use

SED on student protests at universities campuses




use

SED on universities funding and limit of access to university campuses




use

Stay focused and prepared for HKDSE Examination




use

Ultraviolet light exposes contagion spread from improper PPE use

(Florida Atlantic University) Despite PPE use, reports show that many health care workers contracted COVID-19. A novel training technique reinforces the importance of using proper procedures to put on and take off PPE when caring for patients during the pandemic. Researchers vividly demonstrate how aerosol-generating procedures can lead to exposure of the contagion with improper PPE use. The most common error made by the health care workers was contaminating the face or forearms during PPE removal.




use

Refuse transfer subsidy disbursed

The Government today announced that the Environment Bureau has disbursed about $6.5 million in subsidies to 809 private municipal solid waste collectors by cheque.

 

Under the Government's latest round of anti-epidemic measures, the bureau launched the Subsidy Scheme for the Refuse Transfer Station Account Holders for Transporting Municipal Solid Waste to provide a one-off relief subsidy of $8,000 to each eligible private municipal solid waste collector.

 

To provide financial support to the industry as soon as possible, the Environmental Protection Department, following funding approval by the Legislative Council Finance Committee, expedited the subsidy disbursement arrangement by waiving the application procedures.

 

The cheques have been issued and posted to all eligible private collectors.

 

Eligible collectors are refuse transfer station account holders who transported municipal solid waste to refuse transfer stations or landfills in the first quarter of the year.

 

The subsidy will assist them in increasing resources to enhance workers' personal protective equipment and strengthen the disinfection of refuse transport vehicles to curb the risk of virus transmission and maintain environmental hygiene.




use

SAS Notes for SAS®9 - 32202: Dual-monitor setup might cause problems in SAS Enterprise Guide

Problems might occur when using SAS Enterprise Guide with dual monitors. For example, it might appear there is a performance problem with the query builder or other task, or it might appear that code or a task is hung, or




use

New Research from Columbia Business School Shows Radical Changes in Household Spending Habits During COVID-19 Epidemic

Tuesday, April 28, 2020 - 14:30

Study provides first real-time view into household consumption during outbreak in U.S., showing an initial sharp increase in key categories, followed by a sharp decrease in overall spending

 




use

Focused ultrasound opening brain to previously impossible treatments

(University of Virginia Health System) Focused ultrasound, the researchers hope, could revolutionize treatment for conditions from Alzheimer's to epilepsy to brain tumors -- and even help repair the devastating damage caused by stroke.




use

Free use of Kudos Pro to help researchers keep communicating during pandemic disruption

(Kudos Innovations Ltd) Kudos helps researchers maximize reach and visibility of research by opening up Kudos Pro. The platform helps showcase work to a range of target audiences, supporting researchers in fields where conferences have been cancelled -- and those with COVID-19-relevant work that needs rapid communication. Over 2,000 researchers have already signed up.




use

A review on phytochemistry, pharmacological action, ethanobotanical uses and nutritional potential

(Bentham Science Publishers) This comprehensive review presented by researchers from K.S. Rangasamy College of Arts and Science, Tiruchengode, Tamil-Nadu, India, gives readers a brief overview of phytoconstituents, nutritional values and medicinal properties of the plant.




use

Can you reuse a disposable mask? Yes, if you follow these steps

Disposable masks can be used more than once, but it's important to make sure the mask isn't carrying coronavirus.





use

A standard for real-time calculation of pollutant emissions allocated to the use of ICT

(École de technologie supérieure) The first ever standard for real-time calculation of pollutant emissions allocated to the use of information and communication technologies (ICT) was recently introduced, thanks to the work of the IEEE ICT Emissions Working Group Committe, chaired by Mohamed Cheriet, a Professor in the Systems Engineering Department at École de technologie supérieure. Under the auspices of the IEEE Standards Association, the Working Group Committee is made up of researchers from diverse backgrounds and many different countries.




use

Bacteria ‘factories’ used to discover potential new malaria drugs

Researchers have engineered bacteria to produce new versions of a potential antibiotic molecule, some with potent antimalarial properties.




use

Study to research impact of COVID-19 on people who use drugs

(University of Stirling) Understanding the health impacts of the COVID-19 pandemic on people who use drugs in Scotland is the focus of a new University of Stirling study.




use

UCSF expert to offer 'confessions of unfocused researcher' on road to better care

(American Geriatrics Society) The American Geriatrics Society (AGS) and AGS Health in Aging Foundation today announced that Alexander K. Smith, MD, MPH, an associate professor of medicine at UCSF and one of geriatrics' most influential rising researchers and advocates, will be honored with the 2020/2021 Thomas and Catherine Yoshikawa Award for Outstanding Scientific Achievement in Clinical Investigation.




use

Which COVID-19 models should we use to make policy decisions?

(Penn State) A new process to harness multiple disease models for outbreak management has been developed by an international team of researchers. The team will immediately implement the process to help inform policy decisions for the COVID-19 outbreak.




use

Drug Interactions of Medications Commonly Used in Diabetes

Curtis Triplitt
Oct 1, 2006; 19:202-211
Pharmacy Update




use

Motivational Interviewing and Diabetes: What Is It, How Is It Used, and Does It Work?

Garry Welch
Jan 1, 2006; 19:5-11
Lifestyle and Behavior




use

Violence is not the answer - Dexta Daps’ new single spurs conversation on domestic abuse

Hours after he was released from police lock-up last week, dancehall artiste Dexta Daps dropped some new music on his eager fans. The track, Breaking News, explores an all-too-familiar domestic violence storyline, but incorporates a controversial...




use

New Research Reveals Dramatic Shifts in US Household Spending

Data from March shows similarities in spending across various demographics.




use

In It Together: A Conversation With Anna Houseman '21

The Sanford C. Bernstein & Co. Center for Leadership and Ethics spoke with Anna Houseman '21 about her daily routine, personal ethics, and staying productive during the pandemic. 




use

State Cyber Interventions Below the Threshold of the Use of Force: Challenges in the Application of International Law

Invitation Only Research Event

30 April 2019 - 10:00am to 4:00pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Chair: Elizabeth Wilmshurst, Distinguished Fellow, International Law Programme, Chatham House

Under what circumstances will a state-sponsored cyberattack on another state that falls below the threshold of the use of force be a breach of international law – for example, hacking into another state’s electoral databases, usurping inherently governmental functions such as parliamentary processes or an attack on another state’s financial system? In the dynamic field of state cyber operations, persistent, low-level cyberattacks are increasing, as are multilateral attempts to attribute the attacks to the states responsible. There is general agreement that international law applies to cyberspace but the question is how it applies and with what consequences.     
   
This meeting will bring together a small group of academics and practitioners to explore the application of international law to states’ cyber operations that interfere in the internal affairs of another state and which fall below the threshold of the use of force. What is the law on non-intervention in international law and how does it apply to states’ cyber activities? Does the Nicaragua case represent the best expression of the law in this area including the requirement of coercion? And are there any other principles of international law that are relevant? The meeting will also consider processes and procedures for agreeing on the law and best practices.
 
The purpose of the meeting will be to inform a research paper by Chatham House.
 
Attendance at this event is by invitation only.

Event attributes

Chatham House Rule

Department/project




use

The Use of Sanctions to Protect Journalists

Members Event

13 February 2020 - 12:30pm to 1:45pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Professor Sarah Cleveland, Louis Henkin Professor of Human and Constitutional Rights; Faculty Co-Director, Human Rights Institute, Columbia Law School

Amal Clooney, Barrister, Doughty Street Chambers

The Honourable Irwin Cotler, Chair, Raoul Wallenberg Centre for Human Rights; Minister of Justice and Attorney-General of Canada (2003-06)

Baroness Helena Kennedy QC, Director, International Bar Association’s Human Rights Institute

Lord Neuberger, President, Supreme Court of the United Kingdom (2012-17)

Maria Ressa, CEO, Rappler Online News Network

Chair: Elizabeth Wilmshurst CMG, Distinguished Fellow, International Law Programme, Chatham House

Attacks against journalists and challenges to media freedom are urgent and global. The sharp decline globally of democratic values which are underpinned in international values highlights the need for a free press and the necessity for states to take concerted action to protect media freedom.

The High-Level Panel of Legal Experts on Media Freedom is an independent body convened at the request of the UK and Canadian governments in July 2019.

The remit of the panel is to provide recommendations to governments on how to better protect journalists and address abuses of media freedom in line with international human rights law.

Drawing on the panel’s new report, the speakers will discuss the use of targeted sanctions to protect journalists and a free press. Can the threat of targeted sanctions help curb the trend of increasing abuses against journalists?

And what legal frameworks and mechanisms will be necessary to ensure targeted sanctions achieve their goal of identifying, preventing and punishing abuses against journalists?
 
This event is organized in collaboration with the International Bar Association’s Human Rights Institute which acts as the secretariat to the High-Level Panel of Legal Experts on Media Freedom.

 

Members Events Team




use

Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPAR{alpha}-regulated genes [Lipids]

Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2−/−) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2−/− mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2−/− mice and a total of 91 in female Fatp2−/− mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator–activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2−/− liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities.




use

Determination of globotriaosylceramide analogs in the organs of a mouse model of Fabry disease [Lipids]

Fabry disease is a heritable lipid disorder caused by the low activity of α-galactosidase A and characterized by the systemic accumulation of globotriaosylceramide (Gb3). Recent studies have reported a structural heterogeneity of Gb3 in Fabry disease, including Gb3 isoforms with different fatty acids and Gb3 analogs with modifications on the sphingosine moiety. However, Gb3 assays are often performed only on the selected Gb3 isoforms. To precisely determine the total Gb3 concentration, here we established two methods for determining both Gb3 isoforms and analogs. One was the deacylation method, involving Gb3 treatment with sphingolipid ceramide N-deacylase, followed by an assay of the deacylated products, globotriaosylsphingosine (lyso-Gb3) and its analogs, by ultra-performance LC coupled to tandem MS (UPLC-MS/MS). The other method was a direct assay established in the present study for 37 Gb3 isoforms and analogs/isoforms by UPLC-MS/MS. Gb3s from the organs of symptomatic animals of a Fabry disease mouse model were mainly Gb3 isoforms and two Gb3 analogs, such as Gb3(+18) containing the lyso-Gb3(+18) moiety and Gb3(−2) containing the lyso-Gb3(−2) moiety. The total concentrations and Gb3 analog distributions determined by the two methods were comparable. Gb3(+18) levels were high in the kidneys (24% of total Gb3) and the liver (13%), and we observed Gb3(−2) in the heart (10%) and the kidneys (5%). These results indicate organ-specific expression of Gb3 analogs, insights that may lead to a deeper understanding of the pathophysiology of Fabry disease.




use

COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids]

Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism.




use

The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis [Cell Biology]

Sperm head shaping is a key event in spermiogenesis and is tightly controlled via the acrosome–manchette network. Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of Sad1 and UNC84 domain–containing (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain proteins and form conserved nuclear envelope bridges implicated in transducing mechanical forces from the manchette to sculpt sperm nuclei into a hook-like shape. However, the role of LINC complexes in sperm head shaping is still poorly understood. Here we assessed the role of SUN3, a testis-specific LINC component harboring a conserved SUN domain, in spermiogenesis. We show that CRISPR/Cas9-generated Sun3 knockout male mice are infertile, displaying drastically reduced sperm counts and a globozoospermia-like phenotype, including a missing, mislocalized, or fragmented acrosome, as well as multiple defects in sperm flagella. Further examination revealed that the sperm head abnormalities are apparent at step 9 and that the sperm nuclei fail to elongate because of the absence of manchette microtubules and perinuclear rings. These observations indicate that Sun3 deletion likely impairs the ability of the LINC complex to transduce the cytoskeletal force to the nuclear envelope, required for sperm head elongation. We also found that SUN3 interacts with SUN4 in mouse testes and that the level of SUN4 proteins is drastically reduced in Sun3-null mice. Altogether, our results indicate that SUN3 is essential for sperm head shaping and male fertility, providing molecular clues regarding the underlying pathology of the globozoospermia-like phenotype.




use

How to remove unused devices from Sophos Central

We take you through the steps to clear your old devices from Sophos Central, so you've got more time to focus on the devices that matter.




use

Protecting the Cloud: Securing user remote access to AWS

How to create secure access to services hosted in AWS with Sophos XG Firewall.




use

Transparency and Accountability for Drone Use: European Approaches

Invitation Only Research Event

11 March 2019 - 9:30am to 12 March 2019 - 12:30pm

Chatham House

With increased use of military drones in recent years there have also been many calls for greater transparency and accountability with regards to drone operations.

This would allow for greater public understanding, particularly as the complex nature of military operations today intensifies difficulties in sustaining perceptions of the legitimate use of force.

For example, in Europe, leading states rely on the US for drone platforms and for the infrastructure - such as military communication networks - that enable those operations, while the US also relies on airbases in European states to operate its drone programme.

In addition, with reports that the US is loosening the rules on the use of drones, it is important to understand how European approaches to transparency and accountability may be affected by these developments.

This workshop focuses on how European states can facilitate transparency to ensure accountability for drone use, as well as what the limits might be, considering both the complexity of military operations today and the need for achieving operational goals.

With the US easing restrictions on export controls, the discussion also considers the role of regulation in ensuring accountability and prospects for developing common standards.

Attendance at this event is by invitation only.

Nilza Amaral

Project Manager, International Security Programme




use

Policy Implications of Armed Drone Use

This project brings together experts on the use of armed drones, including current and former military officials, academia, think-tanks and NGOs, to discuss and exchange perspectives based on their different experiences, with the aim of sharing knowledge and increasing understanding on these issues, and to inform and provide input into the European debate.

With the increased use of armed drones in recent years, ethical and legal concerns have been raised in regard to civilian casualties, secrecy and lack of transparency and accountability for drone strikes.

This project brings together experts on the use of armed drones, including current and former military officials, academia, think-tanks and NGOs, to discuss and exchange perspectives based on their different experiences, with the aim of sharing knowledge and increasing understanding on these issues, and to inform and provide input into the European debate. The experts explore the issues and controversies surrounding the use of drones outside formal armed conflict and study the broader policy implications in detail, particularly with regards to what this means for the UK and other European countries.

Building on the findings from the workshops, this project will hold a simulation exercise to stress test critical areas of concern around the use of armed drones that are relevant for the UK and other EU member states.

The discussions and the simulation exercise will provide opportunities for policy input on areas of mutual concern and feed into practical policy recommendations on the use of armed drones.

This project builds on previous work on armed drones by the International Security Department and is funded by the Open Society Foundations.

More on Policy Implications of Armed Drone Use




use

Human Control Is Essential to the Responsible Use of Military Neurotechnology

8 August 2019

Yasmin Afina

Research Assistant, International Security Programme
The military importance of AI-connected brain–machine interfaces is growing. Steps must be taken to ensure human control at all times over these technologies.

2019-08-08-BABWIB.jpg

A model of a human brain is displayed at an exhibition in Lisbon, Portugal. Photo: Getty Images.

Technological progress in neurotechnology and its military use is proceeding apace. As early as the 1970s, brain-machine interfaces have been the subject of study. By 2014, the UK’s Ministry of Defence was arguing that the development of artificial devices, such as artificial limbs, is ‘likely to see refinement of control to provide… new ways to connect the able-bodied to machines and computers.’ Today, brain-machine interface technology is being investigated around the world, including in Russia, China and South Korea.

Recent developments in the private sector are producing exciting new capabilities for people with disabilities and medical conditions. In early July, Elon Musk and Neuralink presented their ‘high-bandwidth’ brain-machine interface system, with small and flexible electrode threads packaged into a small device containing custom chips and to be inserted and implanted into the user’s brain for medical purposes.

In the military realm, in 2018, the United States’ Defense Advanced Research Projects Agency (DARPA) put out a call for proposals to investigate the potential of nonsurgical brain-machine interfaces to allow soldiers to ‘interact regularly and intuitively with artificially intelligent, semi-autonomous and autonomous systems in a manner currently not possible with conventional interfaces’. DARPA further highlighted the need for these interfaces to be bidirectional – where information is sent both from brain to machine (neural recording) and from machine to brain (neural stimulation) – which will eventually allow machines and humans to learn from each other.

This technology may provide soldiers and commanders with a superior level of sensory sensitivity and the ability to process a greater amount of data related to their environment at a faster pace, thus enhancing situational awareness. These capabilities will support military decision-making as well as targeting processes.

Neural recording will also enable the obtention of a tremendous amount of data from operations, including visuals, real-time thought processes and emotions. These sets of data may be used for feedback and training (including for virtual wargaming and for machine learning training), as well as for investigatory purposes. Collected data will also feed into research that may help researchers understand and predict human intent from brain signals – a tremendous advantage from a military standpoint.

Legal and ethical considerations

The flip side of these advancements is the responsibilities they will impose and the risks and vulnerabilities of the technology as well as legal and ethical considerations.

The primary risk would be for users to lose control over the technology, especially in a military context; hence a fail-safe feature is critical for humans to maintain ultimate control over decision-making. Despite the potential benefits of symbiosis between humans and AI, users must have the unconditional possibility to override these technologies should they believe it is appropriate and necessary for them to do so.

This is important given the significance of human control over targeting, as well as strategic and operational decision-making. An integrated fail-safe in brain-machine interfaces may in fact allow for a greater degree of human control over critical, time-sensitive decision-making. In other words, in the event of incoming missiles alert, while the AI may suggest a specific course of action, users must be able to decide in a timely manner whether to execute it or not.

Machines can learn from coded past experiences and decisions, but humans also use gut feelings to make life and death decisions. A gut feeling is a human characteristic that is not completely transferable, as it relies on both rational and emotional traits – and is part of the ‘second-brain’ and the gut-brain axis which is currently poorly understood. It is however risky to take decisions solely on gut feelings or solely on primary brain analysis—therefore, receiving a comprehensive set of data via an AI-connected brain-machine interface may help to verify and evaluate the information in a timely manner, and complement decision-making processes. However, these connections and interactions would have to be much better understood than the current state of knowledge. 

Fail-safe features are necessary to ensure compliance with the law, including international humanitarian law and international human rights law. As a baseline, human control must be used to 1) define areas where technology may or may not be trusted and to what extent, and 2) ensure legal, political and ethical accountability, responsibility and explainability at all times. Legal and ethical considerations must be taken into account from as early as the design and conceptualizing stage of these technologies, and oversight must be ensured across the entirety of the manufacturing supply chain.  

The second point raises the need to further explore and clarify whether existing national, regional and international legal, political and ethical frameworks are sufficient to cover the development and use of these technologies. For instance, there is value in assessing to what extent AI-connected brain-machine interfaces will affect the assessment of the mental element in war crimes and their human rights implications.

In addition, these technologies need to be highly secure and invulnerable to cyber hacks. Neural recording and neural stimulation will be directly affecting brain processes in humans and if an adversary has the ability to connect to a human brain, steps need to be taken to ensure that memory and personality could not be damaged.

Future questions

Military applications of technological progress in neurotechnology is inevitable, and their implications cannot be ignored. There is an urgent need for policymakers to understand the fast-developing neurotechnical capabilities, develop international standards and best practices – and, if necessary, new and dedicated legal instruments – to frame the use of these technologies.

Considering the opportunities that brain-machine interfaces may present in the realms of security and defence, inclusive, multi-stakeholder discussions and negotiations leading to the development of standards must include the following considerations:

  • What degree of human control would be desirable, at what stage and by whom? To what extent could human users be trusted with their own judgment in decision-making processes?
  • How could algorithmic and human biases, the cyber security and vulnerabilities of these technologies and the quality of data be factored into these discussions?
  • How can ethical and legal considerations be incorporated into the design stage of these technologies?
  • How can it be ensured that humans cannot be harmed in the process, either inadvertently or deliberately?
  • Is there a need for a dedicated international forum to discuss the military applications of neurotechnology? How could these discussions be integrated to existing international processes related to emerging military applications of technological progress, such as the Convention on Certain Conventional Weapons (CCW) Group of Governmental Experts on Lethal Autonomous Weapons Systems?




use

Evidence Against an Important Role of Plasma Insulin and Glucagon Concentrations in the Increase in EGP Caused by SGLT2 Inhibitors

Sodium–glucose cotransport 2 inhibitors (SGLT2i) lower plasma glucose but stimulate endogenous glucose production (EGP). The current study examined the effect of dapagliflozin on EGP while clamping plasma glucose, insulin, and glucagon concentrations at their fasting level. Thirty-eight patients with type 2 diabetes received an 8-h measurement of EGP ([3-3H]-glucose) on three occasions. After a 3-h tracer equilibration, subjects received 1) dapagliflozin 10 mg (n = 26) or placebo (n = 12); 2) repeat EGP measurement with the plasma glucose concentration clamped at the fasting level; and 3) repeat EGP measurement with inhibition of insulin and glucagon secretion with somatostatin infusion and replacement of basal plasma insulin and glucagon concentrations. In study 1, the change in EGP (baseline to last hour of EGP measurement) in subjects receiving dapagliflozin was 22% greater (+0.66 ± 0.11 mg/kg/min, P < 0.05) than in subjects receiving placebo, and it was associated with a significant increase in plasma glucagon and a decrease in the plasma insulin concentration compared with placebo. Under glucose clamp conditions (study 2), the change in plasma insulin and glucagon concentrations was comparable in subjects receiving dapagliflozin and placebo, yet the difference in EGP between dapagliflozin and placebo persisted (+0.71 ± 0.13 mg/kg/min, P < 0.01). Under pancreatic clamp conditions (study 3), dapagliflozin produced an initial large decrease in EGP (8% below placebo), followed by a progressive increase in EGP that was 10.6% greater than placebo during the last hour. Collectively, these results indicate that 1) the changes in plasma insulin and glucagon concentration after SGLT2i administration are secondary to the decrease in plasma glucose concentration, and 2) the dapagliflozin-induced increase in EGP cannot be explained by the increase in plasma glucagon or decrease in plasma insulin or glucose concentrations.




use

Can fluorescence-guided surgery help identify all lesions in unknown locations or is the integrated use of a roadmap created by preoperative imaging mandatory? A blinded study in prostate cancer patients.

Rationale: Lymphatic tracers can help visualize the lymphatic drainage patterns and sentinel nodes of individual prostate cancer patients. To determine the role of nuclear medicine, in particular the positional guidance of a SPECT/CT-based 3D imaging roadmap, in this process we studied to which extend fluorescence-guidance underestimated the number of target lesions. Methods: SPECT/CT imaging was performed after intraprostatic tracer administration of either ICG-99mTc-nanocolloid (hybrid tracer group) or 99mTc-nanocolloid to create a roadmap that depicted all sentinel nodes (SNs). Patients who received 99mTc-nanocolloid were injected with "free" ICG immediately prior to surgery ("free" ICG group). Before unblinding, fluorescence-guidance was used for intraoperative SN identification. This was followed by extended pelvic lymph node dissection (ePLND). Following unblinding of the SPECT/CT images, the number of missed SN’s were recorded and their resection was pursued when the anatomy allowed. Results: Preoperative SPECT/CT revealed no differences in the SN identification rate between ICG-99mTc-nanocolloid and 99mTc-nanocolloid. However, fluorescence-guidance only allowed intraoperative removal of all SNs in 40% of patients in the hybrid tracer group and in 20% of patients in the "free" ICG group. Overall, 75.9% of the intraoperatively resected SNs in the hybrid tracer group and 51.8% of the SNs in the "free" ICG group were removed solely under fluorescence-guidance. During ePLND 22 additional SNs were resected (7 in the hybrid tracer group and 15 in the "free" ICG group). After unblinding 18 remaining SNs were identified (6 in the hybrid group and 12 in the "free" ICG group). In the "free" ICG group, ex vivo evaluation of the excised specimens revealed that 14 SNs removed under ePLND or after unblinding contained radioactivity but no fluorescence. Conclusion: The preoperative imaging roadmap provided by SPECT/CT enhanced the detection of prostate SNs in more ectopic locations in 17 of the 25 patients and the hybrid tracer ICG-99mTc-nanocolloid was shown to outperform "free" ICG. Overall, fluorescence-guided pelvic nodal surgery underestimated the number of SNs in 60-80% of patients.




use

Combined Visual and Semi-quantitative Evaluation Improves Outcome Prediction by Early Mid-treatment 18F-fluoro-deoxi-glucose Positron Emission Tomography in Diffuse Large B-cell Lymphoma.

The purpose of this study was to assess the predictive and prognostic value of interim FDG PET (iPET) in evaluating early response to immuno-chemotherapy after two cycles (PET-2) in diffuse large B-cell lymphoma (DLBCL) by applying two different methods of interpretation: the Deauville visual five-point scale (5-PS) and a change in standardised uptake value by semi-quantitative evaluation. Methods: 145 patients with newly diagnosed DLBCL underwent pre-treatment PET (PET-0) and PET-2 assessment. PET-2 was classified according to both the visual 5-PS and percentage SUV changes (SUV). Receiver operating characteristic (ROC) analysis was performed to compare the accuracy of the two methods for predicting progression-free survival (PFS). Survival estimates, based on each method separately and combined, were calculated for iPET-positive (iPET+) and iPET-negative (iPET–) groups and compared. Results: Both with visual and SUV-based evaluations significant differences were found between the PFS of iPET– and iPET+ patient groups (p<0.001). Visually the best negative (NPV) and positive predictive value (PPV) occurred when iPET was defined as positive if Deauville score 4-5 (89% and 59%, respectively). Using the 66% SUV cut-off value, reported previously, NPV and PPV were 80 and 76%, respectively. SUV at 48.9% cut-off point, reported for the first time here, produced 100% specificity along with the highest sensitivity (24%). Visual and semi-quantitative SUV<48.9% assessment of each PET-2 gave the same PET-2 classification (positive or negative) in 70% (102/145) of all patients. This combined classification delivered NPV and PPV of 89% and 100% respectively, and all iPET+ patients failed to achieve or remain in remission. Conclusion: In this large consistently treated and assessed series of DLBCL, iPET had good prognostic value interpreted either visually or semi-quantitatively. We determined that the most effective SUV cut-off was at 48.9%, and that when combined with visual 5-PS assessment, a positive PET-2 was highly predictive of treatment failure.




use

Imaging P-glycoprotein Induction at the Blood-Brain Barrier of a Beta-Amyloidosis Mouse Model with 11C-Metoclopramide PET

P-glycoprotein (ABCB1) plays an important role at the blood-brain barrier (BBB) in promoting the clearance of neurotoxic beta-amyloid (Aß) peptides from the brain into the blood. ABCB1 expression and activity were found to be decreased in the brains of Alzheimer disease (AD) patients. Treatment with drugs which induce cerebral ABCB1 activity may be a promising approach to delay the build-up of Aß deposits in the brain by enhancing the clearance of Aß peptides from the brain. The aim of this study was to investigate whether PET with the weak ABCB1 substrate radiotracer 11C-metoclopramide can measure ABCB1 induction at the BBB in a beta-amyloidosis mouse model (APP/PS1-21 mice) and in wild-type mice. Methods: Groups of wild-type and APP/PS1-21 mice aged 50 or 170 days underwent 11C-metoclopramide baseline PET scans or scans after intraperitoneal treatment with the rodent pregnane X receptor (PXR) activator 5-pregnen-3β-ol-20-one-16α-carbonitrile (PCN, 25 mg/kg) or its vehicle over 7 days. At the end of the PET scans, brains were harvested for immunohistochemical analysis of ABCB1 and Aß levels. In separate groups of mice, radiolabeled metabolites of 11C-metoclopramide were determined in plasma and brain at 15 min after radiotracer injection. As an outcome parameter of cerebral ABCB1 activity, the elimination slope of radioactivity washout from the brain (kE,brain) was calculated. Results: PCN treatment resulted in an increased clearance of radioactivity from the brain as reflected by significant increases in kE,brain (from +26% to +54% relative to baseline). Immunohistochemical analysis confirmed ABCB1 induction in the brains of PCN-treated APP/PS1-21 mice with a concomitant decrease in Aß levels. There was a significant positive correlation between kE,brain values and ABCB1 levels in the brain. In wild-type mice, a significant age-related decrease in kE,brain values was found. Metabolite analysis showed that the majority of radioactivity in the brain was composed of unmetabolized 11C-metoclopramide in all animal groups. Conclusion: 11C-metoclopramide can measure ABCB1 induction in the mouse brain without the need to consider an arterial input function and may find potential application in AD patients to non-invasively evaluate strategies to enhance the clearance properties of the BBB.




use

18F-Fluorodeoxyglucose Positron Emission Tomography / Computed Tomography in Left-Ventricular Assist Device Infection: Initial Results Supporting the Usefulness of Image-Guided Therapy

Background: Accurate definition of the extent and severity of left-ventricular assist device (LVAD) infection may facilitate therapeutic decision making and targeted surgical intervention. Here, we explore the value of 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for guidance of patient management. Methods: Fifty-seven LVAD-carrying patients received 85 whole-body 18F-FDG PET/CT scans for the work-up of device infection. Clinical follow-up was obtained over a period of up to two years. Results: PET/CT showed various patterns of infectious involvement of the 4 LVAD components: driveline entry point (77% of cases), subcutaneous driveline path (87%), pump pocket (49%) and outflow tract (58%). Driveline smears revealed staphylococcus or pseudomonas strains as the underlying pathogen in a majority of cases (48 and 34%, respectively). At receiver-operating characteristics analysis, an 18F-FDG standardized uptake value (SUV) >2.5 was most accurate to identify smear-positive driveline infection. Infection of 3 or all 4 LVAD components showed a trend towards lower survival vs infection of 2 or less components (P = 0.089), while involvement of thoracic lymph nodes was significantly associated with adverse outcome (P = 0.001 for nodal SUV above vs below median). Finally, patients that underwent early surgical revision within 3 months after PET/CT (n = 21) required significantly less inpatient hospital care during follow-up when compared to those receiving delayed surgical revision (n = 11; p<0.05). Conclusion: Whole-body 18F-FDG PET/CT identifies the extent of LVAD infection and predicts adverse outcome. Initial experience suggests that early image-guided surgical intervention may facilitate a less complicated subsequent course.




use

Early Detection in a Mouse Model of Pancreatic Cancer by Imaging DNA Damage Response Signalling

Rationale: Despite its widespread use in oncology, the PET radiotracer 18F-FDG is ineffective for improving early detection of pancreatic ductal adenocarcinoma (PDAC). An alternative strategy for early detection of pancreatic cancer involves visualisation of high-grade pancreatic intraepithelial neoplasias (PanIN-3), generally regarded as the non-invasive precursors of PDAC. The DNA damage response is known to be hyper-activated in late-stage PanINs. Therefore, we investigated whether the SPECT imaging agent, 111In-anti-H2AX-TAT, allows visualisation of the DNA damage repair marker H2AX in PanIN-3s in an engineered mouse model of PDAC, to facilitate early detection of PDAC. Methods: Genetically engineered KPC mice (KRasLSL.G12D/+; p53LSL.R172H/+; PdxCre) were imaged with 18F-FDG and 111In-anti-H2AX-TAT. PanIN/PDAC presence visualised by histology was compared with autoradiography and immunofluorescence. Separately, the survival of KPC mice imaged with 111In-anti-H2AX-TAT was evaluated. Results: In KPC mouse pancreata, H2AX expression was increased in high-grade PanINs, but not in PDAC, corroborating earlier results obtained from human pancreas sections. Uptake of 111In-anti-H2AX-TAT, but not 111In-IgG-TAT or 18F-FDG, within the pancreas was positively correlated with the age of KPC mice, which was correlated with the number of high-grade PanINs. 111In-anti-H2AX-TAT localises preferentially in high-grade PanIN lesions, but not in established PDAC. Younger, non-tumour-bearing KPC mice that show uptake of 111In-anti-H2AX-TAT in the pancreas survive significantly shorter than mice with physiological 111In-anti-H2AX-TAT uptake. Conclusion: 111In-anti-H2AX-TAT imaging allows non-invasive detection of DNA damage repair signalling upregulation in pre-invasive PanIN lesions and is a promising new tool to aid in the early detection and staging of pancreatic cancer.




use

Interim PET evaluation in diffuse large B-cell lymphoma employing published recommendations: Comparison of the Deauville 5-point scale and the {Delta}SUVmax method

The value of interim 18F-fluorodeoxyglucose positron emission tomography (iPET) guided treatment decisions in patients with diffuse large B-cell lymphoma (DLBCL) has been the subject of much debate. This investigation focuses on a comparison of the Deauville score and the deltaSUVmax (SUVmax) approach – two methods to assess early metabolic response to standard chemotherapy in DLBCL. Methods: Of 609 DLBCL patients participating in the Positron Emission Tomography-guided Therapy of Aggressive non-Hodgkin Lymphomas (PETAL) trial, iPET scans of 596 patients originally evaluated using the SUVmax method were available for post-hoc assessment of the Deauville score. A commonly used definition of an unfavorable iPET result according to the Deauville score is an uptake greater than that of the liver, whereas an unfavorable iPET scan with regard to the SUVmax approach is characterized as a relative reduction of the maximum standardized uptake value between baseline and iPET staging of less than or equal to 66%. We investigated the two methods’ correlation and concordance by Spearman’s rank correlation coefficient and the agreement in classification, respectively. We further used Kaplan-Meier curves and Cox regression to assess differences in survival between patient subgroups defined by the pre-specified cut-offs. Time-dependent receiver operating curve analysis provided information on the methods’ respective discrimination performance. Results: Deauville score and SUVmax approach differed in their iPET-based prognosis. The SUVmax approach outperformed the Deauville score in terms of discrimination performance – most likely due to a high number of false-positive decisions by the Deauville score. Cut-off-independent discrimination performance remained low for both methods, but cut-off-related analyses showed promising results. Both favored the SUVmax approach, e.g. for the segregation by iPET response, where the event-free survival hazard ratio was 3.14 (95% confidence interval (CI): 2.22 – 4.46) for SUVmax and 1.70 (95% CI: 1.29 – 2.24) for the Deauville score. Conclusion: When considering treatment intensification, the currently used Deauville score cut-off of an uptake above that of the liver seems to be inappropriate and associated with potential harm for DLBCL patients. The SUVmax criterion of a relative reduction of the maximum standardized uptake value of less than or equal to 66% should be considered as an alternative.




use

Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPAR{alpha}-regulated genes [Lipids]

Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2−/−) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2−/− mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2−/− mice and a total of 91 in female Fatp2−/− mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator–activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2−/− liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities.




use

The Challenge of Classifying Metastatic Cell Properties by Molecular Profiling Exemplified with Cutaneous Melanoma Cells and Their Cerebral Metastasis from Patient Derived Mouse Xenografts [Research]

The prediction of metastatic properties from molecular analyses still poses a major challenge. Here we aimed at the classification of metastasis-related cell properties by proteome profiling making use of cutaneous and brain-metastasizing variants from single melanomas sharing the same genetic ancestry. Previous experiments demonstrated that cultured cells derived from these xenografted variants maintain a stable phenotype associated with a differential metastatic behavior: The brain metastasizing variants produce more spontaneous micro-metastases than the corresponding cutaneous variants. Four corresponding pairs of cutaneous and metastatic cells were obtained from four individual patients, resulting in eight cell-lines presently investigated. Label free proteome profiling revealed significant differences between corresponding pairs of cutaneous and cerebellar metastases from the same patient. Indeed, each brain metastasizing variant expressed several apparently metastasis-associated proteomic alterations as compared with the corresponding cutaneous variant. Among the differentially expressed proteins we identified cell adhesion molecules, immune regulators, epithelial to mesenchymal transition markers, stem cell markers, redox regulators and cytokines. Similar results were observed regarding eicosanoids, considered relevant for metastasis, such as PGE2 and 12-HETE. Multiparametric morphological analysis of cells also revealed no characteristic alterations associated with the cutaneous and brain metastasis variants. However, no correct classification regarding metastatic potential was yet possible with the present data. We thus concluded that molecular profiling is able to classify cells according to known functional categories but is not yet able to predict relevant cell properties emerging from networks consisting of many interconnected molecules. The presently observed broad diversity of molecular patterns, irrespective of restricting to one tumor type and two main classes of metastasis, highlights the important need to develop meta-analysis strategies to predict cell properties from molecular profiling data. Such base knowledge will greatly support future individualized precision medicine approaches.




use

COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids]

Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism.




use

Open government data to public use, and Australia may start to catch up with the world

Public servants need to ditch the control and encourage entrepreneurship.




use

Ricochet uses power of the dark web to help journalists, sources dodge metadata laws

A new internet messaging tool that sidesteps the federal government's metadata collection regime to help journalists protect whistle blowers and assists human rights activists has received a tick of approval from security experts.




use

Why Hollywood animation powerhouses are resisting the cloud

Despite new performance bottlenecks, the digital animation and visual effects industry is very reluctant to move their productions to the cloud, according to Sydney's Animal Logic.




use

Dietary plant stanol ester supplementation reduces peripheral symptoms in a mouse model of Niemann-Pick type C1 disease.

Inês Magro dos Reis
Apr 14, 2020; 0:jlr.RA120000632v1-jlr.RA120000632
Research Articles




use

Dietary plant stanol ester supplementation reduces peripheral symptoms in a mouse model of Niemann-Pick type C1 disease. [Research Articles]

Niemann–Pick type C1 (NPC1) disease is a rare genetic condition in which the function of the lysosomal cholesterol transporter NPC1 protein is impaired. Consequently, sphingolipids and cholesterol accumulate in lysosomes of all tissues, triggering a cascade of pathological events that culminate in severe systemic and neurological symptoms. Lysosomal cholesterol accumulation is also a key-factor in the development of atherosclerosis and non-alcoholic steatohepatitis (NASH). In these two metabolic diseases, the administration of plant stanol esters has been shown to ameliorate cellular cholesterol accumulation and inflammation. Given the overlap of pathological mechanisms among atherosclerosis, NASH and NPC1 disease, we sought to investigate whether dietary supplementation with plant stanol esters improves the peripheral features of NPC1 disease. To this end, we used an NPC1 murine model featuring an Npc1 null allele (Npc1nih), creating a dysfunctional NPC1 protein. Npc1nih mice were fed a two or six percent plant stanol esters–enriched diet over the course of 5 weeks. During this period, hepatic and blood lipid and inflammatory profiles were assessed. Npc1nih mice fed the plant stanol–enriched diet exhibited lower hepatic cholesterol accumulation, damage and inflammation than regular chow–fed Npc1nih mice. Moreover, plant stanol consumption shifted circulating T-cells and monocytes in particular towards an anti-inflammatory profile. Overall, these effects were stronger following dietary supplementation with 6% stanols, suggesting a dose-dependent effect. The findings of our study highlight the potential use of plant stanols as an affordable complementary means to ameliorate disorders in hepatic and blood lipid metabolism and reduce inflammation in NPC1 disease.




use

The ProteoRed MIAPE web toolkit: A user-friendly framework to connect and share proteomics standards [Technology]

The development of the HUPO-PSI's (Proteomics Standards Initiative) standard data formats and MIAPE (Minimum Information About a Proteomics Experiment) guidelines should improve proteomics data sharing within the scientific community. Proteomics journals have encouraged the use of these standards and guidelines to improve the quality of experimental reporting and ease the evaluation and publication of manuscripts. However, there is an evident lack of bioinformatics tools specifically designed to create and edit standard file formats and reports, or embed them within proteomics workflows. In this article, we describe a new web-based software suite (The ProteoRed MIAPE web toolkit) that performs several complementary roles related to proteomic data standards. Firstly, it can verify the reports fulfill the minimum information requirements of the corresponding MIAPE modules, highlighting inconsistencies or missing information. Secondly, the toolkit can convert several XML-based data standards directly into human readable MIAPE reports stored within the ProteoRed MIAPE repository. Finally, it can also perform the reverse operation, allowing users to export from MIAPE reports into XML files for computational processing, data sharing or public database submission. The toolkit is thus the first application capable of automatically linking the PSI's MIAPE modules with the corresponding XML data exchange standards, enabling bidirectional conversions. This toolkit is freely available at http://www.proteored.org/MIAPE/.




use

Deficiency in ZMPSTE24 and resulting farnesyl-prelamin A accumulation only modestly affect mouse adipose tissue stores [Research Articles]

Zinc metallopeptidase STE24 (ZMPSTE24) is essential for the conversion of farnesyl–prelamin A to mature lamin A, a key component of the nuclear lamina. In the absence of ZMPSTE24, farnesyl–prelamin A accumulates in the nucleus and exerts toxicity, causing a variety of disease phenotypes. By ~4 months of age, both male and female Zmpste24–/– mice manifest a near-complete loss of adipose tissue, but it has never been clear whether this phenotype is a direct consequence of farnesyl–prelamin A toxicity in adipocytes. To address this question, we generated a conditional knockout Zmpste24 allele and used it to create adipocyte-specific Zmpste24–knockout mice. To boost farnesyl–prelamin A levels, we bred in the "prelamin A–only" Lmna allele. Gene expression, immunoblotting, and immunohistochemistry experiments revealed that adipose tissue in these mice had decreased Zmpste24 expression along with strikingly increased accumulation of prelamin A. In male mice, Zmpste24 deficiency in adipocytes was accompanied by modest changes in adipose stores (an 11% decrease in body weight, a 23% decrease in body fat mass, and significantly smaller gonadal and inguinal white adipose depots). No changes in adipose stores were detected in female mice, likely because prelamin A expression in adipose tissue is lower in female mice. Zmpste24 deficiency in adipocytes did not alter the number of macrophages in adipose tissue, nor did it alter plasma levels of glucose, triglycerides, or fatty acids. We conclude that ZMPSTE24 deficiency in adipocytes, and the accompanying accumulation of farnesyl–prelamin A, reduces adipose tissue stores, but only modestly and only in male mice.




use

ANGPTL3, PCSK9, and statin therapy drive remarkable reductions in hyperlipidemia and atherosclerosis in a mouse model [Commentary]