al Boosting Cloud Data Analytics using Multi-Objective Optimization. (arXiv:2005.03314v1 [cs.DB]) By arxiv.org Published On :: Data analytics in the cloud has become an integral part of enterprise businesses. Big data analytics systems, however, still lack the ability to take user performance goals and budgetary constraints for a task, collectively referred to as task objectives, and automatically configure an analytic job to achieve these objectives. This paper presents a data analytics optimizer that can automatically determine a cluster configuration with a suitable number of cores as well as other system parameters that best meet the task objectives. At a core of our work is a principled multi-objective optimization (MOO) approach that computes a Pareto optimal set of job configurations to reveal tradeoffs between different user objectives, recommends a new job configuration that best explores such tradeoffs, and employs novel optimizations to enable such recommendations within a few seconds. We present efficient incremental algorithms based on the notion of a Progressive Frontier for realizing our MOO approach and implement them into a Spark-based prototype. Detailed experiments using benchmark workloads show that our MOO techniques provide a 2-50x speedup over existing MOO methods, while offering good coverage of the Pareto frontier. When compared to Ottertune, a state-of-the-art performance tuning system, our approach recommends configurations that yield 26\%-49\% reduction of running time of the TPCx-BB benchmark while adapting to different application preferences on multiple objectives. Full Article
al Nakdan: Professional Hebrew Diacritizer. (arXiv:2005.03312v1 [cs.CL]) By arxiv.org Published On :: We present a system for automatic diacritization of Hebrew text. The system combines modern neural models with carefully curated declarative linguistic knowledge and comprehensive manually constructed tables and dictionaries. Besides providing state of the art diacritization accuracy, the system also supports an interface for manual editing and correction of the automatic output, and has several features which make it particularly useful for preparation of scientific editions of Hebrew texts. The system supports Modern Hebrew, Rabbinic Hebrew and Poetic Hebrew. The system is freely accessible for all use at this http URL Full Article
al Interval type-2 fuzzy logic system based similarity evaluation for image steganography. (arXiv:2005.03310v1 [cs.MM]) By arxiv.org Published On :: Similarity measure, also called information measure, is a concept used to distinguish different objects. It has been studied from different contexts by employing mathematical, psychological, and fuzzy approaches. Image steganography is the art of hiding secret data into an image in such a way that it cannot be detected by an intruder. In image steganography, hiding secret data in the plain or non-edge regions of the image is significant due to the high similarity and redundancy of the pixels in their neighborhood. However, the similarity measure of the neighboring pixels, i.e., their proximity in color space, is perceptual rather than mathematical. This paper proposes an interval type 2 fuzzy logic system (IT2 FLS) to determine the similarity between the neighboring pixels by involving an instinctive human perception through a rule-based approach. The pixels of the image having high similarity values, calculated using the proposed IT2 FLS similarity measure, are selected for embedding via the least significant bit (LSB) method. We term the proposed procedure of steganography as IT2 FLS LSB method. Moreover, we have developed two more methods, namely, type 1 fuzzy logic system based least significant bits (T1FLS LSB) and Euclidean distance based similarity measures for least significant bit (SM LSB) steganographic methods. Experimental simulations were conducted for a collection of images and quality index metrics, such as PSNR, UQI, and SSIM are used. All the three steganographic methods are applied on datasets and the quality metrics are calculated. The obtained stego images and results are shown and thoroughly compared to determine the efficacy of the IT2 FLS LSB method. Finally, we have done a comparative analysis of the proposed approach with the existing well-known steganographic methods to show the effectiveness of our proposed steganographic method. Full Article
al Adaptive Dialog Policy Learning with Hindsight and User Modeling. (arXiv:2005.03299v1 [cs.AI]) By arxiv.org Published On :: Reinforcement learning methods have been used to compute dialog policies from language-based interaction experiences. Efficiency is of particular importance in dialog policy learning, because of the considerable cost of interacting with people, and the very poor user experience from low-quality conversations. Aiming at improving the efficiency of dialog policy learning, we develop algorithm LHUA (Learning with Hindsight, User modeling, and Adaptation) that, for the first time, enables dialog agents to adaptively learn with hindsight from both simulated and real users. Simulation and hindsight provide the dialog agent with more experience and more (positive) reinforcements respectively. Experimental results suggest that, in success rate and policy quality, LHUA outperforms competitive baselines from the literature, including its no-simulation, no-adaptation, and no-hindsight counterparts. Full Article
al Knowledge Enhanced Neural Fashion Trend Forecasting. (arXiv:2005.03297v1 [cs.IR]) By arxiv.org Published On :: Fashion trend forecasting is a crucial task for both academia and industry. Although some efforts have been devoted to tackling this challenging task, they only studied limited fashion elements with highly seasonal or simple patterns, which could hardly reveal the real fashion trends. Towards insightful fashion trend forecasting, this work focuses on investigating fine-grained fashion element trends for specific user groups. We first contribute a large-scale fashion trend dataset (FIT) collected from Instagram with extracted time series fashion element records and user information. Further-more, to effectively model the time series data of fashion elements with rather complex patterns, we propose a Knowledge EnhancedRecurrent Network model (KERN) which takes advantage of the capability of deep recurrent neural networks in modeling time-series data. Moreover, it leverages internal and external knowledge in fashion domain that affects the time-series patterns of fashion element trends. Such incorporation of domain knowledge further enhances the deep learning model in capturing the patterns of specific fashion elements and predicting the future trends. Extensive experiments demonstrate that the proposed KERN model can effectively capture the complicated patterns of objective fashion elements, therefore making preferable fashion trend forecast. Full Article
al Cotatron: Transcription-Guided Speech Encoder for Any-to-Many Voice Conversion without Parallel Data. (arXiv:2005.03295v1 [eess.AS]) By arxiv.org Published On :: We propose Cotatron, a transcription-guided speech encoder for speaker-independent linguistic representation. Cotatron is based on the multispeaker TTS architecture and can be trained with conventional TTS datasets. We train a voice conversion system to reconstruct speech with Cotatron features, which is similar to the previous methods based on Phonetic Posteriorgram (PPG). By training and evaluating our system with 108 speakers from the VCTK dataset, we outperform the previous method in terms of both naturalness and speaker similarity. Our system can also convert speech from speakers that are unseen during training, and utilize ASR to automate the transcription with minimal reduction of the performance. Audio samples are available at https://mindslab-ai.github.io/cotatron, and the code with a pre-trained model will be made available soon. Full Article
al Expressing Accountability Patterns using Structural Causal Models. (arXiv:2005.03294v1 [cs.SE]) By arxiv.org Published On :: While the exact definition and implementation of accountability depend on the specific context, at its core accountability describes a mechanism that will make decisions transparent and often provides means to sanction "bad" decisions. As such, accountability is specifically relevant for Cyber-Physical Systems, such as robots or drones, that embed themselves into a human society, take decisions and might cause lasting harm. Without a notion of accountability, such systems could behave with impunity and would not fit into society. Despite its relevance, there is currently no agreement on its meaning and, more importantly, no way to express accountability properties for these systems. As a solution we propose to express the accountability properties of systems using Structural Causal Models. They can be represented as human-readable graphical models while also offering mathematical tools to analyze and reason over them. Our central contribution is to show how Structural Causal Models can be used to express and analyze the accountability properties of systems and that this approach allows us to identify accountability patterns. These accountability patterns can be catalogued and used to improve systems and their architectures. Full Article
al On the unique solution of the generalized absolute value equation. (arXiv:2005.03287v1 [math.NA]) By arxiv.org Published On :: In this paper, some useful necessary and sufficient conditions for the unique solution of the generalized absolute value equation (GAVE) $Ax-B|x|=b$ with $A, Bin mathbb{R}^{n imes n}$ from the optimization field are first presented, which cover the fundamental theorem for the unique solution of the linear system $Ax=b$ with $Ain mathbb{R}^{n imes n}$. Not only that, some new sufficient conditions for the unique solution of the GAVE are obtained, which are weaker than the previous published works. Full Article
al Continuous maximal covering location problems with interconnected facilities. (arXiv:2005.03274v1 [math.OC]) By arxiv.org Published On :: In this paper we analyze a continuous version of the maximal covering location problem, in which the facilities are required to be interconnected by means of a graph structure in which two facilities are allowed to be linked if a given distance is not exceed. We provide a mathematical programming framework for the problem and different resolution strategies. First, we propose a Mixed Integer Non Linear Programming formulation, and derive properties of the problem that allow us to project the continuous variables out avoiding the nonlinear constraints, resulting in an equivalent pure integer programming formulation. Since the number of constraints in the integer programming formulation is large and the constraints are, in general, difficult to handle, we propose two branch-&-cut approaches that avoid the complete enumeration of the constraints resulting in more efficient procedures. We report the results of an extensive battery of computational experiments comparing the performance of the different approaches. Full Article
al RNN-T Models Fail to Generalize to Out-of-Domain Audio: Causes and Solutions. (arXiv:2005.03271v1 [eess.AS]) By arxiv.org Published On :: In recent years, all-neural end-to-end approaches have obtained state-of-the-art results on several challenging automatic speech recognition (ASR) tasks. However, most existing works focus on building ASR models where train and test data are drawn from the same domain. This results in poor generalization characteristics on mismatched-domains: e.g., end-to-end models trained on short segments perform poorly when evaluated on longer utterances. In this work, we analyze the generalization properties of streaming and non-streaming recurrent neural network transducer (RNN-T) based end-to-end models in order to identify model components that negatively affect generalization performance. We propose two solutions: combining multiple regularization techniques during training, and using dynamic overlapping inference. On a long-form YouTube test set, when the non-streaming RNN-T model is trained with shorter segments of data, the proposed combination improves word error rate (WER) from 22.3% to 14.8%; when the streaming RNN-T model trained on short Search queries, the proposed techniques improve WER on the YouTube set from 67.0% to 25.3%. Finally, when trained on Librispeech, we find that dynamic overlapping inference improves WER on YouTube from 99.8% to 33.0%. Full Article
al Online Proximal-ADMM For Time-varying Constrained Convex Optimization. (arXiv:2005.03267v1 [eess.SY]) By arxiv.org Published On :: This paper considers a convex optimization problem with cost and constraints that evolve over time. The function to be minimized is strongly convex and possibly non-differentiable, and variables are coupled through linear constraints.In this setting, the paper proposes an online algorithm based on the alternating direction method of multipliers(ADMM), to track the optimal solution trajectory of the time-varying problem; in particular, the proposed algorithm consists of a primal proximal gradient descent step and an appropriately perturbed dual ascent step. The paper derives tracking results, asymptotic bounds, and linear convergence results. The proposed algorithm is then specialized to a multi-area power grid optimization problem, and our numerical results verify the desired properties. Full Article
al Quda: Natural Language Queries for Visual Data Analytics. (arXiv:2005.03257v1 [cs.CL]) By arxiv.org Published On :: Visualization-oriented natural language interfaces (V-NLIs) have been explored and developed in recent years. One challenge faced by V-NLIs is in the formation of effective design decisions that usually requires a deep understanding of user queries. Learning-based approaches have shown potential in V-NLIs and reached state-of-the-art performance in various NLP tasks. However, because of the lack of sufficient training samples that cater to visual data analytics, cutting-edge techniques have rarely been employed to facilitate the development of V-NLIs. We present a new dataset, called Quda, to help V-NLIs understand free-form natural language. Our dataset contains 14;035 diverse user queries annotated with 10 low-level analytic tasks that assist in the deployment of state-of-the-art techniques for parsing complex human language. We achieve this goal by first gathering seed queries with data analysts who are target users of V-NLIs. Then we employ extensive crowd force for paraphrase generation and validation. We demonstrate the usefulness of Quda in building V-NLIs by creating a prototype that makes effective design decisions for free-form user queries. We also show that Quda can be beneficial for a wide range of applications in the visualization community by analyzing the design tasks described in academic publications. Full Article
al DFSeer: A Visual Analytics Approach to Facilitate Model Selection for Demand Forecasting. (arXiv:2005.03244v1 [cs.HC]) By arxiv.org Published On :: Selecting an appropriate model to forecast product demand is critical to the manufacturing industry. However, due to the data complexity, market uncertainty and users' demanding requirements for the model, it is challenging for demand analysts to select a proper model. Although existing model selection methods can reduce the manual burden to some extent, they often fail to present model performance details on individual products and reveal the potential risk of the selected model. This paper presents DFSeer, an interactive visualization system to conduct reliable model selection for demand forecasting based on the products with similar historical demand. It supports model comparison and selection with different levels of details. Besides, it shows the difference in model performance on similar products to reveal the risk of model selection and increase users' confidence in choosing a forecasting model. Two case studies and interviews with domain experts demonstrate the effectiveness and usability of DFSeer. Full Article
al Phase retrieval of complex-valued objects via a randomized Kaczmarz method. (arXiv:2005.03238v1 [cs.IT]) By arxiv.org Published On :: This paper investigates the convergence of the randomized Kaczmarz algorithm for the problem of phase retrieval of complex-valued objects. While this algorithm has been studied for the real-valued case}, its generalization to the complex-valued case is nontrivial and has been left as a conjecture. This paper establishes the connection between the convergence of the algorithm and the convexity of an objective function. Based on the connection, it demonstrates that when the sensing vectors are sampled uniformly from a unit sphere and the number of sensing vectors $m$ satisfies $m>O(nlog n)$ as $n, m ightarrowinfty$, then this algorithm with a good initialization achieves linear convergence to the solution with high probability. Full Article
al Mortar-based entropy-stable discontinuous Galerkin methods on non-conforming quadrilateral and hexahedral meshes. (arXiv:2005.03237v1 [math.NA]) By arxiv.org Published On :: High-order entropy-stable discontinuous Galerkin (DG) methods for nonlinear conservation laws reproduce a discrete entropy inequality by combining entropy conservative finite volume fluxes with summation-by-parts (SBP) discretization matrices. In the DG context, on tensor product (quadrilateral and hexahedral) elements, SBP matrices are typically constructed by collocating at Lobatto quadrature points. Recent work has extended the construction of entropy-stable DG schemes to collocation at more accurate Gauss quadrature points. In this work, we extend entropy-stable Gauss collocation schemes to non-conforming meshes. Entropy-stable DG schemes require computing entropy conservative numerical fluxes between volume and surface quadrature nodes. On conforming tensor product meshes where volume and surface nodes are aligned, flux evaluations are required only between "lines" of nodes. However, on non-conforming meshes, volume and surface nodes are no longer aligned, resulting in a larger number of flux evaluations. We reduce this expense by introducing an entropy-stable mortar-based treatment of non-conforming interfaces via a face-local correction term, and provide necessary conditions for high-order accuracy. Numerical experiments in both two and three dimensions confirm the stability and accuracy of this approach. Full Article
al Multi-Target Deep Learning for Algal Detection and Classification. (arXiv:2005.03232v1 [cs.CV]) By arxiv.org Published On :: Water quality has a direct impact on industry, agriculture, and public health. Algae species are common indicators of water quality. It is because algal communities are sensitive to changes in their habitats, giving valuable knowledge on variations in water quality. However, water quality analysis requires professional inspection of algal detection and classification under microscopes, which is very time-consuming and tedious. In this paper, we propose a novel multi-target deep learning framework for algal detection and classification. Extensive experiments were carried out on a large-scale colored microscopic algal dataset. Experimental results demonstrate that the proposed method leads to the promising performance on algal detection, class identification and genus identification. Full Article
al Constructing Accurate and Efficient Deep Spiking Neural Networks with Double-threshold and Augmented Schemes. (arXiv:2005.03231v1 [cs.NE]) By arxiv.org Published On :: Spiking neural networks (SNNs) are considered as a potential candidate to overcome current challenges such as the high-power consumption encountered by artificial neural networks (ANNs), however there is still a gap between them with respect to the recognition accuracy on practical tasks. A conversion strategy was thus introduced recently to bridge this gap by mapping a trained ANN to an SNN. However, it is still unclear that to what extent this obtained SNN can benefit both the accuracy advantage from ANN and high efficiency from the spike-based paradigm of computation. In this paper, we propose two new conversion methods, namely TerMapping and AugMapping. The TerMapping is a straightforward extension of a typical threshold-balancing method with a double-threshold scheme, while the AugMapping additionally incorporates a new scheme of augmented spike that employs a spike coefficient to carry the number of typical all-or-nothing spikes occurring at a time step. We examine the performance of our methods based on MNIST, Fashion-MNIST and CIFAR10 datasets. The results show that the proposed double-threshold scheme can effectively improve accuracies of the converted SNNs. More importantly, the proposed AugMapping is more advantageous for constructing accurate, fast and efficient deep SNNs as compared to other state-of-the-art approaches. Our study therefore provides new approaches for further integration of advanced techniques in ANNs to improve the performance of SNNs, which could be of great merit to applied developments with spike-based neuromorphic computing. Full Article
al Hierarchical Predictive Coding Models in a Deep-Learning Framework. (arXiv:2005.03230v1 [cs.CV]) By arxiv.org Published On :: Bayesian predictive coding is a putative neuromorphic method for acquiring higher-level neural representations to account for sensory input. Although originating in the neuroscience community, there are also efforts in the machine learning community to study these models. This paper reviews some of the more well known models. Our review analyzes module connectivity and patterns of information transfer, seeking to find general principles used across the models. We also survey some recent attempts to cast these models within a deep learning framework. A defining feature of Bayesian predictive coding is that it uses top-down, reconstructive mechanisms to predict incoming sensory inputs or their lower-level representations. Discrepancies between the predicted and the actual inputs, known as prediction errors, then give rise to future learning that refines and improves the predictive accuracy of learned higher-level representations. Predictive coding models intended to describe computations in the neocortex emerged prior to the development of deep learning and used a communication structure between modules that we name the Rao-Ballard protocol. This protocol was derived from a Bayesian generative model with some rather strong statistical assumptions. The RB protocol provides a rubric to assess the fidelity of deep learning models that claim to implement predictive coding. Full Article
al Multi-dimensional Avikainen's estimates. (arXiv:2005.03219v1 [math.PR]) By arxiv.org Published On :: Avikainen proved the estimate $mathbb{E}[|f(X)-f(widehat{X})|^{q}] leq C(p,q) mathbb{E}[|X-widehat{X}|^{p}]^{frac{1}{p+1}} $ for $p,q in [1,infty)$, one-dimensional random variables $X$ with the bounded density function and $widehat{X}$, and a function $f$ of bounded variation in $mathbb{R}$. In this article, we will provide multi-dimensional analogues of this estimate for functions of bounded variation in $mathbb{R}^{d}$, Orlicz-Sobolev spaces, Sobolev spaces with variable exponents and fractional Sobolev spaces. The main idea of our arguments is to use Hardy-Littlewood maximal estimates and pointwise characterizations of these function spaces. We will apply main statements to numerical analysis on irregular functionals of a solution to stochastic differential equations based on the Euler-Maruyama scheme and the multilevel Monte Carlo method, and to estimates of the $L^{2}$-time regularity of decoupled forward-backward stochastic differential equations with irregular terminal conditions. Full Article
al Conley's fundamental theorem for a class of hybrid systems. (arXiv:2005.03217v1 [math.DS]) By arxiv.org Published On :: We establish versions of Conley's (i) fundamental theorem and (ii) decomposition theorem for a broad class of hybrid dynamical systems. The hybrid version of (i) asserts that a globally-defined "hybrid complete Lyapunov function" exists for every hybrid system in this class. Motivated by mechanics and control settings where physical or engineered events cause abrupt changes in a system's governing dynamics, our results apply to a large class of Lagrangian hybrid systems (with impacts) studied extensively in the robotics literature. Viewed formally, these results generalize those of Conley and Franks for continuous-time and discrete-time dynamical systems, respectively, on metric spaces. However, we furnish specific examples illustrating how our statement of sufficient conditions represents merely an early step in the longer project of establishing what formal assumptions can and cannot endow hybrid systems models with the topologically well characterized partitions of limit behavior that make Conley's theory so valuable in those classical settings. Full Article
al Hierarchical Attention Network for Action Segmentation. (arXiv:2005.03209v1 [cs.CV]) By arxiv.org Published On :: The temporal segmentation of events is an essential task and a precursor for the automatic recognition of human actions in the video. Several attempts have been made to capture frame-level salient aspects through attention but they lack the capacity to effectively map the temporal relationships in between the frames as they only capture a limited span of temporal dependencies. To this end we propose a complete end-to-end supervised learning approach that can better learn relationships between actions over time, thus improving the overall segmentation performance. The proposed hierarchical recurrent attention framework analyses the input video at multiple temporal scales, to form embeddings at frame level and segment level, and perform fine-grained action segmentation. This generates a simple, lightweight, yet extremely effective architecture for segmenting continuous video streams and has multiple application domains. We evaluate our system on multiple challenging public benchmark datasets, including MERL Shopping, 50 salads, and Georgia Tech Egocentric datasets, and achieves state-of-the-art performance. The evaluated datasets encompass numerous video capture settings which are inclusive of static overhead camera views and dynamic, ego-centric head-mounted camera views, demonstrating the direct applicability of the proposed framework in a variety of settings. Full Article
al What comprises a good talking-head video generation?: A Survey and Benchmark. (arXiv:2005.03201v1 [cs.CV]) By arxiv.org Published On :: Over the years, performance evaluation has become essential in computer vision, enabling tangible progress in many sub-fields. While talking-head video generation has become an emerging research topic, existing evaluations on this topic present many limitations. For example, most approaches use human subjects (e.g., via Amazon MTurk) to evaluate their research claims directly. This subjective evaluation is cumbersome, unreproducible, and may impend the evolution of new research. In this work, we present a carefully-designed benchmark for evaluating talking-head video generation with standardized dataset pre-processing strategies. As for evaluation, we either propose new metrics or select the most appropriate ones to evaluate results in what we consider as desired properties for a good talking-head video, namely, identity preserving, lip synchronization, high video quality, and natural-spontaneous motion. By conducting a thoughtful analysis across several state-of-the-art talking-head generation approaches, we aim to uncover the merits and drawbacks of current methods and point out promising directions for future work. All the evaluation code is available at: https://github.com/lelechen63/talking-head-generation-survey. Full Article
al Enabling Cross-chain Transactions: A Decentralized Cryptocurrency Exchange Protocol. (arXiv:2005.03199v1 [cs.CR]) By arxiv.org Published On :: Inspired by Bitcoin, many different kinds of cryptocurrencies based on blockchain technology have turned up on the market. Due to the special structure of the blockchain, it has been deemed impossible to directly trade between traditional currencies and cryptocurrencies or between different types of cryptocurrencies. Generally, trading between different currencies is conducted through a centralized third-party platform. However, it has the problem of a single point of failure, which is vulnerable to attacks and thus affects the security of the transactions. In this paper, we propose a distributed cryptocurrency trading scheme to solve the problem of centralized exchanges, which can achieve trading between different types of cryptocurrencies. Our scheme is implemented with smart contracts on the Ethereum blockchain and deployed on the Ethereum test network. We not only implement transactions between individual users, but also allow transactions between multiple users. The experimental result proves that the cost of our scheme is acceptable. Full Article
al Recognizing Exercises and Counting Repetitions in Real Time. (arXiv:2005.03194v1 [cs.CV]) By arxiv.org Published On :: Artificial intelligence technology has made its way absolutely necessary in a variety of industries including the fitness industry. Human pose estimation is one of the important researches in the field of Computer Vision for the last few years. In this project, pose estimation and deep machine learning techniques are combined to analyze the performance and report feedback on the repetitions of performed exercises in real-time. Involving machine learning technology in the fitness industry could help the judges to count repetitions of any exercise during Weightlifting or CrossFit competitions. Full Article
al Distributed Stabilization by Probability Control for Deterministic-Stochastic Large Scale Systems : Dissipativity Approach. (arXiv:2005.03193v1 [eess.SY]) By arxiv.org Published On :: By using dissipativity approach, we establish the stability condition for the feedback connection of a deterministic dynamical system $Sigma$ and a stochastic memoryless map $Psi$. After that, we extend the result to the class of large scale systems in which: $Sigma$ consists of many sub-systems; and $Psi$ consists of many "stochastic actuators" and "probability controllers" that control the actuator's output events. We will demonstrate the proposed approach by showing the design procedures to globally stabilize the manufacturing systems while locally balance the stock levels in any production process. Full Article
al ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context. (arXiv:2005.03191v1 [eess.AS]) By arxiv.org Published On :: Convolutional neural networks (CNN) have shown promising results for end-to-end speech recognition, albeit still behind other state-of-the-art methods in performance. In this paper, we study how to bridge this gap and go beyond with a novel CNN-RNN-transducer architecture, which we call ContextNet. ContextNet features a fully convolutional encoder that incorporates global context information into convolution layers by adding squeeze-and-excitation modules. In addition, we propose a simple scaling method that scales the widths of ContextNet that achieves good trade-off between computation and accuracy. We demonstrate that on the widely used LibriSpeech benchmark, ContextNet achieves a word error rate (WER) of 2.1\%/4.6\% without external language model (LM), 1.9\%/4.1\% with LM and 2.9\%/7.0\% with only 10M parameters on the clean/noisy LibriSpeech test sets. This compares to the previous best published system of 2.0\%/4.6\% with LM and 3.9\%/11.3\% with 20M parameters. The superiority of the proposed ContextNet model is also verified on a much larger internal dataset. Full Article
al A Dynamical Perspective on Point Cloud Registration. (arXiv:2005.03190v1 [cs.CV]) By arxiv.org Published On :: We provide a dynamical perspective on the classical problem of 3D point cloud registration with correspondences. A point cloud is considered as a rigid body consisting of particles. The problem of registering two point clouds is formulated as a dynamical system, where the dynamic model point cloud translates and rotates in a viscous environment towards the static scene point cloud, under forces and torques induced by virtual springs placed between each pair of corresponding points. We first show that the potential energy of the system recovers the objective function of the maximum likelihood estimation. We then adopt Lyapunov analysis, particularly the invariant set theorem, to analyze the rigid body dynamics and show that the system globally asymptotically tends towards the set of equilibrium points, where the globally optimal registration solution lies in. We conjecture that, besides the globally optimal equilibrium point, the system has either three or infinite "spurious" equilibrium points, and these spurious equilibria are all locally unstable. The case of three spurious equilibria corresponds to generic shape of the point cloud, while the case of infinite spurious equilibria happens when the point cloud exhibits symmetry. Therefore, simulating the dynamics with random perturbations guarantees to obtain the globally optimal registration solution. Numerical experiments support our analysis and conjecture. Full Article
al An Optimal Control Theory for the Traveling Salesman Problem and Its Variants. (arXiv:2005.03186v1 [math.OC]) By arxiv.org Published On :: We show that the traveling salesman problem (TSP) and its many variants may be modeled as functional optimization problems over a graph. In this formulation, all vertices and arcs of the graph are functionals; i.e., a mapping from a space of measurable functions to the field of real numbers. Many variants of the TSP, such as those with neighborhoods, with forbidden neighborhoods, with time-windows and with profits, can all be framed under this construct. In sharp contrast to their discrete-optimization counterparts, the modeling constructs presented in this paper represent a fundamentally new domain of analysis and computation for TSPs and their variants. Beyond its apparent mathematical unification of a class of problems in graph theory, the main advantage of the new approach is that it facilitates the modeling of certain application-specific problems in their home space of measurable functions. Consequently, certain elements of economic system theory such as dynamical models and continuous-time cost/profit functionals can be directly incorporated in the new optimization problem formulation. Furthermore, subtour elimination constraints, prevalent in discrete optimization formulations, are naturally enforced through continuity requirements. The price for the new modeling framework is nonsmooth functionals. Although a number of theoretical issues remain open in the proposed mathematical framework, we demonstrate the computational viability of the new modeling constructs over a sample set of problems to illustrate the rapid production of end-to-end TSP solutions to extensively-constrained practical problems. Full Article
al Determinantal Point Processes in Randomized Numerical Linear Algebra. (arXiv:2005.03185v1 [cs.DS]) By arxiv.org Published On :: Randomized Numerical Linear Algebra (RandNLA) uses randomness to develop improved algorithms for matrix problems that arise in scientific computing, data science, machine learning, etc. Determinantal Point Processes (DPPs), a seemingly unrelated topic in pure and applied mathematics, is a class of stochastic point processes with probability distribution characterized by sub-determinants of a kernel matrix. Recent work has uncovered deep and fruitful connections between DPPs and RandNLA which lead to new guarantees and improved algorithms that are of interest to both areas. We provide an overview of this exciting new line of research, including brief introductions to RandNLA and DPPs, as well as applications of DPPs to classical linear algebra tasks such as least squares regression, low-rank approximation and the Nystr"om method. For example, random sampling with a DPP leads to new kinds of unbiased estimators for least squares, enabling more refined statistical and inferential understanding of these algorithms; a DPP is, in some sense, an optimal randomized algorithm for the Nystr"om method; and a RandNLA technique called leverage score sampling can be derived as the marginal distribution of a DPP. We also discuss recent algorithmic developments, illustrating that, while not quite as efficient as standard RandNLA techniques, DPP-based algorithms are only moderately more expensive. Full Article
al A Proposal for Intelligent Agents with Episodic Memory. (arXiv:2005.03182v1 [cs.AI]) By arxiv.org Published On :: In the future we can expect that artificial intelligent agents, once deployed, will be required to learn continually from their experience during their operational lifetime. Such agents will also need to communicate with humans and other agents regarding the content of their experience, in the context of passing along their learnings, for the purpose of explaining their actions in specific circumstances or simply to relate more naturally to humans concerning experiences the agent acquires that are not necessarily related to their assigned tasks. We argue that to support these goals, an agent would benefit from an episodic memory; that is, a memory that encodes the agent's experience in such a way that the agent can relive the experience, communicate about it and use its past experience, inclusive of the agents own past actions, to learn more effective models and policies. In this short paper, we propose one potential approach to provide an AI agent with such capabilities. We draw upon the ever-growing body of work examining the function and operation of the Medial Temporal Lobe (MTL) in mammals to guide us in adding an episodic memory capability to an AI agent composed of artificial neural networks (ANNs). Based on that, we highlight important aspects to be considered in the memory organization and we propose an architecture combining ANNs and standard Computer Science techniques for supporting storage and retrieval of episodic memories. Despite being initial work, we hope this short paper can spark discussions around the creation of intelligent agents with memory or, at least, provide a different point of view on the subject. Full Article
al Evolutionary Multi Objective Optimization Algorithm for Community Detection in Complex Social Networks. (arXiv:2005.03181v1 [cs.NE]) By arxiv.org Published On :: Most optimization-based community detection approaches formulate the problem in a single or bi-objective framework. In this paper, we propose two variants of a three-objective formulation using a customized non-dominated sorting genetic algorithm III (NSGA-III) to find community structures in a network. In the first variant, named NSGA-III-KRM, we considered Kernel k means, Ratio cut, and Modularity, as the three objectives, whereas the second variant, named NSGA-III-CCM, considers Community score, Community fitness and Modularity, as three objective functions. Experiments are conducted on four benchmark network datasets. Comparison with state-of-the-art approaches along with decomposition-based multi-objective evolutionary algorithm variants (MOEA/D-KRM and MOEA/D-CCM) indicates that the proposed variants yield comparable or better results. This is particularly significant because the addition of the third objective does not worsen the results of the other two objectives. We also propose a simple method to rank the Pareto solutions so obtained by proposing a new measure, namely the ratio of the hyper-volume and inverted generational distance (IGD). The higher the ratio, the better is the Pareto set. This strategy is particularly useful in the absence of empirical attainment function in the multi-objective framework, where the number of objectives is more than two. Full Article
al Lattice-based public key encryption with equality test in standard model, revisited. (arXiv:2005.03178v1 [cs.CR]) By arxiv.org Published On :: Public key encryption with equality test (PKEET) allows testing whether two ciphertexts are generated by the same message or not. PKEET is a potential candidate for many practical applications like efficient data management on encrypted databases. Potential applicability of PKEET leads to intensive research from its first instantiation by Yang et al. (CT-RSA 2010). Most of the followup constructions are secure in the random oracle model. Moreover, the security of all the concrete constructions is based on number-theoretic hardness assumptions which are vulnerable in the post-quantum era. Recently, Lee et al. (ePrint 2016) proposed a generic construction of PKEET schemes in the standard model and hence it is possible to yield the first instantiation of PKEET schemes based on lattices. Their method is to use a $2$-level hierarchical identity-based encryption (HIBE) scheme together with a one-time signature scheme. In this paper, we propose, for the first time, a direct construction of a PKEET scheme based on the hardness assumption of lattices in the standard model. More specifically, the security of the proposed scheme is reduces to the hardness of the Learning With Errors problem. Full Article
al Fact-based Dialogue Generation with Convergent and Divergent Decoding. (arXiv:2005.03174v1 [cs.CL]) By arxiv.org Published On :: Fact-based dialogue generation is a task of generating a human-like response based on both dialogue context and factual texts. Various methods were proposed to focus on generating informative words that contain facts effectively. However, previous works implicitly assume a topic to be kept on a dialogue and usually converse passively, therefore the systems have a difficulty to generate diverse responses that provide meaningful information proactively. This paper proposes an end-to-end Fact-based dialogue system augmented with the ability of convergent and divergent thinking over both context and facts, which can converse about the current topic or introduce a new topic. Specifically, our model incorporates a novel convergent and divergent decoding that can generate informative and diverse responses considering not only given inputs (context and facts) but also inputs-related topics. Both automatic and human evaluation results on DSTC7 dataset show that our model significantly outperforms state-of-the-art baselines, indicating that our model can generate more appropriate, informative, and diverse responses. Full Article
al Nonlinear model reduction: a comparison between POD-Galerkin and POD-DEIM methods. (arXiv:2005.03173v1 [physics.comp-ph]) By arxiv.org Published On :: Several nonlinear model reduction techniques are compared for the three cases of the non-parallel version of the Kuramoto-Sivashinsky equation, the transient regime of flow past a cylinder at $Re=100$ and fully developed flow past a cylinder at the same Reynolds number. The linear terms of the governing equations are reduced by Galerkin projection onto a POD basis of the flow state, while the reduced nonlinear convection terms are obtained either by a Galerkin projection onto the same state basis, by a Galerkin projection onto a POD basis representing the nonlinearities or by applying the Discrete Empirical Interpolation Method (DEIM) to a POD basis of the nonlinearities. The quality of the reduced order models is assessed as to their stability, accuracy and robustness, and appropriate quantitative measures are introduced and compared. In particular, the properties of the reduced linear terms are compared to those of the full-scale terms, and the structure of the nonlinear quadratic terms is analyzed as to the conservation of kinetic energy. It is shown that all three reduction techniques provide excellent and similar results for the cases of the Kuramoto-Sivashinsky equation and the limit-cycle cylinder flow. For the case of the transient regime of flow past a cylinder, only the pure Galerkin techniques are successful, while the DEIM technique produces reduced-order models that diverge in finite time. Full Article
al On Optimal Control of Discounted Cost Infinite-Horizon Markov Decision Processes Under Local State Information Structures. (arXiv:2005.03169v1 [eess.SY]) By arxiv.org Published On :: This paper investigates a class of optimal control problems associated with Markov processes with local state information. The decision-maker has only local access to a subset of a state vector information as often encountered in decentralized control problems in multi-agent systems. Under this information structure, part of the state vector cannot be observed. We leverage ab initio principles and find a new form of Bellman equations to characterize the optimal policies of the control problem under local information structures. The dynamic programming solutions feature a mixture of dynamics associated unobservable state components and the local state-feedback policy based on the observable local information. We further characterize the optimal local-state feedback policy using linear programming methods. To reduce the computational complexity of the optimal policy, we propose an approximate algorithm based on virtual beliefs to find a sub-optimal policy. We show the performance bounds on the sub-optimal solution and corroborate the results with numerical case studies. Full Article
al Avoiding 5/4-powers on the alphabet of nonnegative integers. (arXiv:2005.03158v1 [math.CO]) By arxiv.org Published On :: We identify the structure of the lexicographically least word avoiding 5/4-powers on the alphabet of nonnegative integers. Specifically, we show that this word has the form $p au(varphi(z) varphi^2(z) cdots)$ where $p, z$ are finite words, $varphi$ is a 6-uniform morphism, and $ au$ is a coding. This description yields a recurrence for the $i$th letter, which we use to prove that the sequence of letters is 6-regular with rank 188. More generally, we prove $k$-regularity for a sequence satisfying a recurrence of the same type. Full Article
al NTIRE 2020 Challenge on Image Demoireing: Methods and Results. (arXiv:2005.03155v1 [cs.CV]) By arxiv.org Published On :: This paper reviews the Challenge on Image Demoireing that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2020. Demoireing is a difficult task of removing moire patterns from an image to reveal an underlying clean image. The challenge was divided into two tracks. Track 1 targeted the single image demoireing problem, which seeks to remove moire patterns from a single image. Track 2 focused on the burst demoireing problem, where a set of degraded moire images of the same scene were provided as input, with the goal of producing a single demoired image as output. The methods were ranked in terms of their fidelity, measured using the peak signal-to-noise ratio (PSNR) between the ground truth clean images and the restored images produced by the participants' methods. The tracks had 142 and 99 registered participants, respectively, with a total of 14 and 6 submissions in the final testing stage. The entries span the current state-of-the-art in image and burst image demoireing problems. Full Article
al Decentralized Adaptive Control for Collaborative Manipulation of Rigid Bodies. (arXiv:2005.03153v1 [cs.RO]) By arxiv.org Published On :: In this work, we consider a group of robots working together to manipulate a rigid object to track a desired trajectory in $SE(3)$. The robots have no explicit communication network among them, and they do no know the mass or friction properties of the object, or where they are attached to the object. However, we assume they share data from a common IMU placed arbitrarily on the object. To solve this problem, we propose a decentralized adaptive control scheme wherein each agent maintains and adapts its own estimate of the object parameters in order to track a reference trajectory. We present an analysis of the controller's behavior, and show that all closed-loop signals remain bounded, and that the system trajectory will almost always (except for initial conditions on a set of measure zero) converge to the desired trajectory. We study the proposed controller's performance using numerical simulations of a manipulation task in 3D, and with hardware experiments which demonstrate our algorithm on a planar manipulation task. These studies, taken together, demonstrate the effectiveness of the proposed controller even in the presence of numerous unmodelled effects, such as discretization errors and complex frictional interactions. Full Article
al Optimally Convergent Mixed Finite Element Methods for the Stochastic Stokes Equations. (arXiv:2005.03148v1 [math.NA]) By arxiv.org Published On :: We propose some new mixed finite element methods for the time dependent stochastic Stokes equations with multiplicative noise, which use the Helmholtz decomposition of the driving multiplicative noise. It is known [16] that the pressure solution has a low regularity, which manifests in sub-optimal convergence rates for well-known inf-sup stable mixed finite element methods in numerical simulations, see [10]. We show that eliminating this gradient part from the noise in the numerical scheme leads to optimally convergent mixed finite element methods, and that this conceptual idea may be used to retool numerical methods that are well-known in the deterministic setting, including pressure stabilization methods, so that their optimal convergence properties can still be maintained in the stochastic setting. Computational experiments are also provided to validate the theoretical results and to illustrate the conceptional usefulness of the proposed numerical approach. Full Article
al A Gentle Introduction to Quantum Computing Algorithms with Applications to Universal Prediction. (arXiv:2005.03137v1 [quant-ph]) By arxiv.org Published On :: In this technical report we give an elementary introduction to Quantum Computing for non-physicists. In this introduction we describe in detail some of the foundational Quantum Algorithms including: the Deutsch-Jozsa Algorithm, Shor's Algorithm, Grocer Search, and Quantum Counting Algorithm and briefly the Harrow-Lloyd Algorithm. Additionally we give an introduction to Solomonoff Induction, a theoretically optimal method for prediction. We then attempt to use Quantum computing to find better algorithms for the approximation of Solomonoff Induction. This is done by using techniques from other Quantum computing algorithms to achieve a speedup in computing the speed prior, which is an approximation of Solomonoff's prior, a key part of Solomonoff Induction. The major limiting factors are that the probabilities being computed are often so small that without a sufficient (often large) amount of trials, the error may be larger than the result. If a substantial speedup in the computation of an approximation of Solomonoff Induction can be achieved through quantum computing, then this can be applied to the field of intelligent agents as a key part of an approximation of the agent AIXI. Full Article
al Catch Me If You Can: Using Power Analysis to Identify HPC Activity. (arXiv:2005.03135v1 [cs.CR]) By arxiv.org Published On :: Monitoring users on large computing platforms such as high performance computing (HPC) and cloud computing systems is non-trivial. Utilities such as process viewers provide limited insight into what users are running, due to granularity limitation, and other sources of data, such as system call tracing, can impose significant operational overhead. However, despite technical and procedural measures, instances of users abusing valuable HPC resources for personal gains have been documented in the past cite{hpcbitmine}, and systems that are open to large numbers of loosely-verified users from around the world are at risk of abuse. In this paper, we show how electrical power consumption data from an HPC platform can be used to identify what programs are executed. The intuition is that during execution, programs exhibit various patterns of CPU and memory activity. These patterns are reflected in the power consumption of the system and can be used to identify programs running. We test our approach on an HPC rack at Lawrence Berkeley National Laboratory using a variety of scientific benchmarks. Among other interesting observations, our results show that by monitoring the power consumption of an HPC rack, it is possible to identify if particular programs are running with precision up to and recall of 95\% even in noisy scenarios. Full Article
al Evaluation, Tuning and Interpretation of Neural Networks for Meteorological Applications. (arXiv:2005.03126v1 [physics.ao-ph]) By arxiv.org Published On :: Neural networks have opened up many new opportunities to utilize remotely sensed images in meteorology. Common applications include image classification, e.g., to determine whether an image contains a tropical cyclone, and image translation, e.g., to emulate radar imagery for satellites that only have passive channels. However, there are yet many open questions regarding the use of neural networks in meteorology, such as best practices for evaluation, tuning and interpretation. This article highlights several strategies and practical considerations for neural network development that have not yet received much attention in the meteorological community, such as the concept of effective receptive fields, underutilized meteorological performance measures, and methods for NN interpretation, such as synthetic experiments and layer-wise relevance propagation. We also consider the process of neural network interpretation as a whole, recognizing it as an iterative scientist-driven discovery process, and breaking it down into individual steps that researchers can take. Finally, while most work on neural network interpretation in meteorology has so far focused on networks for image classification tasks, we expand the focus to also include networks for image translation. Full Article
al Electricity-Aware Heat Unit Commitment: A Bid-Validity Approach. (arXiv:2005.03120v1 [eess.SY]) By arxiv.org Published On :: Coordinating the operation of combined heat and power plants (CHPs) and heat pumps (HPs) at the interface between heat and power systems is essential to achieve a cost-effective and efficient operation of the overall energy system. Indeed, in the current sequential market practice, the heat market has no insight into the impacts of heat dispatch on the electricity market. While preserving this sequential practice, this paper introduces an electricity-aware heat unit commitment model. Coordination is achieved through bid validity constraints, which embed the techno-economic linkage between heat and electricity outputs and costs of CHPs and HPs. This approach constitutes a novel market mechanism for the coordination of heat and power systems, defining heat bids conditionally on electricity market prices. The resulting model is a trilevel optimization problem, which we recast as a mixed-integer linear program using a lexicographic function. We use a realistic case study based on the Danish power and heat system, and show that the proposed model yields a 4.5% reduction in total operating cost of heat and power systems compared to a traditional decoupled unit commitment model, while reducing the financial losses of each CHP and HP due to invalid bids by up-to 20.3 million euros. Full Article
al Unsupervised Multimodal Neural Machine Translation with Pseudo Visual Pivoting. (arXiv:2005.03119v1 [cs.CL]) By arxiv.org Published On :: Unsupervised machine translation (MT) has recently achieved impressive results with monolingual corpora only. However, it is still challenging to associate source-target sentences in the latent space. As people speak different languages biologically share similar visual systems, the potential of achieving better alignment through visual content is promising yet under-explored in unsupervised multimodal MT (MMT). In this paper, we investigate how to utilize visual content for disambiguation and promoting latent space alignment in unsupervised MMT. Our model employs multimodal back-translation and features pseudo visual pivoting in which we learn a shared multilingual visual-semantic embedding space and incorporate visually-pivoted captioning as additional weak supervision. The experimental results on the widely used Multi30K dataset show that the proposed model significantly improves over the state-of-the-art methods and generalizes well when the images are not available at the testing time. Full Article
al Strong replica symmetry in high-dimensional optimal Bayesian inference. (arXiv:2005.03115v1 [math.PR]) By arxiv.org Published On :: We consider generic optimal Bayesian inference, namely, models of signal reconstruction where the posterior distribution and all hyperparameters are known. Under a standard assumption on the concentration of the free energy, we show how replica symmetry in the strong sense of concentration of all multioverlaps can be established as a consequence of the Franz-de Sanctis identities; the identities themselves in the current setting are obtained via a novel perturbation of the prior distribution of the signal. Concentration of multioverlaps means that asymptotically the posterior distribution has a particularly simple structure encoded by a random probability measure (or, in the case of binary signal, a non-random probability measure). We believe that such strong control of the model should be key in the study of inference problems with underlying sparse graphical structure (error correcting codes, block models, etc) and, in particular, in the derivation of replica symmetric formulas for the free energy and mutual information in this context. Full Article
al Deep Learning for Image-based Automatic Dial Meter Reading: Dataset and Baselines. (arXiv:2005.03106v1 [cs.CV]) By arxiv.org Published On :: Smart meters enable remote and automatic electricity, water and gas consumption reading and are being widely deployed in developed countries. Nonetheless, there is still a huge number of non-smart meters in operation. Image-based Automatic Meter Reading (AMR) focuses on dealing with this type of meter readings. We estimate that the Energy Company of Paran'a (Copel), in Brazil, performs more than 850,000 readings of dial meters per month. Those meters are the focus of this work. Our main contributions are: (i) a public real-world dial meter dataset (shared upon request) called UFPR-ADMR; (ii) a deep learning-based recognition baseline on the proposed dataset; and (iii) a detailed error analysis of the main issues present in AMR for dial meters. To the best of our knowledge, this is the first work to introduce deep learning approaches to multi-dial meter reading, and perform experiments on unconstrained images. We achieved a 100.0% F1-score on the dial detection stage with both Faster R-CNN and YOLO, while the recognition rates reached 93.6% for dials and 75.25% for meters using Faster R-CNN (ResNext-101). Full Article
al Scale-Equalizing Pyramid Convolution for Object Detection. (arXiv:2005.03101v1 [cs.CV]) By arxiv.org Published On :: Feature pyramid has been an efficient method to extract features at different scales. Development over this method mainly focuses on aggregating contextual information at different levels while seldom touching the inter-level correlation in the feature pyramid. Early computer vision methods extracted scale-invariant features by locating the feature extrema in both spatial and scale dimension. Inspired by this, a convolution across the pyramid level is proposed in this study, which is termed pyramid convolution and is a modified 3-D convolution. Stacked pyramid convolutions directly extract 3-D (scale and spatial) features and outperforms other meticulously designed feature fusion modules. Based on the viewpoint of 3-D convolution, an integrated batch normalization that collects statistics from the whole feature pyramid is naturally inserted after the pyramid convolution. Furthermore, we also show that the naive pyramid convolution, together with the design of RetinaNet head, actually best applies for extracting features from a Gaussian pyramid, whose properties can hardly be satisfied by a feature pyramid. In order to alleviate this discrepancy, we build a scale-equalizing pyramid convolution (SEPC) that aligns the shared pyramid convolution kernel only at high-level feature maps. Being computationally efficient and compatible with the head design of most single-stage object detectors, the SEPC module brings significant performance improvement ($>4$AP increase on MS-COCO2017 dataset) in state-of-the-art one-stage object detectors, and a light version of SEPC also has $sim3.5$AP gain with only around 7% inference time increase. The pyramid convolution also functions well as a stand-alone module in two-stage object detectors and is able to improve the performance by $sim2$AP. The source code can be found at https://github.com/jshilong/SEPC. Full Article
al Optimal Location of Cellular Base Station via Convex Optimization. (arXiv:2005.03099v1 [cs.IT]) By arxiv.org Published On :: An optimal base station (BS) location depends on the traffic (user) distribution, propagation pathloss and many system parameters, which renders its analytical study difficult so that numerical algorithms are widely used instead. In this paper, the problem is studied analytically. First, it is formulated as a convex optimization problem to minimize the total BS transmit power subject to quality-of-service (QoS) constraints, which also account for fairness among users. Due to its convex nature, Karush-Kuhn-Tucker (KKT) conditions are used to characterize a globally-optimum location as a convex combination of user locations, where convex weights depend on user parameters, pathloss exponent and overall geometry of the problem. Based on this characterization, a number of closed-form solutions are obtained. In particular, the optimum BS location is the mean of user locations in the case of free-space propagation and identical user parameters. If the user set is symmetric (as defined in the paper), the optimal BS location is independent of pathloss exponent, which is not the case in general. The analytical results show the impact of propagation conditions as well as system and user parameters on optimal BS location and can be used to develop design guidelines. Full Article
al Inference with Choice Functions Made Practical. (arXiv:2005.03098v1 [cs.AI]) By arxiv.org Published On :: We study how to infer new choices from previous choices in a conservative manner. To make such inferences, we use the theory of choice functions: a unifying mathematical framework for conservative decision making that allows one to impose axioms directly on the represented decisions. We here adopt the coherence axioms of De Bock and De Cooman (2019). We show how to naturally extend any given choice assessment to such a coherent choice function, whenever possible, and use this natural extension to make new choices. We present a practical algorithm to compute this natural extension and provide several methods that can be used to improve its scalability. Full Article
al Near-optimal Detector for SWIPT-enabled Differential DF Relay Networks with SER Analysis. (arXiv:2005.03096v1 [cs.IT]) By arxiv.org Published On :: In this paper, we analyze the symbol error rate (SER) performance of the simultaneous wireless information and power transfer (SWIPT) enabled three-node differential decode-and-forward (DDF) relay networks, which adopt the power splitting (PS) protocol at the relay. The use of non-coherent differential modulation eliminates the need for sending training symbols to estimate the instantaneous channel state informations (CSIs) at all network nodes, and therefore improves the power efficiency, as compared with the coherent modulation. However, performance analysis results are not yet available for the state-of-the-art detectors such as the approximate maximum-likelihood detector. Existing works rely on Monte-Carlo simulation to show that there exists an optimal PS ratio that minimizes the overall SER. In this work, we propose a near-optimal detector with linear complexity with respect to the modulation size. We derive an accurate approximate SER expression, based on which the optimal PS ratio can be accurately estimated without requiring any Monte-Carlo simulation. Full Article