic By www.technewsworld.com Published On :: 2020-05-06T09:02:25-07:00 The next generation of Oculus Quest virtual reality headsets is in the works, but pandemic-related product development and supply chain problems may delay market arrival. Oculus reportedly has multiple potential Quest successors on the drawing board. Smaller, lighter versions with a faster image refresh rate for more realistic rendering are in the advanced testing stage. Full Article
de Red Hat's Virtual Summit Crowds Hint at Future Conference Models By www.technewsworld.com Published On :: 2020-05-07T04:00:00-07:00 In what could be a trial run for more of the same, Red Hat last week held a first-ever virtual technical summit to spread the word about its latest cloud tech offerings. CEO Paul Cormier welcomed online viewers to the conference, which attracted more than 80,000 virtual attendees. The company made several key announcements during the online gathering and highlighted customer innovations. Full Article
de MakuluLinux Delivers Modernity With New Core Platform By www.technewsworld.com Published On :: 2020-05-08T10:56:00-07:00 If you are looking for a well-designed Linux distro that is far from mainstream, loaded with performance features not found elsewhere, check out the 2020 upgrade of the MakuluLinux Core distro. It could change your perspective on what a daily computing driver should offer. Developer Jacque Montague Raymer recently released the 2020 edition of MakuluLinux Core OS. Full Article
de Zoho's Noble Endeavor By www.crmbuyer.com Published On :: 2020-03-25T04:00:00-07:00 Edge conditions and the change they drive are fascinating. Some people use the word "margin" because it's at the margin that things change. A situation exists more or less in equilibrium with the rest of its environment until in one way or another the stresses become so great that change happens. We have lots of metaphors, like "tipping point" and "the straw that broke the camel's back." Full Article
de A 6-Point Plan to Leapfrog to CX Leadership By www.crmbuyer.com Published On :: 2020-04-08T11:58:09-07:00 Customer experience as a boardroom topic is more relevant than ever. Enterprises are investing significant digital transformation budgets and commissioning large projects to elevate CX. Yet more than 70 percent of digital transformation projects fail to move the needle at scale. One topic that has a substantial impact on CX is the transformation of customer service operations using digital tools. Full Article
de The lawyer who laundered political contributions By www.mcclatchydc.com Published On :: Full Article
de 02020-02-07: Badain Jaran Desert By modis.gsfc.nasa.gov Published On :: 02020-02-07: Badain Jaran Desert Full Article
de Alaska Native Sisterhood civil rights leader Amy Hallingstad--a glimpse to 1947 By www.sealaskaheritage.org Published On :: Full Article
de Lessons from 25 years of the Bank of Mexico's independence By www.bis.org Published On :: 2019-11-29T09:00:00Z Speech by Dr Agustín Carstens at the celebration of 25 years of Bank of Mexico independence, Mexico City, 22 November 2019. Full Article
de BIS Quarterly Review, December 2019 - media briefing By www.bis.org Published On :: 2019-12-08T17:00:00Z On-the-record remarks of the December 2019 Quarterly Review media briefing by Mr Claudio Borio, Head of the Monetary and Economic Department, and Mr Hyun Song Shin, Economic Adviser and Head of Research, 6 December 2019. Full Article
de Deletion of a Neuronal Drp1 Activator Protects against Cerebral Ischemia By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 Mitochondrial fission catalyzed by dynamin-related protein 1 (Drp1) is necessary for mitochondrial biogenesis and maintenance of healthy mitochondria. However, excessive fission has been associated with multiple neurodegenerative disorders, and we recently reported that mice with smaller mitochondria are sensitized to ischemic stroke injury. Although pharmacological Drp1 inhibition has been put forward as neuroprotective, the specificity and mechanism of the inhibitor used is controversial. Here, we provide genetic evidence that Drp1 inhibition is neuroprotective. Drp1 is activated by dephosphorylation of an inhibitory phosphorylation site, Ser637. We identify Bβ2, a mitochondria-localized protein phosphatase 2A (PP2A) regulatory subunit, as a neuron-specific Drp1 activator in vivo. Bβ2 KO mice of both sexes display elongated mitochondria in neurons and are protected from cerebral ischemic injury. Functionally, deletion of Bβ2 and maintained Drp1 Ser637 phosphorylation improved mitochondrial respiratory capacity, Ca2+ homeostasis, and attenuated superoxide production in response to ischemia and excitotoxicity in vitro and ex vivo. Last, deletion of Bβ2 rescued excessive stroke damage associated with dephosphorylation of Drp1 S637 and mitochondrial fission. These results indicate that the state of mitochondrial connectivity and PP2A/Bβ2-mediated dephosphorylation of Drp1 play a critical role in determining the severity of cerebral ischemic injury. Therefore, Bβ2 may represent a target for prophylactic neuroprotective therapy in populations at high risk of stroke. SIGNIFICANCE STATEMENT With recent advances in clinical practice including mechanical thrombectomy up to 24 h after the ischemic event, there is resurgent interest in neuroprotective stroke therapies. In this study, we demonstrate reduced stroke damage in the brain of mice lacking the Bβ2 regulatory subunit of protein phosphatase 2A, which we have shown previously acts as a positive regulator of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). Importantly, we provide evidence that deletion of Bβ2 can rescue excessive ischemic damage in mice lacking the mitochondrial PKA scaffold AKAP1, apparently via opposing effects on Drp1 S637 phosphorylation. These results highlight reversible phosphorylation in bidirectional regulation of Drp1 activity and identify Bβ2 as a potential pharmacological target to protect the brain from stroke injury. Full Article
de Fingolimod Rescues Demyelination in a Mouse Model of Krabbe's Disease By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 Krabbe's disease is an infantile neurodegenerative disease, which is affected by mutations in the lysosomal enzyme galactocerebrosidase, leading to the accumulation of its metabolite psychosine. We have shown previously that the S1P receptor agonist fingolimod (FTY720) attenuates psychosine-induced glial cell death and demyelination both in vitro and ex vivo models. These data, together with a lack of therapies for Krabbe's disease, prompted the current preclinical study examining the effects of fingolimod in twitcher mice, a murine model of Krabbe's disease. Twitcher mice, both male and female, carrying a natural mutation in the galc gene were given fingolimod via drinking water (1 mg/kg/d). The direct impact of fingolimod administration was assessed via histochemical and biochemical analysis using markers of myelin, astrocytes, microglia, neurons, globoid cells, and immune cells. The effects of fingolimod on twitching behavior and life span were also demonstrated. Our results show that treatment of twitcher mice with fingolimod significantly rescued myelin levels compared with vehicle-treated animals and also regulated astrocyte and microglial reactivity. Furthermore, nonphosphorylated neurofilament levels were decreased, indicating neuroprotective and neurorestorative processes. These protective effects of fingolimod on twitcher mice brain pathology was reflected by an increased life span of fingolimod-treated twitcher mice. These in vivo findings corroborate initial in vitro studies and highlight the potential use of S1P receptors as drug targets for treatment of Krabbe's disease. SIGNIFICANCE STATEMENT This study demonstrates that the administration of the therapy known as fingolimod in a mouse model of Krabbe's disease (namely, the twitcher mouse model) significantly rescues myelin levels. Further, the drug fingolimod also regulates the reactivity of glial cells, astrocytes and microglia, in this mouse model. These protective effects of fingolimod result in an increased life span of twitcher mice. Full Article
de Integration of Swimming-Related Synaptic Excitation and Inhibition by olig2+ Eurydendroid Neurons in Larval Zebrafish Cerebellum By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 The cerebellum influences motor control through Purkinje target neurons, which transmit cerebellar output. Such output is required, for instance, for larval zebrafish to learn conditioned fictive swimming. The output cells, called eurydendroid neurons (ENs) in teleost fish, are inhibited by Purkinje cells and excited by parallel fibers. Here, we investigated the electrophysiological properties of glutamatergic ENs labeled by the transcription factor olig2. Action potential firing and synaptic responses were recorded in current clamp and voltage clamp from olig2+ neurons in immobilized larval zebrafish (before sexual differentiation) and were correlated with motor behavior by simultaneous recording of fictive swimming. In the absence of swimming, olig2+ ENs had basal firing rates near 8 spikes/s, and EPSCs and IPSCs were evident. Comparing Purkinje firing rates and eurydendroid IPSC rates indicated that 1-3 Purkinje cells converge onto each EN. Optogenetically suppressing Purkinje simple spikes, while preserving complex spikes, suggested that eurydendroid IPSC size depended on presynaptic spike duration rather than amplitude. During swimming, EPSC and IPSC rates increased. Total excitatory and inhibitory currents during sensory-evoked swimming were both more than double those during spontaneous swimming. During both spontaneous and sensory-evoked swimming, the total inhibitory current was more than threefold larger than the excitatory current. Firing rates of ENs nevertheless increased, suggesting that the relative timing of IPSCs and EPSCs may permit excitation to drive additional eurydendroid spikes. The data indicate that olig2+ cells are ENs whose activity is modulated with locomotion, suiting them to participate in sensorimotor integration associated with cerebellum-dependent learning. SIGNIFICANCE STATEMENT The cerebellum contributes to movements through signals generated by cerebellar output neurons, called eurydendroid neurons (ENs) in fish (cerebellar nuclei in mammals). ENs receive sensory and motor signals from excitatory parallel fibers and inhibitory Purkinje cells. Here, we report electrophysiological recordings from ENs of larval zebrafish that directly illustrate how synaptic inhibition and excitation are integrated by cerebellar output neurons in association with motor behavior. The results demonstrate that inhibitory and excitatory drive both increase during fictive swimming, but inhibition greatly exceeds excitation. Firing rates nevertheless increase, providing evidence that synaptic integration promotes cerebellar output during locomotion. The data offer a basis for comparing aspects of cerebellar coding that are conserved and that diverge across vertebrates. Full Article
de Mechanistic Target of Rapamycin Regulates the Oligodendrocyte Cytoskeleton during Myelination By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 During differentiation, oligodendrocyte precursor cells (OPCs) extend a network of processes that make contact with axons and initiate myelination. Recent studies revealed that actin polymerization is required for initiation of myelination whereas actin depolymerization promotes myelin wrapping. Here, we used primary OPCs in culture isolated from neonatal rat cortices of both sexes and young male and female mice with oligodendrocyte-specific deletion of mechanistic target of rapamycin (mTOR) to demonstrate that mTOR regulates expression of specific cytoskeletal targets and actin reorganization in oligodendrocytes during developmental myelination. Loss or inhibition of mTOR reduced expression of profilin2 and ARPC3, actin polymerizing factors, and elevated levels of active cofilin, which mediates actin depolymerization. The deficits in actin polymerization were revealed in reduced phalloidin and deficits in oligodendrocyte cellular branching complexity at the peak of morphologic differentiation and a delay in initiation of myelination. We further show a critical role for mTOR in expression and localization of myelin basic protein (Mbp) mRNA and MBP protein to the cellular processes where it is necessary at the myelin membrane for axon wrapping. Mbp mRNA transport deficits were confirmed by single molecule RNA FISH. Moreover, expression of the kinesin family member 1B, an Mbp mRNA transport protein, was reduced in CC1+ cells in the mTOR cKO and in mTOR inhibited oligodendrocytes undergoing differentiation in vitro. These data support the conclusion that mTOR regulates both initiation of myelination and axon wrapping by targeting cytoskeletal reorganization and MBP localization to oligodendrocyte processes. SIGNIFICANCE STATEMENT Myelination is essential for normal CNS development and adult axon preservation and function. The mechanistic target of rapamycin (mTOR) signaling pathway has been implicated in promoting CNS myelination; however, there is a gap in our understanding of the mechanisms by which mTOR promotes developmental myelination through regulating specific downstream targets. Here, we present evidence that mTOR promotes the initiation of myelination through regulating specific cytoskeletal targets and cellular process expansion by oligodendrocyte precursor cells as well as expression and cellular localization of myelin basic protein. Full Article
de Noncoding Microdeletion in Mouse Hgf Disrupts Neural Crest Migration into the Stria Vascularis, Reduces the Endocochlear Potential, and Suggests the Neuropathology for Human Nonsyndromic Deafness DFNB39 By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 Hepatocyte growth factor (HGF) is a multifunctional protein that signals through the MET receptor. HGF stimulates cell proliferation, cell dispersion, neuronal survival, and wound healing. In the inner ear, levels of HGF must be fine-tuned for normal hearing. In mice, a deficiency of HGF expression limited to the auditory system, or an overexpression of HGF, causes neurosensory deafness. In humans, noncoding variants in HGF are associated with nonsyndromic deafness DFNB39. However, the mechanism by which these noncoding variants causes deafness was unknown. Here, we reveal the cause of this deafness using a mouse model engineered with a noncoding intronic 10 bp deletion (del10) in Hgf. Male and female mice homozygous for del10 exhibit moderate-to-profound hearing loss at 4 weeks of age as measured by tone burst auditory brainstem responses. The wild type (WT) 80 mV endocochlear potential was significantly reduced in homozygous del10 mice compared with WT littermates. In normal cochlea, endocochlear potentials are dependent on ion homeostasis mediated by the stria vascularis (SV). Previous studies showed that developmental incorporation of neural crest cells into the SV depends on signaling from HGF/MET. We show by immunohistochemistry that, in del10 homozygotes, neural crest cells fail to infiltrate the developing SV intermediate layer. Phenotyping and RNAseq analyses reveal no other significant abnormalities in other tissues. We conclude that, in the inner ear, the noncoding del10 mutation in Hgf leads to developmental defects of the SV and consequently dysfunctional ion homeostasis and a reduction in the EP, recapitulating human DFNB39 nonsyndromic deafness. SIGNIFICANCE STATEMENT Hereditary deafness is a common, clinically and genetically heterogeneous neurosensory disorder. Previously, we reported that human deafness DFNB39 is associated with noncoding variants in the 3'UTR of a short isoform of HGF encoding hepatocyte growth factor. For normal hearing, HGF levels must be fine-tuned as an excess or deficiency of HGF cause deafness in mouse. Using a Hgf mutant mouse with a small 10 bp deletion recapitulating a human DFNB39 noncoding variant, we demonstrate that neural crest cells fail to migrate into the stria vascularis intermediate layer, resulting in a significantly reduced endocochlear potential, the driving force for sound transduction by inner ear hair cells. HGF-associated deafness is a neurocristopathy but, unlike many other neurocristopathies, it is not syndromic. Full Article
de Interneuron NMDA Receptor Ablation Induces Hippocampus-Prefrontal Cortex Functional Hypoconnectivity after Adolescence in a Mouse Model of Schizophrenia By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Although the etiology of schizophrenia is still unknown, it is accepted to be a neurodevelopmental disorder that results from the interaction of genetic vulnerabilities and environmental insults. Although schizophrenia's pathophysiology is still unclear, postmortem studies point toward a dysfunction of cortical interneurons as a central element. It has been suggested that alterations in parvalbumin-positive interneurons in schizophrenia are the consequence of a deficient signaling through NMDARs. Animal studies demonstrated that early postnatal ablation of the NMDAR in corticolimbic interneurons induces neurobiochemical, physiological, behavioral, and epidemiological phenotypes related to schizophrenia. Notably, the behavioral abnormalities emerge only after animals complete their maturation during adolescence and are absent if the NMDAR is deleted during adulthood. This suggests that interneuron dysfunction must interact with development to impact on behavior. Here, we assess in vivo how an early NMDAR ablation in corticolimbic interneurons impacts on mPFC and ventral hippocampus functional connectivity before and after adolescence. In juvenile male mice, NMDAR ablation results in several pathophysiological traits, including increased cortical activity and decreased entrainment to local gamma and distal hippocampal theta rhythms. In addition, adult male KO mice showed reduced ventral hippocampus-mPFC-evoked potentials and an augmented low-frequency stimulation LTD of the pathway, suggesting that there is a functional disconnection between both structures in adult KO mice. Our results demonstrate that early genetic abnormalities in interneurons can interact with postnatal development during adolescence, triggering pathophysiological mechanisms related to schizophrenia that exceed those caused by NMDAR interneuron hypofunction alone. SIGNIFICANCE STATEMENT NMDAR hypofunction in cortical interneurons has been linked to schizophrenia pathophysiology. How a dysfunction of GABAergic cortical interneurons interacts with maturation during adolescence has not been clarified yet. Here, we demonstrate in vivo that early postnatal ablation of the NMDAR in corticolimbic interneurons results in an overactive but desynchronized PFC before adolescence. Final postnatal maturation during this stage outspreads the impact of the genetic manipulation toward a functional disconnection of the ventral hippocampal-prefrontal pathway, probably as a consequence of an exacerbated propensity toward hippocampal-evoked depotentiation plasticity. Our results demonstrate a complex interaction between genetic and developmental factors affecting cortical interneurons and PFC function. Full Article
de Resolving the Spatial Profile of Figure Enhancement in Human V1 through Population Receptive Field Modeling By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 The detection and segmentation of meaningful figures from their background is one of the primary functions of vision. While work in nonhuman primates has implicated early visual mechanisms in this figure–ground modulation, neuroimaging in humans has instead largely ascribed the processing of figures and objects to higher stages of the visual hierarchy. Here, we used high-field fMRI at 7 Tesla to measure BOLD responses to task-irrelevant orientation-defined figures in human early visual cortex (N = 6, four females). We used a novel population receptive field mapping-based approach to resolve the spatial profiles of two constituent mechanisms of figure–ground modulation: a local boundary response, and a further enhancement spanning the full extent of the figure region that is driven by global differences in features. Reconstructing the distinct spatial profiles of these effects reveals that figure enhancement modulates responses in human early visual cortex in a manner consistent with a mechanism of automatic, contextually driven feedback from higher visual areas. SIGNIFICANCE STATEMENT A core function of the visual system is to parse complex 2D input into meaningful figures. We do so constantly and seamlessly, both by processing information about visible edges and by analyzing large-scale differences between figure and background. While influential neurophysiology work has characterized an intriguing mechanism that enhances V1 responses to perceptual figures, we have a poor understanding of how the early visual system contributes to figure–ground processing in humans. Here, we use advanced computational analysis methods and high-field human fMRI data to resolve the distinct spatial profiles of local edge and global figure enhancement in the early visual system (V1 and LGN); the latter is distinct and consistent with a mechanism of automatic, stimulus-driven feedback from higher-level visual areas. Full Article
de Neural Evidence for the Prediction of Animacy Features during Language Comprehension: Evidence from MEG and EEG Representational Similarity Analysis By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 It has been proposed that people can generate probabilistic predictions at multiple levels of representation during language comprehension. We used magnetoencephalography (MEG) and electroencephalography (EEG), in combination with representational similarity analysis, to seek neural evidence for the prediction of animacy features. In two studies, MEG and EEG activity was measured as human participants (both sexes) read three-sentence scenarios. Verbs in the final sentences constrained for either animate or inanimate semantic features of upcoming nouns, and the broader discourse context constrained for either a specific noun or for multiple nouns belonging to the same animacy category. We quantified the similarity between spatial patterns of brain activity following the verbs until just before the presentation of the nouns. The MEG and EEG datasets revealed converging evidence that the similarity between spatial patterns of neural activity following animate-constraining verbs was greater than following inanimate-constraining verbs. This effect could not be explained by lexical-semantic processing of the verbs themselves. We therefore suggest that it reflected the inherent difference in the semantic similarity structure of the predicted animate and inanimate nouns. Moreover, the effect was present regardless of whether a specific word could be predicted, providing strong evidence for the prediction of coarse-grained semantic features that goes beyond the prediction of individual words. SIGNIFICANCE STATEMENT Language inputs unfold very quickly during real-time communication. By predicting ahead, we can give our brains a "head start," so that language comprehension is faster and more efficient. Although most contexts do not constrain strongly for a specific word, they do allow us to predict some upcoming information. For example, following the context of "they cautioned the...," we can predict that the next word will be animate rather than inanimate (we can caution a person, but not an object). Here, we used EEG and MEG techniques to show that the brain is able to use these contextual constraints to predict the animacy of upcoming words during sentence comprehension, and that these predictions are associated with specific spatial patterns of neural activity. Full Article
de The Effect of Counterfactual Information on Outcome Value Coding in Medial Prefrontal and Cingulate Cortex: From an Absolute to a Relative Neural Code By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Adaptive coding of stimuli is well documented in perception, where it supports efficient encoding over a broad range of possible percepts. Recently, a similar neural mechanism has been reported also in value-based decision, where it allows optimal encoding of vast ranges of values in PFC: neuronal response to value depends on the choice context (relative coding), rather than being invariant across contexts (absolute coding). Additionally, value learning is sensitive to the amount of feedback information: providing complete feedback (both obtained and forgone outcomes) instead of partial feedback (only obtained outcome) improves learning. However, it is unclear whether relative coding occurs in all PFC regions and how it is affected by feedback information. We systematically investigated univariate and multivariate feedback encoding in various mPFC regions and compared three modes of neural coding: absolute, partially-adaptive and fully-adaptive. Twenty-eight human participants (both sexes) performed a learning task while undergoing fMRI scanning. On each trial, they chose between two symbols associated with a certain outcome. Then, the decision outcome was revealed. Notably, in one-half of the trials participants received partial feedback, whereas in the other half they got complete feedback. We used univariate and multivariate analysis to explore value encoding in different feedback conditions. We found that both obtained and forgone outcomes were encoded in mPFC, but with opposite sign in its ventral and dorsal subdivisions. Moreover, we showed that increasing feedback information induced a switch from absolute to relative coding. Our results suggest that complete feedback information enhances context-dependent outcome encoding. SIGNIFICANCE STATEMENT This study offers a systematic investigation of the effect of the amount of feedback information (partial vs complete) on univariate and multivariate outcome value encoding, within multiple regions in mPFC and cingulate cortex that are critical for value-based decisions and behavioral adaptation. Moreover, we provide the first comparison of three possible models of neural coding (i.e., absolute, partially-adaptive, and fully-adaptive coding) of value signal in these regions, by using commensurable measures of prediction accuracy. Taken together, our results help build a more comprehensive picture of how the human brain encodes and processes outcome value. In particular, our results suggest that simultaneous presentation of obtained and foregone outcomes promotes relative value representation. Full Article
de Synaptic Specificity and Application of Anterograde Transsynaptic AAV for Probing Neural Circuitry By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Revealing the organization and function of neural circuits is greatly facilitated by viral tools that spread transsynaptically. Adeno-associated virus (AAV) exhibits anterograde transneuronal transport, however, the synaptic specificity of this spread and its broad application within a diverse set of circuits remains to be explored. Here, using anatomic, functional, and molecular approaches, we provide evidence for the preferential transport of AAV1 to postsynaptically connected neurons and reveal its spread is strongly dependent on synaptic transmitter release. In addition to glutamatergic pathways, AAV1 also spreads through GABAergic synapses to both excitatory and inhibitory cell types. We observed little or no transport, however, through neuromodulatory projections (e.g., serotonergic, cholinergic, and noradrenergic). In addition, we found that AAV1 can be transported through long-distance descending projections from various brain regions to effectively transduce spinal cord neurons. Combined with newly designed intersectional and sparse labeling strategies, AAV1 can be applied within a wide variety of pathways to categorize neurons according to their input sources, morphology, and molecular identities. These properties make AAV1 a promising anterograde transsynaptic tool for establishing a comprehensive cell-atlas of the brain, although its capacity for retrograde transport currently limits its use to unidirectional circuits. SIGNIFICANCE STATEMENT The discovery of anterograde transneuronal spread of AAV1 generates great promise for its application as a unique tool for manipulating input-defined cell populations and mapping their outputs. However, several outstanding questions remain for anterograde transsynaptic approaches in the field: (1) whether AAV1 spreads exclusively or specifically to synaptically connected neurons, and (2) how broad its application could be in various types of neural circuits in the brain. This study provides several lines of evidence in terms of anatomy, functional innervation, and underlying mechanisms, to strongly support that AAV1 anterograde transneuronal spread is highly synapse specific. In addition, several potentially important applications of transsynaptic AAV1 in probing neural circuits are described. Full Article