al

Filter material comprising porous organic polymers

The invention relates to a unit which comprises a multitude of particles based on porous organic polymers, wherein the organic polymers are obtainable by poly(acetylcyclotrimerization) of polyacetyl-functionalized or polyacetylated aromatics and/or polyacetyl-functionalized or polyacetylated polycycles, and to the different uses or possible applications of this unit.




al

Polyurethanes made with copper catalysts

Polyisocyanate-based polymers are formed by curing a reaction mixture containing at least one polyisocyanate and at least one isocyanate-reactive compound having at least two isocyanate-reactive groups in the presence of a copper catalyst that contains at least one copper atom associated with a polydentate ligand that contains at least one nitrogen-containing complexing site.




al

Nano catalytic dewaxing of heavy petroleum wastes (>C-23 alkanes)

A catalyst comprising of nano nickel-silica catalyst for dewaxing of heavy petroleum feed at a temperature 200-350° C. at 8 bar and 30 bar hydrogen pressure and in the presence of hydrogen is designed for petrochemical industries. According to a specific aspect of the invention, the nano catalyst is designed and employed to convert heavy hydrocarbon feeds of high viscosity index to low pour point and good stability in a single step.




al

Catalysts for making ethanol from acetic acid

Catalysts and processes for forming catalysts for use in hydrogenating acetic acid to form ethanol. In one embodiment, the catalyst comprises a first metal, a silicaceous support, and at least one metasilicate support modifier. Preferably, the first metal is selected from the group consisting of copper, iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, titanium, zinc, chromium, rhenium, molybdenum, and tungsten. In addition the catalyst may comprise a second metal preferably selected from the group consisting of copper, molybdenum, tin, chromium, iron, cobalt, vanadium, tungsten, palladium, platinum, lanthanum, cerium, manganese, ruthenium, rhenium, gold, and nickel.




al

Catalyst system

The present invention provides a catalyst system capable of catalyzing the carbonylation of an ethylenically unsaturated compound, which system is obtainable by combining: a) a metal of Group VIB or Group VIIIB or a compound thereof, b) a bidentate phosphine, arsine or stibine ligand, and c) an acid, wherein said ligand is present in at least a 2:1 molar excess compared to said metal or said metal in said metal compound, and that said acid is present in at least a 2:1 molar excess compared to said ligand, a process for the carbonylation of an ethylenically unsaturated compound, a reaction medium, and use of the system.




al

Hydroprocessing catalysts and methods for making thereof

A method for preparing an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In one embodiment, the process comprises: sulfiding at least a metal precursor solution with at least a sulfiding agent forming a sulfided Group VIB catalyst precursor, the metal precursor solution having a pH of at least 4 and a concentration of less than 10 wt. % of Primary metal in solution; and mixing the catalyst precursor with a hydrocarbon diluent to form the slurry catalyst composition. The slurry catalyst prepared therefrom has a BET total surface area of at least 100 m2/g, a total pore volume of at least 0.5 cc/g and a polymodal pore distribution with at least 80% of pore sizes in the range of 5 to 2,000 Angstroms in diameter.




al

Hydroprocessing catalysts and methods for making thereof

A process for making an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, a metal precursor solution comprising at least a water-soluble molybdenum compound and a water-soluble metal zinc compound is mixed under high shear mixing conditions to generate an emulsion. The emulsion is subsequently sulfided with a sulfiding agent ex-situ, or in-situ in a heavy oil feedstock to form the slurry catalyst. The in-situ sulfidation in heavy oil is under sufficient condition for the heavy oil feedstock to generate the sulfiding source needed for the sulfidation.




al

Platinum-free monometallic and bimetallic nanoparticles as ring-opening catalysts

Nanoparticle catalyst compositions and methods for preparation of same are described. The nanoparticle catalysts are platinum-free and are useful in effecting selective ring-opening reactions, for example in upgrading heavy oil. The catalyst may be of monometallic composition, or may comprise an alloyed or core-shell bimetallic composition. The nanoparticles are of controlled size and shape.




al

Process for producing composite oxide catalyst

A process for producing a composite oxide catalyst which includes a step of preparing an aqueous slurry containing at least iron and antimony and composed of a liquid phase and a solid phase, a step of drying the aqueous slurry to obtain a dried material, and a step of calcining the obtained dried material, wherein of the precipitated particles having a particle size of not less than 1 μm but less than 150 μm contained within the aqueous slurry, the proportion of precipitated particles having a particle size of not less than 1 μm but less than 10 μm is within a range from 40 to 90% by volume, and the proportion of precipitated particles having a particle size of not less than 10 μm but less than 150 μm is within a range from 10 to 60% by volume.




al

Process for producing Sn-comprising catalysts

The present invention relates to a process for producing a supported tin-comprising catalyst, wherein a solution (S) comprising tin nitrate and at least one complexing agent is applied to the support, where the solution (S) does not comprise any solid or has a solids content of not more than 0.5% by weight based on the total amount of dissolved components.




al

Ring-opening polymerization of cyclic compounds catalyzed by carbene derivatives

This disclosure provides methods of controlled polymerization of cyclic compounds catalyzed by carbene derivatives having a general formula as shown below, and to obtain a biodegradable polymeric material having a large molecular weight, a narrow dispersity, and no metallic impurity.




al

Catalysts for petrochemical catalysis

Metal oxide catalysts comprising various dopants are provided. The catalysts are useful as heterogenous catalysts in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons such as ethane and ethylene. Related methods for use and manufacture of the same are also disclosed.




al

Method for producing catalyst reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas

The present invention provides a method for producing a highly active catalyst for reforming tar-containing gas used to treat crude gas for chemical energy conversion consisting of converting to a fuel composition consisting mainly of methane, hydrogen and the like, by utilizing sensible heat possessed by crude gas generated during thermal decomposition of carbonaceous raw materials, and using the high chemical reaction activity of high-temperature tar contained in and incidental to the crude gas to convert the tar to light hydrocarbons in the presence of a catalyst; a tar reforming method; and, a method for regenerating a catalyst for reforming tar-containing gas.




al

Selective hydrogenation catalyst and methods of making and using same

A composition comprising an extruded inorganic support comprising an oxide of a metal or metalloid, and at least one catalytically active metal, wherein the extruded inorganic support has pores, a total pore volume, and a pore size distribution, wherein the pore size distribution displays at least two peaks of pore diameters, each peak having a maximum, wherein a first peak has a first maximum of pore diameters of equal to or greater than about 120 nm and a second peak has a second maximum of pore diameters of less than about 120 nm, and wherein greater than or equal to about 5% of a total pore volume of the extruded inorganic support is contained within the first peak of pore diameters.




al

Materials incorporating antimicrobial polymers

The present disclosure describes the manufacture and use of soft surfaces such as fabrics bearing surface-grafted antimicrobial polymers.




al

Formaldehyde-free protein-containing binder compositions

One-part binder compositions are described that may include a protein and a crosslinking combination. The crosslinking combination may include at least a first crosslinking compound and a second crosslinking compound. The first and second crosslinking compounds are individually crosslinkable with each other and with the protein. Examples of the protein include soy protein. Fiber products and methods of making the fiber products are also described. The fiber products may include organic fibers, inorganic fibers, or both, in a cured thermoset binder based on solutions of the one-part binder compositions.




al

Hyaluronic acid based copolymers

Hyaluronic acid (HA) conjugates or crosslinked HAs compositions for coating an implantable device are provided. The implantable device can be used for treating a disorder such as atherosclerosis, thrombosis, restenosis, high cholesterol, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.




al

“Green” plastic materials and methods of manufacturing the same

A process is disclosed for producing plastic materials by providing a biology based feedstock and reacting the biology based feedstock to form a feedstock capable of reaction to form the plastic material, wherein the plastic material is selected from polystyrene and polyethylene terephthalate (PET).




al

Anti-no-reflow guide wire for vascular interventional procedures

The present invention relates to compositions and methods for improving outcomes in vascular interventional procedures. In particular, the present invention relates to compositions and methods for improving outcomes in vascular interventional procedures using an anti-no-reflow guide wire that attenuates the “no-reflow” phenomenon that is associated with negative outcomes.




al

Hydrogel tissue adhesive for medical use

A hydrogel tissue adhesive formed by reacting an aldehyde-functionalized polysaccharide containing pendant aldehyde groups with a water-dispersible, multi-arm amine is described. The hydrogel may be useful as a tissue adhesive or sealant for medical applications that require a more rapid degradation time, such as the prevention of undesired tissue-to tissue adhesions resulting from trauma or surgery.




al

Bi-functional co-polymer use for opthalmic and other topical and local applications

The invention contemplates a copolymer which is a graft or block copolymer useful to change wettability and surface characteristics of biological surfaces. Methods for use of these formulations and coatings to change wettability and sterically stabilize, and lubricate biological surfaces in a subject, for example, in the treatment of dry eye syndrome, and to prevent adherence of unwanted proteins, for example in the treatment of contact lens intolerance, are provided.




al

Formaldehyde-free protein-containing binder compositions

A wood-containing composite are described that may include a lignocellulosic material, and a formaldehyde-free binder in contact with at least a portion of the lignocellulose material. The binder is formed from a binder composition that includes a soy flour, a polymer, and a crosslinking agent, at least a portion of each of which are covalently crosslinked to each other in the binder. Also described are methods of making wood-containing composites by providing a pre-mixed, one-part binder composition of at least 60 wt. % soy flour, a polymer, and a crosslinking agent. The binder composition is applied to lignocellulosic material, and the combination may be heated at a temperature of about 100° C. or more to cure the binder composition into a binder. The cured binder has the soy protein, polymer, and crosslinking agent covalently bonded to each other.




al

Method for synthesizing calixarene and/or cyclodextrin copolymers, terpolymers and tetrapolymers, and uses thereof

The present invention relates to a novel method for synthesizing a composition of polymers, copolymers, terpolymers and tetrapolymers, and to the use thereof, said composition being made from: cyclodextrins, in particular α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin, the derivatives or corresponding mixtures thereof, and/or calix[n]arene(s) and/or of calix[n]arene derivative(s) and/or a mixture of two or more different calix[n]arenes selected from calix[n]arenes (n=4-20) and/or the derivatives thereof, and to the uses thereof. A method was developed on the basis of direct-melt polycondensation. The invention can be used in the pharmaceutical, human medicine, veterinary medicine, chemistry, separation chemistry, environmental, electronics, biological, diagnostics, phytosanitation, medicinal food, agri-food, and cosmetics fields, and in the nutraceutical field and in the field of molecular imprints (MIP).




al

Cellulose materials with novel properties

A molecule possessing a primary or secondary amino group and an additional functionality capable of providing a novel or improved property to a cellulose material has been permanently attached to the cellulose material in aqueous media using a water-soluble carbodiimide as the coupling agent/activator. One such molecule is 5-aminofluorescein (abbreviated as “A-fluo”) and one such cellulose material is a papermaking pulp. Papers made from a pulp furnish containing, for example, 0.01 wt. % of the “A-fluo”-attached pulp show an embedded marker feature authenticable upon UV or visible light excitation. The “A-fluo”-attached pulp can also be used for the marking and identification of a pulp furnish.




al

Hyaluronic acid based copolymers

Hyaluronic acid (HA) conjugates or crosslinked HAs compositions for coating an implantable device are provided. The implantable device can be used for treating a disorder such as atherosclerosis, thrombosis, restenosis, high cholesterol, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.




al

Formaldehyde-free protein-containing binders for spunbond products

One-part binder compositions are described that may include a protein and a crosslinking combination. The crosslinking combination may include at least a first crosslinking compound and a second crosslinking compound. The first and second crosslinking compounds are individually crosslinkable with each other and with the protein. Examples of the protein include soy protein. Fiber products and methods of making the fiber products are also described. The fiber products may include organic fibers, inorganic fibers, or both, in a cured thermoset binder based on solutions of the one-part binder compositions.




al

Polymeric composition for cellulosic material binding and modifications

A polymer composition suitable for wood treatment or binding comprises a reaction product of at least a polyol and at least a crosslinking agent. The crosslinking agent has at least 2 carboxylic acid groups per molecule. A wood product comprising a wood substrate and a polymer composition as well as a wood treatment process are also disclosed.




al

Sizing composition for mineral wool comprising a monosaccharide and/or a polysaccharide and an organic polycarboxylic acid, and insulating products obtained

A sizing composition for insulating products based on mineral wool, in particular on glass or on rock, includes at least one monosaccharide and/or at lest one polysaccharide, and at least one organic polycarboxylic acid having a molar mass of less than or equal to 1000. Another subject-matter of the present invention is the insulating products based on mineral fibres thus obtained and the process for the manufacture thereof.




al

Multifunctional in situ polymerized network via thiol-ene and thiol-maleimide chemistry

Biomaterials that support cell attachment and growth are provided. In one aspect, biomaterials are provided comprising a first polymer matrix comprising reactive amino moieties and a second polymer matrix that interpenetrates with the first polymer matrix, where the second polymer matrix comprises a poly(alkylene oxide) comprising two or more alkylene oxide oligomers joined by gamma-thioether carbonyl linkages. In another aspect, biomaterials are provided comprising at least one biopolymer comprising amino groups, thiol groups, and bifunctional modifiers connecting at least some of the amino groups to at least some of the thiol groups; and at least one poly(alkylene oxide) cross-linked to at least two thiol groups of the biopolymer. The biomaterials may further comprise a pharmacologically active agent or cells. Methods of administering such biomaterials to a patient in need thereof are also provided.




al

Devices and methods for gastrointestinal bypass

Devices and methods for gastrointestinal bypass are described. A gastrointestinal bypass device includes a gastrointestinal cuff and a gastrointestinal sleeve. The cuff may be configured to be attached in the esophagus, and may be sufficiently flexible to expand and collapse to conform with the inside of the esophagus to allow the esophagus to function substantially normally. The sleeve is configured to be coupled to the cuff, and may be made of a material that is floppy or flaccid but does not substantially expand radially.




al

Method of securing a medical device onto a balloon and system thereof

A method for securing an implantable medical device onto a balloon which includes applying a coating, which includes a film-forming polymer and at least one solvent, to the outer surface of the balloon. The solvents can include alcohol, water, ether and combinations thereof. The film-forming polymer can include a zwitterionic polymer, such as, for example a phosphorylcholine polymer. The coating can be applied to the entire balloon surface or a portion of the surface. The implantable medical device is then positioned on the outer surface of the balloon and secured. The film-forming polymer is then allowed to cure in order to define an adhesive layer between an inner surface of the implantable medical device and the outer surface of the balloon. This method prevents or reduces the leaching or redistribution of any therapeutic agents dispersed within or on the surface of the implantable medical device.




al

System and method to electrically charge implantable devices

An implantable device having a power source is provided. The power source uses reverse electrowetting technology to generate a charge to power the implantable device. The power source includes a flexible, non-conductive substrate having a first side and a second side opposite the first side with a channel between the first and second sides. Electrodes are arranged about the channel in a predefined pattern. A liquid is contained in the channel. The liquid includes a dielectric liquid and a conductive liquid that do not mix. The electric change is generated by moving the liquid back and forth across the electrodes. The force to pump or move the liquid is provided by organic means, such as, for example, the change in blood pressure between systolic and diastolic, the expansion and contraction of an organ, or the movement of a muscle.




al

Helical hybrid stent

An expandable helical stent with a securement is provided. The stent is formed from flat or tubular metal in a helical coiled structure which has an undulating pattern. The main stent component may be formed of a single helically coiled component. Alternatively, a plurality of helically coiled ribbons may be used to form a stent heterogeneous in design, material, or other characteristi. The helical tubular structure may be secured with a securement, such as a weld, interlock or a polymer, to maintain the helical coils in a tubular configuration. The helical coils of the main stent component may be spaced apart or nestled to each other. The nestling of the undulation of adjacent helical coils contributes to maintaining the tubular shape of the helically coiled stent. In addition, the nestling of helical coils may prevent the polymer layer from sagging at any point between cycles of the helical coils.




al

Repositionable endoluminal support structure and its applications

An endoluminal support structure includes strut members interconnected by pivot joints to form a series of linked scissor mechanisms. The structure can be remotely actuated to compress or expand its shape by adjusting the scissor joints within a range of motion. In particular, the support structure can be repositioned within the body lumen or retrieved from the lumen. The support structure can be employed to introduce and support a prosthetic valve within a body lumen.




al

Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods

Devices and methods for implantation at a native mitral valve. One embodiment of the device includes a valve support having a first region and a second region, and anchoring member having a longitudinal dimension with a first portion configured to contact tissue at the non-circular annulus, a second portion configured to be attached to the valve support, and a lateral portion transverse to the longitudinal dimension between the first portion and the second portion. The anchoring member and the valve support are configured to move from a low-profile configuration to an expanded configuration in which the first portion of the anchoring member at least partially adapts to the non-circular annulus of the native mitral valve and a shape of the first region of the valve support is at least partially independent of a shape of the first portion of the anchoring member.




al

Repositioning of prosthetic heart valve and deployment

A collapsible prosthetic heart valve includes a stent and a valve assembly. The stent has an annulus section with a relatively small cross-section, and an aortic section with a relatively large cross-section. The valve assembly, including a cuff and a plurality of leaflets, is secured to the stent in the annulus section such that the valve assembly can be entirely deployed in the native valve annulus and function as intended while at least a portion of the aortic section is held by the delivery device in a manner that allows for resheathing. The configuration of the prosthetic valve is such that the valve leaflets can fully coapt and the valve can function properly even when the stent and/or valve assembly become distorted upon deployment or use.




al

Ocular implant delivery assemblies with distal caps

Ocular implant delivery assemblies are provided which include a cannula having a lumen extending therethrough, a proximal end, a proximal end opening, a distal end, a distal end opening, and a lumen extending through the cannula. A cap is provided having a closed distal end, being in contact with the outer wall of the cannula, and covering the distal end and the distal end opening of the cannula, the cap being structured to allow the distal end and the distal end opening of the cannula to pass through the cap as the cannula is passed into an eye. An ocular implant is located in the lumen. The implant may be sealed in the cannula without the addition of a liquid carrier or it may be contained in a liquid carrier medium in the cannula. The implant may be made up of a number of microparticles having different compositions or different forms. The assembly also includes a sleeve located on the proximal end of the cannula and suitable for coupling the assembly to a syringe containing a pushing gel.




al

Accommodating intraocular lens using trapezoidal phase shift

An accommodating intraocular lens (AIOL) includes an optic adapted to produce a trapezoidal phase shift and a plurality of haptics. Each haptic extends from a haptic-optic junction to at least one transverse arm contacting a capsular bag of the eye, and each haptic has sufficient length and rigidity to stretch a capsular bag of the eye to contact ciliary muscles of the eye. The haptic-optic junctions vault the optic forward relative to the haptics and compression of the haptics by the ciliary muscles moves the anterior optic forward. A combined accommodative power produced by the motion of the anterior optic and the trapezoidal phase shift is at least 0.5 Diopters.




al

Electrochemical coupling of metallic biomaterial implants for biological effect

The invention discloses a novel method of controlling the open circuit potential (OCP) of a medical implant by coupling it with small amounts of metals having a lower OCP than the implant. Coupling of Mg to less than 1% of the surface area of a titanium implant is shown to induce cathodic polarization of the titanium that inhibits cell proliferation at the surface of the implant. Mg—Ti coupling in medical devices promises to attenuate or eliminate potential complications of surgery such as peri-implantitis and bacterial infections at the site of implantation.




al

Wave spring for a spinal implant

A spinal implant includes a wave spring configured to surround a nucleus. The spring may be formed from a shape memory material. The implant may further include an artificial nucleus configured to simulate a disc nucleus.




al

Intervertebral nucleus and annulus implants and method of use thereof

The invention encompasses devices and methods for treating one or more damaged, diseased, or traumatized intervertebral discs to reduce or eliminate associated back pain. Specifically, the invention encompasses intervertebral nucleus and annulus implants that are resistant to migration in and/or expulsion from an intervertebral disc space. The invention further encompasses kits including the implantable devices of the invention and associated delivery tools to treat annular and nuclear tissue.




al

Apparatus for anterior intervertebral spinal fixation and fusion

A spinal fixation device includes a housing and a plurality of blades. Each blade includes a body having a central opening configured to rotate on a shaft within the housing. Control openings on opposing sides of the central opening are sized to engage prongs of a rotating tool. At least one cutting extension with a sharp leading edge extends from the body in an orientation about an axis of the shaft. Upon rotation of the blade by the rotating tool about the shaft in a direction in which the at least one cutting extension is oriented, the at least one cutting extension will break an endplate of a vertebra and hook into the vertebra.




al

Expandable fusion device and method of installation thereof

The present invention provides an expandable fusion device capable of being installed inside an intervertebral disc space to maintain normal disc spacing and restore spinal stability, thereby facilitating an intervertebral fusion. In one embodiment, the fusion device includes a body portion, a first endplate, and a second endplate, the first and second endplates capable of being moved in a direction away from the body portion into an expanded configuration or capable of being moved towards the body portion into an unexpanded configuration. The fusion device is capable of being deployed and installed in both configurations.




al

Image-based patient-specific medical spinal surgery method and spinal prosthesis

The present invention relates to an image-based, patient-specific medical spinal surgery technique and to a spinal prosthesis used in the surgery, and particularly, to an image-based, patient-specific medical spinal surgery technique and to a spinal prosthesis which are intended to solve a problem of damage to a spine caused by installing a spinal prosthesis used in spinal surgery, by introducing an image of a patient to manufacture an insertable spinal prosthesis that is customized for a shape of a spine of an individual patient in a polymer-based material.




al

Intervertebral implant facilitating unilateral placement, instruments and methods

Implants, tools and methods for performing unilateral posterior lumbar interbody fusion are provided. An interbody implant includes a body having a top and bottom surface extending along a length thereof; and first and second side surfaces extending between the top and bottom surfaces on opposite sides of the body. The height of the first side surface is greater than the height of the second side surface.




al

Spinal fixation plates

Spinal fixation plates for maintaining adjacent vertebrae in and fixed position are provided. In an exemplary embodiment, the plate includes opposed superior and inferior portions that are angled in a direction anterior to an anterior face of a mid-portion of the plate. The plate also includes a curvature formed therein about a longitudinal axis in a sagittal plane thereof. In use, when the plate is attached to adjacent vertebrae, the angle of the superior and inferior portions and the curvature in the plate are effective to position one or more thru-bores formed in the superior and inferior portions at the anterior rims of the adjacent vertebrae. In another embodiment, a spinal fixation plate is provided that is adapted to engage and mate to a fusion cage or other vertebral implant disposed between adjacent vertebra. The present invention also provides spinal fixation kits or assemblies, and methods for implanting the same.




al

Intervertebral-disc prosthesis

The intervertebral disc prosthesis comprises first and second plates (3, 4) designed to be attached on one of the two vertebrae adjacent to the intervertebral disc to be replaced, and a compression pad arranged between the first and second plates. Each plate comprises first attaching means including two attaching portions (14a, 14b) positioned symmetrically on either side of the anteroposterior median plane of said plate, second attaching means including two attaching portions (15a, 15b) positioned symmetrically on either side of a first plane inclined by an angle comprised between 50° and 70° relative to the anteroposterior median plane of said plate, and third attaching means opposite the second attaching means relative to the anteroposterior median plane and including two attaching portions (16a, 16b) positioned symmetrically on either side of a second plane inclined by an angle of approximately 90°, relative to the anteroposterior median plane of said plate.




al

Modular junction seal of an orthopedic implant

A method of forming an orthopedic implant, the method comprising the steps of providing a first implant component and a second implant component, the first implant component having a stem and a second implant component including a head defining a female taper sized to receive the stem; coupling the stem to the female taper of the head; forming a modular injunction between the stem and head; applying a seal to the modular injunction to limit bodily fluid from contacting the modular injunction; and forming the orthopedic implant.




al

Adjustable lateral articulating condyle

An elbow prosthesis is provided and may include a first stem component attached to one of a humerus and an ulna, a second stem component attached to the other of the humerus and the ulna, and a joint disposed between and coupling the first stem component and the second stem component to permit relative movement between the first stem component and the second stem component about a first axis. The elbow prosthesis may additionally include a condyle extending from the joint and including an axis of rotation that is eccentric from the first axis.




al

Intervertebral spacer

Disclosed is an assembly and method for implant installation between adjacent vertebral bodies of a patient. The implant has a support body and a rotatable insert therein and the support body is curved for installation between adjacent vertebral bodies transforaminally. An installation instrument is also disclosed for removable attachment to implant and engagement with the rotatable insert to selectively permit rotation between the insert and the support body. The installation instrument extends along a longitudinal tool axis and when the installation instrument is in a first position the insert is rotationally fixed with respect to the support body and when the installation instrument is in a second position the support body may rotate with respect to the insert.