de Item 04: Notebook of Colonel Alfred Hobart Sturdee, 8 August 1914 to 25 February 1918 By feedproxy.google.com Published On :: 24/03/2015 9:04:00 AM Full Article
de Item 01: Captain Vernon Sturdee diary, 25 April, 1915 to 2 July, 1915 By feedproxy.google.com Published On :: 24/03/2015 9:27:01 AM Full Article
de Item 02: Captain Vernon Sturdee diary, 3 September, 1915- 31 December, 1915 By feedproxy.google.com Published On :: 24/03/2015 9:46:43 AM Full Article
de Item 03: Captain Vernon Sturdee diary, 22 September, 1915- 23 January, 1916 By feedproxy.google.com Published On :: 24/03/2015 9:49:53 AM Full Article
de Glass stereoscopic slides of Gallipoli, May 1915 / photographed by Charles Snodgrass Ryan By feedproxy.google.com Published On :: 2/04/2015 12:00:00 AM Full Article
de Letter from J. H Bannatyne to Other Windsor Berry Esq. relating to the Myall Creek Massacre, 17 December 1838 By feedproxy.google.com Published On :: 21/04/2015 12:00:00 AM Full Article
de Item 07: A Journal of ye [the] Proceedings of his Majesty's Sloop Swallow, Captain Phillip [Philip] Carteret Commander, Commencing ye [the] 23 of July 1766 and ended [4 July 1767] By feedproxy.google.com Published On :: 5/05/2015 9:51:13 AM Full Article
de Item 08: A Logg [Log] Book of the proceedings on Board His Majesty's Ship Swallow, Captain Philip Carteret Commander Commencing from the 20th August 1766 and Ending [21st May 1768] By feedproxy.google.com Published On :: 5/05/2015 12:19:15 PM Full Article
de Item 13: Swallow 1767, A journal of the proceedings on Board His Majesty's Sloop Swallow, commencing the 1st of March 1767 and Ended the 7th of July 1767 By feedproxy.google.com Published On :: 7/05/2015 12:42:02 PM Full Article
de Item 01: Notebooks (2) containing hand written copies of 123 letters from Major William Alan Audsley to his parents, ca. 1916-ca. 1919, transcribed by his father. Also includes original letters (2) written by Major Audsley. By feedproxy.google.com Published On :: 28/05/2015 11:00:09 AM Full Article
de Smart research for HSC students: Better searching with online resources By feedproxy.google.com Published On :: Mon, 04 May 2020 01:20:48 +0000 In this online session, we simplify searching for you so that the skills you need in one resource will work wherever you are. Full Article
de Smart research for HSC students: Citing your work and avoiding plagiarism By feedproxy.google.com Published On :: Mon, 04 May 2020 01:33:47 +0000 This session brings together the key resources for HSC subjects, including those that are useful for studying Advanced and Extension courses. Full Article
de Smart research for HSC students: Essential Library resources for your research and study By feedproxy.google.com Published On :: Mon, 04 May 2020 01:47:45 +0000 This session brings together the key resources for HSC subjects, including those that are useful for studying Advanced and Extension courses. Full Article
de Federal watchdog finds 'reasonable grounds to believe' vaccine doctor's ouster was retaliation, lawyers say By news.yahoo.com Published On :: Fri, 08 May 2020 16:37:13 -0400 The Office of Special Counsel is recommending that ousted vaccine official Dr. Rick Bright be reinstated while it investigates his case, his lawyers announced Friday.Bright while leading coronavirus vaccine development was recently removed from his position as the director of the Department of Health and Human Services' Biomedical Advanced Research and Development Authority, and he alleges it was because he insisted congressional funding not go toward "drugs, vaccines, and other technologies that lack scientific merit" and limited the "broad use" of hydroxychloroquine after it was touted by President Trump. In a whistleblower complaint, he alleged "cronyism" at HHS. He has also alleged he was "pressured to ignore or dismiss expert scientific recommendations and instead to award lucrative contracts based on political connections."On Friday, Bright's lawyers said that the Office of Special Counsel has determined there are "reasonable grounds to believe" his firing was retaliation, The New York Times reports. The federal watchdog also recommended he be reinstated for 45 days to give the office "sufficient time to complete its investigation of Bright's allegations," CNN reports. The decision on whether to do so falls on Secretary of Health and Human Services Alex Azar, and Office of Special Counsel recommendations are "not binding," the Times notes. More stories from theweek.com Outed CIA agent Valerie Plame is running for Congress, and her launch video looks like a spy movie trailer 7 scathing cartoons about America's rush to reopen Trump says he couldn't have exposed WWII vets to COVID-19 because the wind was blowing the wrong way Full Article
de Boeing says it's about to start building the 737 Max plane again in the middle of the coronavirus pandemic, even though it already has more planes than it can deliver By news.yahoo.com Published On :: Fri, 08 May 2020 12:44:06 -0400 Boeing CEO Dave Calhoun said the company was aiming to resume production this month, despite the ongoing grounding and coronavirus pandemic. Full Article
de Delta, citing health concerns, drops service to 10 US airports. Is yours on the list? By news.yahoo.com Published On :: Fri, 08 May 2020 18:41:45 -0400 Delta said it is making the move to protect employees amid the coronavirus pandemic, but planes have been flying near empty Full Article
de Chaffetz: I don't understand why Adam Schiff continues to have a security clearance By news.yahoo.com Published On :: Fri, 08 May 2020 14:43:30 -0400 Fox News contributor Jason Chaffetz and Andy McCarthy react to House Intelligence transcripts on Russia probe. Full Article
de As Trump returns to the road, some Democrats want to bust Biden out of his basement By news.yahoo.com Published On :: Fri, 08 May 2020 17:49:42 -0400 While President Donald Trump traveled to the battleground state of Arizona this week, his Democratic opponent for the White House, Joe Biden, campaigned from his basement as he has done throughout the coronavirus pandemic. The freeze on in-person campaigning during the outbreak has had an upside for Biden, giving the former vice president more time to court donors and shielding him from on-the-trail gaffes. "I personally would like to see him out more because he's in his element when he's meeting people," said Tom Sacks-Wilner, a fundraiser for Biden who is on the campaign's finance committee. Full Article
de A person was struck and killed by a Southwest plane as it landed on the runway at Austin international airport By news.yahoo.com Published On :: Fri, 08 May 2020 10:53:00 -0400 Austin-Bergstrom International Airport said it was "aware of an individual that was struck and killed on runway 17-R by a landing aircraft." Full Article
de Coronavirus deals 'powerful blow' to Putin's grand plans By news.yahoo.com Published On :: Thu, 07 May 2020 22:09:16 -0400 The bombastic military parade through Moscow's Red Square on Saturday was slated to be the spectacle of the year on the Kremlin's calendar. Standing with Chinese leader Xi Jinping and French President Emmanuel Macron, President Vladimir Putin would have overseen a 90-minute procession of Russia's military might, showcasing 15,000 troops and the latest hardware. Now, military jets will roar over an eerily quiet Moscow, spurting red, white and blue smoke to mark 75 years since the defeat of Nazi Germany. Full Article
de 'We Cannot Police Our Way Out of a Pandemic.' Experts, Police Union Say NYPD Should Not Be Enforcing Social Distance Rules Amid COVID-19 By news.yahoo.com Published On :: Thu, 07 May 2020 17:03:38 -0400 The New York City police department (NYPD) is conducting an internal investigation into a May 2 incident involving the violent arrests of multiple people, allegedly members of a group who were not social distancing Full Article
de ‘Selfish, tribal and divided’: Barack Obama warns of changes to American way of life in leaked audio slamming Trump administration By news.yahoo.com Published On :: Sat, 09 May 2020 07:22:00 -0400 Barack Obama said the “rule of law is at risk” following the justice department’s decision to drop charges against former Trump advisor Mike Flynn, as he issued a stark warning about the long-term impact on the American way of life by his successor. Full Article
de Cruz gets his hair cut at salon whose owner was jailed for defying Texas coronavirus restrictions By news.yahoo.com Published On :: Fri, 08 May 2020 19:28:43 -0400 After his haircut, Sen. Ted Cruz said, "It was ridiculous to see somebody sentenced to seven days in jail for cutting hair." Full Article
de Brazil's Amazon: Surge in deforestation as military prepares to deploy By news.yahoo.com Published On :: Fri, 08 May 2020 17:17:52 -0400 The military is preparing to deploy to the region to try to stop illegal logging and mining. Full Article
de The McMichaels can't be charged with a hate crime by the state in the shooting death of Ahmaud Arbery because the law doesn't exist in Georgia By news.yahoo.com Published On :: Fri, 08 May 2020 17:07:36 -0400 Georgia is one of four states that doesn't have a hate crime law. Arbery's killing has reignited calls for legislation. Full Article
de The accusation against Joe Biden has Democrats rediscovering the value of due process By news.yahoo.com Published On :: Sat, 09 May 2020 08:37:00 -0400 Some Democrats took "Believe Women" literally until Joe Biden was accused. Now they're relearning that guilt-by-accusation doesn't serve justice. Full Article
de Neighbor of father and son arrested in Ahmaud Arbery killing is also under investigation By news.yahoo.com Published On :: Fri, 08 May 2020 11:42:19 -0400 The ongoing investigation of the fatal shooting in Brunswick, Georgia, will also look at a neighbor of suspects Gregory and Travis McMichael who recorded video of the incident, authorities said. Full Article
de Joint Modeling of Longitudinal Relational Data and Exogenous Variables By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Rajarshi Guhaniyogi, Abel Rodriguez. Source: Bayesian Analysis, Volume 15, Number 2, 477--503.Abstract: This article proposes a framework based on shared, time varying stochastic latent factor models for modeling relational data in which network and node-attributes co-evolve over time. Our proposed framework is flexible enough to handle both categorical and continuous attributes, allows us to estimate the dimension of the latent social space, and automatically yields Bayesian hypothesis tests for the association between network structure and nodal attributes. Additionally, the model is easy to compute and readily yields inference and prediction for missing link between nodes. We employ our model framework to study co-evolution of international relations between 22 countries and the country specific indicators over a period of 11 years. Full Article
de Bayesian Inference in Nonparanormal Graphical Models By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Jami J. Mulgrave, Subhashis Ghosal. Source: Bayesian Analysis, Volume 15, Number 2, 449--475.Abstract: Gaussian graphical models have been used to study intrinsic dependence among several variables, but the Gaussianity assumption may be restrictive in many applications. A nonparanormal graphical model is a semiparametric generalization for continuous variables where it is assumed that the variables follow a Gaussian graphical model only after some unknown smooth monotone transformations on each of them. We consider a Bayesian approach in the nonparanormal graphical model by putting priors on the unknown transformations through a random series based on B-splines where the coefficients are ordered to induce monotonicity. A truncated normal prior leads to partial conjugacy in the model and is useful for posterior simulation using Gibbs sampling. On the underlying precision matrix of the transformed variables, we consider a spike-and-slab prior and use an efficient posterior Gibbs sampling scheme. We use the Bayesian Information Criterion to choose the hyperparameters for the spike-and-slab prior. We present a posterior consistency result on the underlying transformation and the precision matrix. We study the numerical performance of the proposed method through an extensive simulation study and finally apply the proposed method on a real data set. Full Article
de Additive Multivariate Gaussian Processes for Joint Species Distribution Modeling with Heterogeneous Data By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Jarno Vanhatalo, Marcelo Hartmann, Lari Veneranta. Source: Bayesian Analysis, Volume 15, Number 2, 415--447.Abstract: Species distribution models (SDM) are a key tool in ecology, conservation and management of natural resources. Two key components of the state-of-the-art SDMs are the description for species distribution response along environmental covariates and the spatial random effect that captures deviations from the distribution patterns explained by environmental covariates. Joint species distribution models (JSDMs) additionally include interspecific correlations which have been shown to improve their descriptive and predictive performance compared to single species models. However, current JSDMs are restricted to hierarchical generalized linear modeling framework. Their limitation is that parametric models have trouble in explaining changes in abundance due, for example, highly non-linear physical tolerance limits which is particularly important when predicting species distribution in new areas or under scenarios of environmental change. On the other hand, semi-parametric response functions have been shown to improve the predictive performance of SDMs in these tasks in single species models. Here, we propose JSDMs where the responses to environmental covariates are modeled with additive multivariate Gaussian processes coded as linear models of coregionalization. These allow inference for wide range of functional forms and interspecific correlations between the responses. We propose also an efficient approach for inference with Laplace approximation and parameterization of the interspecific covariance matrices on the Euclidean space. We demonstrate the benefits of our model with two small scale examples and one real world case study. We use cross-validation to compare the proposed model to analogous semi-parametric single species models and parametric single and joint species models in interpolation and extrapolation tasks. The proposed model outperforms the alternative models in all cases. We also show that the proposed model can be seen as an extension of the current state-of-the-art JSDMs to semi-parametric models. Full Article
de Dynamic Quantile Linear Models: A Bayesian Approach By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Kelly C. M. Gonçalves, Hélio S. Migon, Leonardo S. Bastos. Source: Bayesian Analysis, Volume 15, Number 2, 335--362.Abstract: The paper introduces a new class of models, named dynamic quantile linear models, which combines dynamic linear models with distribution-free quantile regression producing a robust statistical method. Bayesian estimation for the dynamic quantile linear model is performed using an efficient Markov chain Monte Carlo algorithm. The paper also proposes a fast sequential procedure suited for high-dimensional predictive modeling with massive data, where the generating process is changing over time. The proposed model is evaluated using synthetic and well-known time series data. The model is also applied to predict annual incidence of tuberculosis in the state of Rio de Janeiro and compared with global targets set by the World Health Organization. Full Article
de Learning Semiparametric Regression with Missing Covariates Using Gaussian Process Models By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Abhishek Bishoyi, Xiaojing Wang, Dipak K. Dey. Source: Bayesian Analysis, Volume 15, Number 1, 215--239.Abstract: Missing data often appear as a practical problem while applying classical models in the statistical analysis. In this paper, we consider a semiparametric regression model in the presence of missing covariates for nonparametric components under a Bayesian framework. As it is known that Gaussian processes are a popular tool in nonparametric regression because of their flexibility and the fact that much of the ensuing computation is parametric Gaussian computation. However, in the absence of covariates, the most frequently used covariance functions of a Gaussian process will not be well defined. We propose an imputation method to solve this issue and perform our analysis using Bayesian inference, where we specify the objective priors on the parameters of Gaussian process models. Several simulations are conducted to illustrate effectiveness of our proposed method and further, our method is exemplified via two real datasets, one through Langmuir equation, commonly used in pharmacokinetic models, and another through Auto-mpg data taken from the StatLib library. Full Article
de Determinantal Point Process Mixtures Via Spectral Density Approach By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Ilaria Bianchini, Alessandra Guglielmi, Fernando A. Quintana. Source: Bayesian Analysis, Volume 15, Number 1, 187--214.Abstract: We consider mixture models where location parameters are a priori encouraged to be well separated. We explore a class of determinantal point process (DPP) mixture models, which provide the desired notion of separation or repulsion. Instead of using the rather restrictive case where analytical results are partially available, we adopt a spectral representation from which approximations to the DPP density functions can be readily computed. For the sake of concreteness the presentation focuses on a power exponential spectral density, but the proposed approach is in fact quite general. We later extend our model to incorporate covariate information in the likelihood and also in the assignment to mixture components, yielding a trade-off between repulsiveness of locations in the mixtures and attraction among subjects with similar covariates. We develop full Bayesian inference, and explore model properties and posterior behavior using several simulation scenarios and data illustrations. Supplementary materials for this article are available online (Bianchini et al., 2019). Full Article
de Adaptive Bayesian Nonparametric Regression Using a Kernel Mixture of Polynomials with Application to Partial Linear Models By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Fangzheng Xie, Yanxun Xu. Source: Bayesian Analysis, Volume 15, Number 1, 159--186.Abstract: We propose a kernel mixture of polynomials prior for Bayesian nonparametric regression. The regression function is modeled by local averages of polynomials with kernel mixture weights. We obtain the minimax-optimal contraction rate of the full posterior distribution up to a logarithmic factor by estimating metric entropies of certain function classes. Under the assumption that the degree of the polynomials is larger than the unknown smoothness level of the true function, the posterior contraction behavior can adapt to this smoothness level provided an upper bound is known. We also provide a frequentist sieve maximum likelihood estimator with a near-optimal convergence rate. We further investigate the application of the kernel mixture of polynomials to partial linear models and obtain both the near-optimal rate of contraction for the nonparametric component and the Bernstein-von Mises limit (i.e., asymptotic normality) of the parametric component. The proposed method is illustrated with numerical examples and shows superior performance in terms of computational efficiency, accuracy, and uncertainty quantification compared to the local polynomial regression, DiceKriging, and the robust Gaussian stochastic process. Full Article
de Detecting Structural Changes in Longitudinal Network Data By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Jong Hee Park, Yunkyu Sohn. Source: Bayesian Analysis, Volume 15, Number 1, 133--157.Abstract: Dynamic modeling of longitudinal networks has been an increasingly important topic in applied research. While longitudinal network data commonly exhibit dramatic changes in its structures, existing methods have largely focused on modeling smooth topological changes over time. In this paper, we develop a hidden Markov network change-point model (HNC) that combines the multilinear tensor regression model (Hoff, 2011) with a hidden Markov model using Bayesian inference. We model changes in network structure as shifts in discrete states yielding particular sets of network generating parameters. Our simulation results demonstrate that the proposed method correctly detects the number, locations, and types of changes in latent node characteristics. We apply the proposed method to international military alliance networks to find structural changes in the coalition structure among nations. Full Article
de Bayesian Design of Experiments for Intractable Likelihood Models Using Coupled Auxiliary Models and Multivariate Emulation By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Antony Overstall, James McGree. Source: Bayesian Analysis, Volume 15, Number 1, 103--131.Abstract: A Bayesian design is given by maximising an expected utility over a design space. The utility is chosen to represent the aim of the experiment and its expectation is taken with respect to all unknowns: responses, parameters and/or models. Although straightforward in principle, there are several challenges to finding Bayesian designs in practice. Firstly, the utility and expected utility are rarely available in closed form and require approximation. Secondly, the design space can be of high-dimensionality. In the case of intractable likelihood models, these problems are compounded by the fact that the likelihood function, whose evaluation is required to approximate the expected utility, is not available in closed form. A strategy is proposed to find Bayesian designs for intractable likelihood models. It relies on the development of an automatic, auxiliary modelling approach, using multivariate Gaussian process emulators, to approximate the likelihood function. This is then combined with a copula-based approach to approximate the marginal likelihood (a quantity commonly required to evaluate many utility functions). These approximations are demonstrated on examples of stochastic process models involving experimental aims of both parameter estimation and model comparison. Full Article
de Bayesian Network Marker Selection via the Thresholded Graph Laplacian Gaussian Prior By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Qingpo Cai, Jian Kang, Tianwei Yu. Source: Bayesian Analysis, Volume 15, Number 1, 79--102.Abstract: Selecting informative nodes over large-scale networks becomes increasingly important in many research areas. Most existing methods focus on the local network structure and incur heavy computational costs for the large-scale problem. In this work, we propose a novel prior model for Bayesian network marker selection in the generalized linear model (GLM) framework: the Thresholded Graph Laplacian Gaussian (TGLG) prior, which adopts the graph Laplacian matrix to characterize the conditional dependence between neighboring markers accounting for the global network structure. Under mild conditions, we show the proposed model enjoys the posterior consistency with a diverging number of edges and nodes in the network. We also develop a Metropolis-adjusted Langevin algorithm (MALA) for efficient posterior computation, which is scalable to large-scale networks. We illustrate the superiorities of the proposed method compared with existing alternatives via extensive simulation studies and an analysis of the breast cancer gene expression dataset in the Cancer Genome Atlas (TCGA). Full Article
de Bayesian Estimation Under Informative Sampling with Unattenuated Dependence By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Matthew R. Williams, Terrance D. Savitsky. Source: Bayesian Analysis, Volume 15, Number 1, 57--77.Abstract: An informative sampling design leads to unit inclusion probabilities that are correlated with the response variable of interest. However, multistage sampling designs may also induce higher order dependencies, which are ignored in the literature when establishing consistency of estimators for survey data under a condition requiring asymptotic independence among the unit inclusion probabilities. This paper constructs new theoretical conditions that guarantee that the pseudo-posterior, which uses sampling weights based on first order inclusion probabilities to exponentiate the likelihood, is consistent not only for survey designs which have asymptotic factorization, but also for survey designs that induce residual or unattenuated dependence among sampled units. The use of the survey-weighted pseudo-posterior, together with our relaxed requirements for the survey design, establish a wide variety of analysis models that can be applied to a broad class of survey data sets. Using the complex sampling design of the National Survey on Drug Use and Health, we demonstrate our new theoretical result on multistage designs characterized by a cluster sampling step that expresses within-cluster dependence. We explore the impact of multistage designs and order based sampling. Full Article
de Scalable Bayesian Inference for the Inverse Temperature of a Hidden Potts Model By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Matthew Moores, Geoff Nicholls, Anthony Pettitt, Kerrie Mengersen. Source: Bayesian Analysis, Volume 15, Number 1, 1--27.Abstract: The inverse temperature parameter of the Potts model governs the strength of spatial cohesion and therefore has a major influence over the resulting model fit. A difficulty arises from the dependence of an intractable normalising constant on the value of this parameter and thus there is no closed-form solution for sampling from the posterior distribution directly. There is a variety of computational approaches for sampling from the posterior without evaluating the normalising constant, including the exchange algorithm and approximate Bayesian computation (ABC). A serious drawback of these algorithms is that they do not scale well for models with a large state space, such as images with a million or more pixels. We introduce a parametric surrogate model, which approximates the score function using an integral curve. Our surrogate model incorporates known properties of the likelihood, such as heteroskedasticity and critical temperature. We demonstrate this method using synthetic data as well as remotely-sensed imagery from the Landsat-8 satellite. We achieve up to a hundredfold improvement in the elapsed runtime, compared to the exchange algorithm or ABC. An open-source implementation of our algorithm is available in the R package bayesImageS . Full Article
de Hierarchical Normalized Completely Random Measures for Robust Graphical Modeling By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Andrea Cremaschi, Raffaele Argiento, Katherine Shoemaker, Christine Peterson, Marina Vannucci. Source: Bayesian Analysis, Volume 14, Number 4, 1271--1301.Abstract: Gaussian graphical models are useful tools for exploring network structures in multivariate normal data. In this paper we are interested in situations where data show departures from Gaussianity, therefore requiring alternative modeling distributions. The multivariate $t$ -distribution, obtained by dividing each component of the data vector by a gamma random variable, is a straightforward generalization to accommodate deviations from normality such as heavy tails. Since different groups of variables may be contaminated to a different extent, Finegold and Drton (2014) introduced the Dirichlet $t$ -distribution, where the divisors are clustered using a Dirichlet process. In this work, we consider a more general class of nonparametric distributions as the prior on the divisor terms, namely the class of normalized completely random measures (NormCRMs). To improve the effectiveness of the clustering, we propose modeling the dependence among the divisors through a nonparametric hierarchical structure, which allows for the sharing of parameters across the samples in the data set. This desirable feature enables us to cluster together different components of multivariate data in a parsimonious way. We demonstrate through simulations that this approach provides accurate graphical model inference, and apply it to a case study examining the dependence structure in radiomics data derived from The Cancer Imaging Atlas. Full Article
de Spatial Disease Mapping Using Directed Acyclic Graph Auto-Regressive (DAGAR) Models By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Abhirup Datta, Sudipto Banerjee, James S. Hodges, Leiwen Gao. Source: Bayesian Analysis, Volume 14, Number 4, 1221--1244.Abstract: Hierarchical models for regionally aggregated disease incidence data commonly involve region specific latent random effects that are modeled jointly as having a multivariate Gaussian distribution. The covariance or precision matrix incorporates the spatial dependence between the regions. Common choices for the precision matrix include the widely used ICAR model, which is singular, and its nonsingular extension which lacks interpretability. We propose a new parametric model for the precision matrix based on a directed acyclic graph (DAG) representation of the spatial dependence. Our model guarantees positive definiteness and, hence, in addition to being a valid prior for regional spatially correlated random effects, can also directly model the outcome from dependent data like images and networks. Theoretical results establish a link between the parameters in our model and the variance and covariances of the random effects. Simulation studies demonstrate that the improved interpretability of our model reaps benefits in terms of accurately recovering the latent spatial random effects as well as for inference on the spatial covariance parameters. Under modest spatial correlation, our model far outperforms the CAR models, while the performances are similar when the spatial correlation is strong. We also assess sensitivity to the choice of the ordering in the DAG construction using theoretical and empirical results which testify to the robustness of our model. We also present a large-scale public health application demonstrating the competitive performance of the model. Full Article
de Estimating the Use of Public Lands: Integrated Modeling of Open Populations with Convolution Likelihood Ecological Abundance Regression By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Lutz F. Gruber, Erica F. Stuber, Lyndsie S. Wszola, Joseph J. Fontaine. Source: Bayesian Analysis, Volume 14, Number 4, 1173--1199.Abstract: We present an integrated open population model where the population dynamics are defined by a differential equation, and the related statistical model utilizes a Poisson binomial convolution likelihood. Key advantages of the proposed approach over existing open population models include the flexibility to predict related, but unobserved quantities such as total immigration or emigration over a specified time period, and more computationally efficient posterior simulation by elimination of the need to explicitly simulate latent immigration and emigration. The viability of the proposed method is shown in an in-depth analysis of outdoor recreation participation on public lands, where the surveyed populations changed rapidly and demographic population closure cannot be assumed even within a single day. Full Article
de Bayesian Functional Forecasting with Locally-Autoregressive Dependent Processes By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Guillaume Kon Kam King, Antonio Canale, Matteo Ruggiero. Source: Bayesian Analysis, Volume 14, Number 4, 1121--1141.Abstract: Motivated by the problem of forecasting demand and offer curves, we introduce a class of nonparametric dynamic models with locally-autoregressive behaviour, and provide a full inferential strategy for forecasting time series of piecewise-constant non-decreasing functions over arbitrary time horizons. The model is induced by a non Markovian system of interacting particles whose evolution is governed by a resampling step and a drift mechanism. The former is based on a global interaction and accounts for the volatility of the functional time series, while the latter is determined by a neighbourhood-based interaction with the past curves and accounts for local trend behaviours, separating these from pure noise. We discuss the implementation of the model for functional forecasting by combining a population Monte Carlo and a semi-automatic learning approach to approximate Bayesian computation which require limited tuning. We validate the inference method with a simulation study, and carry out predictive inference on a real dataset on the Italian natural gas market. Full Article
de Bayes Factors for Partially Observed Stochastic Epidemic Models By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Muteb Alharthi, Theodore Kypraios, Philip D. O’Neill. Source: Bayesian Analysis, Volume 14, Number 3, 927--956.Abstract: We consider the problem of model choice for stochastic epidemic models given partial observation of a disease outbreak through time. Our main focus is on the use of Bayes factors. Although Bayes factors have appeared in the epidemic modelling literature before, they can be hard to compute and little attention has been given to fundamental questions concerning their utility. In this paper we derive analytic expressions for Bayes factors given complete observation through time, which suggest practical guidelines for model choice problems. We adapt the power posterior method for computing Bayes factors so as to account for missing data and apply this approach to partially observed epidemics. For comparison, we also explore the use of a deviance information criterion for missing data scenarios. The methods are illustrated via examples involving both simulated and real data. Full Article
de Probability Based Independence Sampler for Bayesian Quantitative Learning in Graphical Log-Linear Marginal Models By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Ioannis Ntzoufras, Claudia Tarantola, Monia Lupparelli. Source: Bayesian Analysis, Volume 14, Number 3, 797--823.Abstract: We introduce a novel Bayesian approach for quantitative learning for graphical log-linear marginal models. These models belong to curved exponential families that are difficult to handle from a Bayesian perspective. The likelihood cannot be analytically expressed as a function of the marginal log-linear interactions, but only in terms of cell counts or probabilities. Posterior distributions cannot be directly obtained, and Markov Chain Monte Carlo (MCMC) methods are needed. Finally, a well-defined model requires parameter values that lead to compatible marginal probabilities. Hence, any MCMC should account for this important restriction. We construct a fully automatic and efficient MCMC strategy for quantitative learning for such models that handles these problems. While the prior is expressed in terms of the marginal log-linear interactions, we build an MCMC algorithm that employs a proposal on the probability parameter space. The corresponding proposal on the marginal log-linear interactions is obtained via parameter transformation. We exploit a conditional conjugate setup to build an efficient proposal on probability parameters. The proposed methodology is illustrated by a simulation study and a real dataset. Full Article
de Sequential Monte Carlo Samplers with Independent Markov Chain Monte Carlo Proposals By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT L. F. South, A. N. Pettitt, C. C. Drovandi. Source: Bayesian Analysis, Volume 14, Number 3, 773--796.Abstract: Sequential Monte Carlo (SMC) methods for sampling from the posterior of static Bayesian models are flexible, parallelisable and capable of handling complex targets. However, it is common practice to adopt a Markov chain Monte Carlo (MCMC) kernel with a multivariate normal random walk (RW) proposal in the move step, which can be both inefficient and detrimental for exploring challenging posterior distributions. We develop new SMC methods with independent proposals which allow recycling of all candidates generated in the SMC process and are embarrassingly parallelisable. A novel evidence estimator that is easily computed from the output of our independent SMC is proposed. Our independent proposals are constructed via flexible copula-type models calibrated with the population of SMC particles. We demonstrate through several examples that more precise estimates of posterior expectations and the marginal likelihood can be obtained using fewer likelihood evaluations than the more standard RW approach. Full Article
de Semiparametric Multivariate and Multiple Change-Point Modeling By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Stefano Peluso, Siddhartha Chib, Antonietta Mira. Source: Bayesian Analysis, Volume 14, Number 3, 727--751.Abstract: We develop a general Bayesian semiparametric change-point model in which separate groups of structural parameters (for example, location and dispersion parameters) can each follow a separate multiple change-point process, driven by time-dependent transition matrices among the latent regimes. The distribution of the observations within regimes is unknown and given by a Dirichlet process mixture prior. The properties of the proposed model are studied theoretically through the analysis of inter-arrival times and of the number of change-points in a given time interval. The prior-posterior analysis by Markov chain Monte Carlo techniques is developed on a forward-backward algorithm for sampling the various regime indicators. Analysis with simulated data under various scenarios and an application to short-term interest rates are used to show the generality and usefulness of the proposed model. Full Article
de Model Criticism in Latent Space By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Sohan Seth, Iain Murray, Christopher K. I. Williams. Source: Bayesian Analysis, Volume 14, Number 3, 703--725.Abstract: Model criticism is usually carried out by assessing if replicated data generated under the fitted model looks similar to the observed data, see e.g. Gelman, Carlin, Stern, and Rubin (2004, p. 165). This paper presents a method for latent variable models by pulling back the data into the space of latent variables, and carrying out model criticism in that space. Making use of a model's structure enables a more direct assessment of the assumptions made in the prior and likelihood. We demonstrate the method with examples of model criticism in latent space applied to factor analysis, linear dynamical systems and Gaussian processes. Full Article
de Low Information Omnibus (LIO) Priors for Dirichlet Process Mixture Models By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Yushu Shi, Michael Martens, Anjishnu Banerjee, Purushottam Laud. Source: Bayesian Analysis, Volume 14, Number 3, 677--702.Abstract: Dirichlet process mixture (DPM) models provide flexible modeling for distributions of data as an infinite mixture of distributions from a chosen collection. Specifying priors for these models in individual data contexts can be challenging. In this paper, we introduce a scheme which requires the investigator to specify only simple scaling information. This is used to transform the data to a fixed scale on which a low information prior is constructed. Samples from the posterior with the rescaled data are transformed back for inference on the original scale. The low information prior is selected to provide a wide variety of components for the DPM to generate flexible distributions for the data on the fixed scale. The method can be applied to all DPM models with kernel functions closed under a suitable scaling transformation. Construction of the low information prior, however, is kernel dependent. Using DPM-of-Gaussians and DPM-of-Weibulls models as examples, we show that the method provides accurate estimates of a diverse collection of distributions that includes skewed, multimodal, and highly dispersed members. With the recommended priors, repeated data simulations show performance comparable to that of standard empirical estimates. Finally, we show weak convergence of posteriors with the proposed priors for both kernels considered. Full Article
de Efficient Acquisition Rules for Model-Based Approximate Bayesian Computation By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Marko Järvenpää, Michael U. Gutmann, Arijus Pleska, Aki Vehtari, Pekka Marttinen. Source: Bayesian Analysis, Volume 14, Number 2, 595--622.Abstract: Approximate Bayesian computation (ABC) is a method for Bayesian inference when the likelihood is unavailable but simulating from the model is possible. However, many ABC algorithms require a large number of simulations, which can be costly. To reduce the computational cost, Bayesian optimisation (BO) and surrogate models such as Gaussian processes have been proposed. Bayesian optimisation enables one to intelligently decide where to evaluate the model next but common BO strategies are not designed for the goal of estimating the posterior distribution. Our paper addresses this gap in the literature. We propose to compute the uncertainty in the ABC posterior density, which is due to a lack of simulations to estimate this quantity accurately, and define a loss function that measures this uncertainty. We then propose to select the next evaluation location to minimise the expected loss. Experiments show that the proposed method often produces the most accurate approximations as compared to common BO strategies. Full Article