al Continuity in a parameter of solutions to boundary-value problems in Sobolev spaces. (arXiv:2005.03494v1 [math.CA]) By arxiv.org Published On :: We consider the most general class of linear inhomogeneous boundary-value problems for systems of ordinary differential equations of an arbitrary order whose solutions and right-hand sides belong to appropriate Sobolev spaces. For parameter-dependent problems from this class, we prove a constructive criterion for their solutions to be continuous in the Sobolev space with respect to the parameter. We also prove a two-sided estimate for the degree of convergence of these solutions to the solution of the nonperturbed problem. Full Article
al On completion of unimodular rows over polynomial extension of finitely generated rings over $mathbb{Z}$. (arXiv:2005.03485v1 [math.AC]) By arxiv.org Published On :: In this article, we prove that if $R$ is a finitely generated ring over $mathbb{Z}$ of dimension $d, dgeq2, frac{1}{d!}in R$, then any unimodular row over $R[X]$ of length $d+1$ can be mapped to a factorial row by elementary transformations. Full Article
al Derivatives of normal Jacobi operator on real hypersurfaces in the complex quadric. (arXiv:2005.03483v1 [math.DG]) By arxiv.org Published On :: In cite{S 2017}, Suh gave a non-existence theorem for Hopf real hypersurfaces in the complex quadric with parallel normal Jacobi operator. Motivated by this result, in this paper, we introduce some generalized conditions named $mathcal C$-parallel or Reeb parallel normal Jacobi operators. By using such weaker parallelisms of normal Jacobi operator, first we can assert a non-existence theorem of Hopf real hypersurfaces with $mathcal C$-parallel normal Jacobi operator in the complex quadric $Q^{m}$, $m geq 3$. Next, we prove that a Hopf real hypersurface has Reeb parallel normal Jacobi operator if and only if it has an $mathfrak A$-isotropic singular normal vector field. Full Article
al Characteristic Points, Fundamental Cubic Form and Euler Characteristic of Projective Surfaces. (arXiv:2005.03481v1 [math.DG]) By arxiv.org Published On :: We define local indices for projective umbilics and godrons (also called cusps of Gauss) on generic smooth surfaces in projective 3-space. By means of these indices, we provide formulas that relate the algebraic numbers of those characteristic points on a surface (and on domains of the surface) with the Euler characteristic of that surface (resp. of those domains). These relations determine the possible coexistences of projective umbilics and godrons on the surface. Our study is based on a "fundamental cubic form" for which we provide a closed simple expression. Full Article
al $k$-Critical Graphs in $P_5$-Free Graphs. (arXiv:2005.03441v1 [math.CO]) By arxiv.org Published On :: Given two graphs $H_1$ and $H_2$, a graph $G$ is $(H_1,H_2)$-free if it contains no induced subgraph isomorphic to $H_1$ or $H_2$. Let $P_t$ be the path on $t$ vertices. A graph $G$ is $k$-vertex-critical if $G$ has chromatic number $k$ but every proper induced subgraph of $G$ has chromatic number less than $k$. The study of $k$-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is $(k-1)$-colorable. In this paper, we initiate a systematic study of the finiteness of $k$-vertex-critical graphs in subclasses of $P_5$-free graphs. Our main result is a complete classification of the finiteness of $k$-vertex-critical graphs in the class of $(P_5,H)$-free graphs for all graphs $H$ on 4 vertices. To obtain the complete dichotomy, we prove the finiteness for four new graphs $H$ using various techniques -- such as Ramsey-type arguments and the dual of Dilworth's Theorem -- that may be of independent interest. Full Article
al On the connection problem for the second Painlev'e equation with large initial data. (arXiv:2005.03440v1 [math.CA]) By arxiv.org Published On :: We consider two special cases of the connection problem for the second Painlev'e equation (PII) using the method of uniform asymptotics proposed by Bassom et al.. We give a classification of the real solutions of PII on the negative (positive) real axis with respect to their initial data. By product, a rigorous proof of a property associate with the nonlinear eigenvalue problem of PII on the real axis, recently revealed by Bender and Komijani, is given by deriving the asymptotic behavior of the Stokes multipliers. Full Article
al The formation of trapped surfaces in the gravitational collapse of spherically symmetric scalar fields with a positive cosmological constant. (arXiv:2005.03434v1 [gr-qc]) By arxiv.org Published On :: Given spherically symmetric characteristic initial data for the Einstein-scalar field system with a positive cosmological constant, we provide a criterion, in terms of the dimensionless size and dimensionless renormalized mass content of an annular region of the data, for the formation of a future trapped surface. This corresponds to an extension of Christodoulou's classical criterion by the inclusion of the cosmological term. Full Article
al Removable singularities for Lipschitz caloric functions in time varying domains. (arXiv:2005.03397v1 [math.CA]) By arxiv.org Published On :: In this paper we study removable singularities for regular $(1,1/2)$-Lipschitz solutions of the heat equation in time varying domains. We introduce an associated Lipschitz caloric capacity and we study its metric and geometric properties and the connection with the $L^2$ boundedness of the singular integral whose kernel is given by the gradient of the fundamental solution of the heat equation. Full Article
al Semiglobal non-oscillatory big bang singular spacetimes for the Einstein-scalar field system. (arXiv:2005.03395v1 [math-ph]) By arxiv.org Published On :: We construct semiglobal singular spacetimes for the Einstein equations coupled to a massless scalar field. Consistent with the heuristic analysis of Belinskii, Khalatnikov, Lifshitz or BKL for this system, there are no oscillations due to the scalar field. (This is much simpler than the oscillatory BKL heuristics for the Einstein vacuum equations.) Prior results are due to Andersson and Rendall in the real analytic case, and Rodnianski and Speck in the smooth near-spatially-flat-FLRW case. Similar to Andersson and Rendall we give asymptotic data at the singularity, which we refer to as final data, but our construction is not limited to real analytic solutions. This paper is a test application of tools (a graded Lie algebra formulation of the Einstein equations and a filtration) intended for the more subtle vacuum case. We use homological algebra tools to construct a formal series solution, then symmetric hyperbolic energy estimates to construct a true solution well-approximated by truncations of the formal one. We conjecture that the image of the map from final data to initial data is an open set of anisotropic initial data. Full Article
al Maximum of Exponential Random Variables, Hurwitz's Zeta Function, and the Partition Function. (arXiv:2005.03392v1 [math.PR]) By arxiv.org Published On :: A natural problem in the context of the coupon collector's problem is the behavior of the maximum of independent geometrically distributed random variables (with distinct parameters). This question has been addressed by Brennan et al. (British J. of Math. & CS. 8 (2015), 330-336). Here we provide explicit asymptotic expressions for the moments of that maximum, as well as of the maximum of exponential random variables with corresponding parameters. We also deal with the probability of each of the variables being the maximal one. The calculations lead to expressions involving Hurwitz's zeta function at certain special points. We find here explicitly the values of the function at these points. Also, the distribution function of the maximum we deal with is closely related to the generating function of the partition function. Thus, our results (and proofs) rely on classical results pertaining to the partition function. Full Article
al Filtered expansions in general relativity II. (arXiv:2005.03390v1 [math-ph]) By arxiv.org Published On :: This is the second of two papers in which we construct formal power series solutions in external parameters to the vacuum Einstein equations, implementing one bounce for the Belinskii-Khalatnikov-Lifshitz (BKL) proposal for spatially inhomogeneous spacetimes. Here we show that spatially inhomogeneous perturbations of spatially homogeneous elements are unobstructed. A spectral sequence for a filtered complex, and a homological contraction based on gauge-fixing, are used to do this. Full Article
al A Schur-Nevanlinna type algorithm for the truncated matricial Hausdorff moment problem. (arXiv:2005.03365v1 [math.CA]) By arxiv.org Published On :: The main goal of this paper is to achieve a parametrization of the solution set of the truncated matricial Hausdorff moment problem in the non-degenerate and degenerate situation. We treat the even and the odd cases simultaneously. Our approach is based on Schur analysis methods. More precisely, we use two interrelated versions of Schur-type algorithms, namely an algebraic one and a function-theoretic one. The algebraic version, worked out in our former paper arXiv:1908.05115, is an algorithm which is applied to finite or infinite sequences of complex matrices. The construction and discussion of the function-theoretic version is a central theme of this paper. This leads us to a complete description via Stieltjes transform of the solution set of the moment problem under consideration. Furthermore, we discuss special solutions in detail. Full Article
al Converging outer approximations to global attractors using semidefinite programming. (arXiv:2005.03346v1 [math.OC]) By arxiv.org Published On :: This paper develops a method for obtaining guaranteed outer approximations for global attractors of continuous and discrete time nonlinear dynamical systems. The method is based on a hierarchy of semidefinite programming problems of increasing size with guaranteed convergence to the global attractor. The approach taken follows an established line of reasoning, where we first characterize the global attractor via an infinite dimensional linear programming problem (LP) in the space of Borel measures. The dual to this LP is in the space of continuous functions and its feasible solutions provide guaranteed outer approximations to the global attractor. For systems with polynomial dynamics, a hierarchy of finite-dimensional sum-of-squares tightenings of the dual LP provides a sequence of outer approximations to the global attractor with guaranteed convergence in the sense of volume discrepancy tending to zero. The method is very simple to use and based purely on convex optimization. Numerical examples with the code available online demonstrate the method. Full Article
al Evaluating the phase dynamics of coupled oscillators via time-variant topological features. (arXiv:2005.03343v1 [physics.data-an]) By arxiv.org Published On :: The characterization of phase dynamics in coupled oscillators offers insights into fundamental phenomena in complex systems. To describe the collective dynamics in the oscillatory system, order parameters are often used but are insufficient for identifying more specific behaviors. We therefore propose a topological approach that constructs quantitative features describing the phase evolution of oscillators. Here, the phase data are mapped into a high-dimensional space at each time point, and topological features describing the shape of the data are subsequently extracted from the mapped points. We extend these features to time-variant topological features by considering the evolution time, which serves as an additional dimension in the topological-feature space. The resulting time-variant features provide crucial insights into the time evolution of phase dynamics. We combine these features with the machine learning kernel method to characterize the multicluster synchronized dynamics at a very early stage of the evolution. Furthermore, we demonstrate the usefulness of our method for qualitatively explaining chimera states, which are states of stably coexisting coherent and incoherent groups in systems of identical phase oscillators. The experimental results show that our method is generally better than those using order parameters, especially if only data on the early-stage dynamics are available. Full Article
al Asymptotics of PDE in random environment by paracontrolled calculus. (arXiv:2005.03326v1 [math.PR]) By arxiv.org Published On :: We apply the paracontrolled calculus to study the asymptotic behavior of a certain quasilinear PDE with smeared mild noise, which originally appears as the space-time scaling limit of a particle system in random environment on one dimensional discrete lattice. We establish the convergence result and show a local in time well-posedness of the limit stochastic PDE with spatial white noise. It turns out that our limit stochastic PDE does not require any renormalization. We also show a comparison theorem for the limit equation. Full Article
al Linear independence of generalized Poincar'{e} series for anti-de Sitter $3$-manifolds. (arXiv:2005.03308v1 [math.SP]) By arxiv.org Published On :: Let $Gamma$ be a discrete group acting properly discontinuously and isometrically on the three-dimensional anti-de Sitter space $mathrm{AdS}^{3}$, and $square$ the Laplacian which is a second-order hyperbolic differential operator. We study linear independence of a family of generalized Poincar'{e} series introduced by Kassel-Kobayashi [Adv. Math. 2016], which are defined by the $Gamma$-average of certain eigenfunctions on $mathrm{AdS}^{3}$. We prove that the multiplicities of $L^{2}$-eigenvalues of the hyperbolic Laplacian $square$ on $Gammaackslashmathrm{AdS}^{3}$ are unbounded when $Gamma$ is finitely generated. Moreover, we prove that the multiplicities of extit{stable $L^{2}$-eigenvalues} for compact anti-de Sitter $3$-manifolds are unbounded. Full Article
al Augmented Valuation and Minimal Pair. (arXiv:2005.03298v1 [math.AC]) By arxiv.org Published On :: Let $(K, u)$ be a valued field, the notions of emph{augmented valuation}, of emph{limit augmented valuation} and of emph{admissible family} of valuations enable to give a description of any valuation $mu$ of $K [x]$ extending $ u$. In the case where the field $K$ is algebraically closed, this description is particularly simple and we can reduce it to the notions of emph{minimal pair} and emph{pseudo-convergent family}. Let $(K, u )$ be a henselian valued field and $ar u$ the unique extension of $ u$ to the algebraic closure $ar K$ of $K$ and let $mu$ be a valuation of $ K [x]$ extending $ u$, we study the extensions $armu$ from $mu$ to $ar K [x]$ and we give a description of the valuations $armu_i$ of $ar K [x]$ which are the extensions of the valuations $mu_i$ belonging to the admissible family associated with $mu$. Full Article
al Fourier transformation and stability of differential equation on $L^1(Bbb{R})$. (arXiv:2005.03296v1 [math.FA]) By arxiv.org Published On :: In the present paper by the Fourier transform we show that every linear differential equations of $n$-th order has a solution in $L^1(Bbb{R})$ which is infinitely differentiable in $Bbb{R} setminus {0}$. Moreover the Hyers-Ulam stability of such equations on $L^1(Bbb{R})$ is investigated. Full Article
al An alternate definition of the Parry measure. (arXiv:2005.03282v1 [math.DS]) By arxiv.org Published On :: In this paper, we give an alternate definition of the well-known Parry measure on an aperiodic subshift of finite type using correlation between the forbidden words. We use the concept of the local escape rate to obtain this definition. We also compute Perron eigenvectors corresponding to the Perron root of the associated adjacency matrix. Full Article
al Generalized log-sum inequalities. (arXiv:2005.03272v1 [math.FA]) By arxiv.org Published On :: In information theory, the so-called log-sum inequality is fundamental and a kind of generalization of the non-nagativity for the relative entropy. In this paper, we show the generalized log-sum inequality for two functions defined for scalars. We also give a new result for commutative matrices. In addition, we demonstrate further results for general non-commutative positive semi-definite matrices. Full Article
al Pointwise densities of homogeneous Cantor measure and critical values. (arXiv:2005.03269v1 [math.DS]) By arxiv.org Published On :: Let $Nge 2$ and $ hoin(0,1/N^2]$. The homogenous Cantor set $E$ is the self-similar set generated by the iterated function system [ left{f_i(x)= ho x+frac{i(1- ho)}{N-1}: i=0,1,ldots, N-1 ight}. ] Let $s=dim_H E$ be the Hausdorff dimension of $E$, and let $mu=mathcal H^s|_E$ be the $s$-dimensional Hausdorff measure restricted to $E$. In this paper we describe, for each $xin E$, the pointwise lower $s$-density $Theta_*^s(mu,x)$ and upper $s$-density $Theta^{*s}(mu, x)$ of $mu$ at $x$. This extends some early results of Feng et al. (2000). Furthermore, we determine two critical values $a_c$ and $b_c$ for the sets [ E_*(a)=left{xin E: Theta_*^s(mu, x)ge a ight}quad extrm{and}quad E^*(b)=left{xin E: Theta^{*s}(mu, x)le b ight} ] respectively, such that $dim_H E_*(a)>0$ if and only if $a<a_c$, and that $dim_H E^*(b)>0$ if and only if $b>b_c$. We emphasize that both values $a_c$ and $b_c$ are related to the Thue-Morse type sequences, and our strategy to find them relies on ideas from open dynamics and techniques from combinatorics on words. Full Article
al A Note on Cores and Quasi Relative Interiors in Partially Finite Convex Programming. (arXiv:2005.03265v1 [math.FA]) By arxiv.org Published On :: The problem of minimizing an entropy functional subject to linear constraints is a useful example of partially finite convex programming. In the 1990s, Borwein and Lewis provided broad and easy-to-verify conditions that guarantee strong duality for such problems. Their approach is to construct a function in the quasi-relative interior of the relevant infinite-dimensional set, which assures the existence of a point in the core of the relevant finite-dimensional set. We revisit this problem, and provide an alternative proof by directly appealing to the definition of the core, rather than by relying on any properties of the quasi-relative interior. Our approach admits a minor relaxation of the linear independence requirements in Borwein and Lewis' framework, which allows us to work with certain piecewise-defined moment functions precluded by their conditions. We provide such a computed example that illustrates how this relaxation may be used to tame observed Gibbs phenomenon when the underlying data is discontinuous. The relaxation illustrates the understanding we may gain by tackling partially-finite problems from both the finite-dimensional and infinite-dimensional sides. The comparison of these two approaches is informative, as both proofs are constructive. Full Article
al Dynamical Phase Transitions for Fluxes of Mass on Finite Graphs. (arXiv:2005.03262v1 [cond-mat.stat-mech]) By arxiv.org Published On :: We study the time-averaged flux in a model of particles that randomly hop on a finite directed graph. In the limit as the number of particles and the time window go to infinity but the graph remains finite, the large-deviation rate functional of the average flux is given by a variational formulation involving paths of the density and flux. We give sufficient conditions under which the large deviations of a given time averaged flux is determined by paths that are constant in time. We then consider a class of models on a discrete ring for which it is possible to show that a better strategy is obtained producing a time-dependent path. This phenomenon, called a dynamical phase transition, is known to occur for some particle systems in the hydrodynamic scaling limit, which is thus extended to the setting of a finite graph. Full Article
al An Issue Raised in 1978 by a Then-Future Editor-in-Chief of the Journal "Order": Does the Endomorphism Poset of a Finite Connected Poset Tell Us That the Poset Is Connected?. (arXiv:2005.03255v1 [math.CO]) By arxiv.org Published On :: In 1978, Dwight Duffus---editor-in-chief of the journal "Order" from 2010 to 2018 and chair of the Mathematics Department at Emory University from 1991 to 2005---wrote that "it is not obvious that $P$ is connected and $P^P$ isomorphic to $Q^Q$ implies that $Q$ is connected," where $P$ and $Q$ are finite non-empty posets. We show that, indeed, under these hypotheses $Q$ is connected and $Pcong Q$. Full Article
al Cohomological dimension of ideals defining Veronese subrings. (arXiv:2005.03250v1 [math.AC]) By arxiv.org Published On :: Given a standard graded polynomial ring over a commutative Noetherian ring $A$, we prove that the cohomological dimension and the height of the ideals defining any of its Veronese subrings are equal. This result is due to Ogus when $A$ is a field of characteristic zero, and follows from a result of Peskine and Szpiro when $A$ is a field of positive characteristic; our result applies, for example, when $A$ is the ring of integers. Full Article
al Some local Maximum principles along Ricci Flow. (arXiv:2005.03189v1 [math.DG]) By arxiv.org Published On :: In this note, we establish a local maximum principle along Ricci flow under scaling invariant curvature condition. This unifies the known preservation of nonnegativity results along Ricci flow with unbounded curvature. By combining with the Dirichlet heat kernel estimates, we also give a more direct proof of Hochard's localized version of a maximum principle given by R. Bamler, E. Cabezas-Rivas, and B. Wilking on the lower bound of curvature conditions. Full Article
al The UCT problem for nuclear $C^ast$-algebras. (arXiv:2005.03184v1 [math.OA]) By arxiv.org Published On :: In recent years, a large class of nuclear $C^ast$-algebras have been classified, modulo an assumption on the Universal Coefficient Theorem (UCT). We think this assumption is redundant and propose a strategy for proving it. Indeed, following the original proof of the classification theorem, we propose bridging the gap between reduction theorems and examples. While many such bridges are possible, various approximate ideal structures appear quite promising. Full Article
al Optimality for the two-parameter quadratic sieve. (arXiv:2005.03162v1 [math.NT]) By arxiv.org Published On :: We study the two-parameter quadratic sieve for a general test function. We prove, under some very general assumptions, that the function considered by Barban and Vehov [BV68] and Graham [Gra78] for this problem is optimal up to the second-order term. We determine that second-order term explicitly. Full Article
al Generalized Cauchy-Kovalevskaya extension and plane wave decompositions in superspace. (arXiv:2005.03160v1 [math-ph]) By arxiv.org Published On :: The aim of this paper is to obtain a generalized CK-extension theorem in superspace for the bi-axial Dirac operator. In the classical commuting case, this result can be written as a power series of Bessel type of certain differential operators acting on a single initial function. In the superspace setting, novel structures appear in the cases of negative even superdimensions. In these cases, the CK-extension depends on two initial functions on which two power series of differential operators act. These series are not only of Bessel type but they give rise to an additional structure in terms of Appell polynomials. This pattern also is present in the structure of the Pizzetti formula, which describes integration over the supersphere in terms of differential operators. We make this relation explicit by studying the decomposition of the generalized CK-extension into plane waves integrated over the supersphere. Moreover, these results are applied to obtain a decomposition of the Cauchy kernel in superspace into monogenic plane waves, which shall be useful for inverting the super Radon transform. Full Article
al Functional convex order for the scaled McKean-Vlasov processes. (arXiv:2005.03154v1 [math.PR]) By arxiv.org Published On :: We establish the functional convex order results for two scaled McKean-Vlasov processes $X=(X_{t})_{tin[0, T]}$ and $Y=(Y_{t})_{tin[0, T]}$ defined by [egin{cases} dX_{t}=(alpha X_{t}+eta)dt+sigma(t, X_{t}, mu_{t})dB_{t}, quad X_{0}in L^{p}(mathbb{P}),\ dY_{t}=(alpha Y_{t},+eta)dt+ heta(t, Y_{t}, u_{t})dB_{t}, quad Y_{0}in L^{p}(mathbb{P}). end{cases}] If we make the convexity and monotony assumption (only) on $sigma$ and if $sigmaleq heta$ with respect to the partial matrix order, the convex order for the initial random variable $X_0 leq Y_0$ can be propagated to the whole path of process $X$ and $Y$. That is, if we consider a convex functional $F$ with polynomial growth defined on the path space, we have $mathbb{E}F(X)leqmathbb{E}F(Y)$; for a convex functional $G$ defined on the product space involving the path space and its marginal distribution space, we have $mathbb{E},Gig(X, (mu_t)_{tin[0, T]}ig)leq mathbb{E},Gig(Y, ( u_t)_{tin[0, T]}ig)$ under appropriate conditions. The symmetric setting is also valid, that is, if $ heta leq sigma$ and $Y_0 leq X_0$ with respect to the convex order, then $mathbb{E},F(Y) leq mathbb{E},F(X)$ and $mathbb{E},Gig(Y, ( u_t)_{tin[0, T]}ig)leq mathbb{E},G(X, (mu_t)_{tin[0, T]})$. The proof is based on several forward and backward dynamic programming and the convergence of the Euler scheme of the McKean-Vlasov equation. Full Article
al Quasi-Sure Stochastic Analysis through Aggregation and SLE$_kappa$ Theory. (arXiv:2005.03152v1 [math.PR]) By arxiv.org Published On :: We study SLE$_{kappa}$ theory with elements of Quasi-Sure Stochastic Analysis through Aggregation. Specifically, we show how the latter can be used to construct the SLE$_{kappa}$ traces quasi-surely (i.e. simultaneously for a family of probability measures with certain properties) for $kappa in mathcal{K}cap mathbb{R}_+ setminus ([0, epsilon) cup {8})$, for any $epsilon>0$ with $mathcal{K} subset mathbb{R}_{+}$ a nontrivial compact interval, i.e. for all $kappa$ that are not in a neighborhood of zero and are different from $8$. As a by-product of the analysis, we show in this language a version of the continuity in $kappa$ of the SLE$_{kappa}$ traces for all $kappa$ in compact intervals as above. Full Article
al Hydrodynamic limit of Robinson-Schensted-Knuth algorithm. (arXiv:2005.03147v1 [math.CO]) By arxiv.org Published On :: We investigate the evolution in time of the position of a fixed number inthe insertion tableau when the Robinson-Schensted-Knuth algorithm is applied to asequence of random numbers. When the length of the sequence tends to infinity, a typical trajectory after scaling converges uniformly in probability to some deterministiccurve. Full Article
al Sharp p-bounds for maximal operators on finite graphs. (arXiv:2005.03146v1 [math.CA]) By arxiv.org Published On :: Let $G=(V,E)$ be a finite graph and $M_G$ be the centered Hardy-Littlewood maximal operator defined there. We found the optimal value $C_{G,p}$ such that the inequality $$Var_{p}(M_{G}f)le C_{G,p}Var_{p}(f)$$ holds for every every $f:V o mathbb{R},$ where $Var_p$ stands for the $p$-variation, when: (i)$G=K_n$ (complete graph) and $pin [frac{ln(4)}{ln(6)},infty)$ or $G=K_4$ and $pin (0,infty)$;(ii) $G=S_n$(star graph) and $1ge pge frac{1}{2}$; $pin (0,frac{1}{2})$ and $nge C(p)<infty$ or $G=S_3$ and $pin (1,infty).$ We also found the optimal value $L_{G,2}$ such that the inequality $$|M_{G}f|_2le L_{G,2}|f|_2$$ holds for every $f:V o mathbb{R}$, when: (i)$G=K_n$ and $nge 3$;(ii)$G=S_n$ and $nge 3.$ Full Article
al Anti-symplectic involutions on rational symplectic 4-manifolds. (arXiv:2005.03142v1 [math.SG]) By arxiv.org Published On :: This is an expanded version of the talk given be the first author at the conference "Topology, Geometry, and Dynamics: Rokhlin - 100". The purpose of this talk was to explain our current results on classification of rational symplectic 4-manifolds equipped with an anti-symplectic involution. Detailed exposition will appear elsewhere. Full Article
al On planar graphs of uniform polynomial growth. (arXiv:2005.03139v1 [math.PR]) By arxiv.org Published On :: Consider an infinite planar graph with uniform polynomial growth of degree d > 2. Many examples of such graphs exhibit similar geometric and spectral properties, and it has been conjectured that this is necessary. We present a family of counterexamples. In particular, we show that for every rational d > 2, there is a planar graph with uniform polynomial growth of degree d on which the random walk is transient, disproving a conjecture of Benjamini (2011). By a well-known theorem of Benjamini and Schramm, such a graph cannot be a unimodular random graph. We also give examples of unimodular random planar graphs of uniform polynomial growth with unexpected properties. For instance, graphs of (almost sure) uniform polynomial growth of every rational degree d > 2 for which the speed exponent of the walk is larger than 1/d, and in which the complements of all balls are connected. This resolves negatively two questions of Benjamini and Papasoglou (2011). Full Article
al Exponential decay for negative feedback loop with distributed delay. (arXiv:2005.03136v1 [math.DS]) By arxiv.org Published On :: We derive sufficient conditions for exponential decay of solutions of the delay negative feedback equation with distributed delay. The conditions are written in terms of exponential moments of the distribution. Our method only uses elementary tools of calculus and is robust towards possible extensions to more complex settings, in particular, systems of delay differential equations. We illustrate the applicability of the method to particular distributions - Dirac delta, Gamma distribution, uniform and truncated normal distributions. Full Article
al Categorifying Hecke algebras at prime roots of unity, part I. (arXiv:2005.03128v1 [math.RT]) By arxiv.org Published On :: We equip the type A diagrammatic Hecke category with a special derivation, so that after specialization to characteristic p it becomes a p-dg category. We prove that the defining relations of the Hecke algebra are satisfied in the p-dg Grothendieck group. We conjecture that the $p$-dg Grothendieck group is isomorphic to the Iwahori-Hecke algebra, equipping it with a basis which may differ from both the Kazhdan-Lusztig basis and the p-canonical basis. More precise conjectures will be found in the sequel. Here are some other results contained in this paper. We provide an incomplete proof of the classification of all degree +2 derivations on the diagrammatic Hecke category, and a complete proof of the classification of those derivations for which the defining relations of the Hecke algebra are satisfied in the p-dg Grothendieck group. In particular, our special derivation is unique up to duality and equivalence. We prove that no such derivation exists in simply-laced types outside of finite and affine type A. We also examine a particular Bott-Samelson bimodule in type A_7, which is indecomposable in characteristic 2 but decomposable in all other characteristics. We prove that this Bott-Samelson bimodule admits no nontrivial fantastic filtrations in any characteristic, which is the analogue in the p-dg setting of being indecomposable. Full Article
al A note on Tonelli Lagrangian systems on $mathbb{T}^2$ with positive topological entropy on high energy level. (arXiv:2005.03108v1 [math.DS]) By arxiv.org Published On :: In this work we study the dynamical behavior Tonelli Lagrangian systems defined on the tangent bundle of the torus $mathbb{T}^2=mathbb{R}^2 / mathbb{Z}^2$. We prove that the Lagrangian flow restricted to a high energy level $ E_L^{-1}(c)$ (i.e $ c> c_0(L)$) has positive topological entropy if the flow satisfies the Kupka-Smale propriety in $ E_L^{-1}(c)$ (i.e, all closed orbit with energy $c$ are hyperbolic or elliptic and all heteroclinic intersections are transverse on $E_L^{-1}(c)$). The proof requires the use of well-known results in Aubry-Mather's Theory. Full Article
al Homotopy invariance of the space of metrics with positive scalar curvature on manifolds with singularities. (arXiv:2005.03073v1 [math.AT]) By arxiv.org Published On :: In this paper we study manifolds $M_{Sigma}$ with fibered singularities, more specifically, a relevant space $Riem^{psc}(X_{Sigma})$ of Riemannian metrics with positive scalar curvature. Our main goal is to prove that the space $Riem^{psc}(X_{Sigma})$ is homotopy invariant under certain surgeries on $M_{Sigma}$. Full Article
al Deformation classes in generalized K"ahler geometry. (arXiv:2005.03062v1 [math.DG]) By arxiv.org Published On :: We introduce natural deformation classes of generalized K"ahler structures using the Courant symmetry group. We show that these yield natural extensions of the notions of K"ahler class and K"ahler cone to generalized K"ahler geometry. Lastly we show that the generalized K"ahler-Ricci flow preserves this generalized K"ahler cone, and the underlying real Poisson tensor. Full Article
al Quantization of Lax integrable systems and Conformal Field Theory. (arXiv:2005.03053v1 [math-ph]) By arxiv.org Published On :: We present the correspondence between Lax integrable systems with spectral parameter on a Riemann surface, and Conformal Field Theories, in quite general set-up suggested earlier by the author. This correspondence turns out to give a prequantization of the integrable systems in question. Full Article
al General Asymptotic Regional Gradient Observer. (arXiv:2005.03009v1 [math.OC]) By arxiv.org Published On :: The main purpose of this paper is to study and characterize the existing of general asymptotic regional gradient observer which observe the current gradient state of the original system in connection with gradient strategic sensors. Thus, we give an approach based to Luenberger observer theory of linear distributed parameter systems which is enabled to determinate asymptotically regional gradient estimator of current gradient system state. More precisely, under which condition the notion of asymptotic regional gradient observability can be achieved. Furthermore, we show that the measurement structures allows the existence of general asymptotic regional gradient observer and we give a sufficient condition for such asymptotic regional gradient observer in general case. We also show that, there exists a dynamical system for the considered system is not general asymptotic gradient observer in the usual sense, but it may be general asymptotic regional gradient observer. Then, for this purpose we present various results related to different types of sensor structures, domains and boundary conditions in two dimensional distributed diffusion systems Full Article
al GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU. (arXiv:1908.01407v3 [cs.DC] CROSS LISTED) By arxiv.org Published On :: High-performance implementations of graph algorithms are challenging to implement on new parallel hardware such as GPUs, because of three challenges: (1) difficulty of coming up with graph building blocks, (2) load imbalance on parallel hardware, and (3) graph problems having low arithmetic intensity. To address these challenges, GraphBLAS is an innovative, on-going effort by the graph analytics community to propose building blocks based in sparse linear algebra, which will allow graph algorithms to be expressed in a performant, succinct, composable and portable manner. In this paper, we examine the performance challenges of a linear algebra-based approach to building graph frameworks and describe new design principles for overcoming these bottlenecks. Among the new design principles is exploiting input sparsity, which allows users to write graph algorithms without specifying push and pull direction. Exploiting output sparsity allows users to tell the backend which values of the output in a single vectorized computation they do not want computed. Load-balancing is an important feature for balancing work amongst parallel workers. We describe the important load-balancing features for handling graphs with different characteristics. The design principles described in this paper have been implemented in "GraphBLAST", the first open-source linear algebra-based graph framework on GPU targeting high-performance computing. The results show that on a single GPU, GraphBLAST has on average at least an order of magnitude speedup over previous GraphBLAS implementations SuiteSparse and GBTL, comparable performance to the fastest GPU hardwired primitives and shared-memory graph frameworks Ligra and Gunrock, and better performance than any other GPU graph framework, while offering a simpler and more concise programming model. Full Article
al GraCIAS: Grassmannian of Corrupted Images for Adversarial Security. (arXiv:2005.02936v2 [cs.CV] UPDATED) By arxiv.org Published On :: Input transformation based defense strategies fall short in defending against strong adversarial attacks. Some successful defenses adopt approaches that either increase the randomness within the applied transformations, or make the defense computationally intensive, making it substantially more challenging for the attacker. However, it limits the applicability of such defenses as a pre-processing step, similar to computationally heavy approaches that use retraining and network modifications to achieve robustness to perturbations. In this work, we propose a defense strategy that applies random image corruptions to the input image alone, constructs a self-correlation based subspace followed by a projection operation to suppress the adversarial perturbation. Due to its simplicity, the proposed defense is computationally efficient as compared to the state-of-the-art, and yet can withstand huge perturbations. Further, we develop proximity relationships between the projection operator of a clean image and of its adversarially perturbed version, via bounds relating geodesic distance on the Grassmannian to matrix Frobenius norms. We empirically show that our strategy is complementary to other weak defenses like JPEG compression and can be seamlessly integrated with them to create a stronger defense. We present extensive experiments on the ImageNet dataset across four different models namely InceptionV3, ResNet50, VGG16 and MobileNet models with perturbation magnitude set to {epsilon} = 16. Unlike state-of-the-art approaches, even without any retraining, the proposed strategy achieves an absolute improvement of ~ 4.5% in defense accuracy on ImageNet. Full Article
al A Quantum Algorithm To Locate Unknown Hashes For Known N-Grams Within A Large Malware Corpus. (arXiv:2005.02911v2 [quant-ph] UPDATED) By arxiv.org Published On :: Quantum computing has evolved quickly in recent years and is showing significant benefits in a variety of fields. Malware analysis is one of those fields that could also take advantage of quantum computing. The combination of software used to locate the most frequent hashes and $n$-grams between benign and malicious software (KiloGram) and a quantum search algorithm could be beneficial, by loading the table of hashes and $n$-grams into a quantum computer, and thereby speeding up the process of mapping $n$-grams to their hashes. The first phase will be to use KiloGram to find the top-$k$ hashes and $n$-grams for a large malware corpus. From here, the resulting hash table is then loaded into a quantum machine. A quantum search algorithm is then used search among every permutation of the entangled key and value pairs to find the desired hash value. This prevents one from having to re-compute hashes for a set of $n$-grams, which can take on average $O(MN)$ time, whereas the quantum algorithm could take $O(sqrt{N})$ in the number of table lookups to find the desired hash values. Full Article
al Multi-task pre-training of deep neural networks for digital pathology. (arXiv:2005.02561v2 [eess.IV] UPDATED) By arxiv.org Published On :: In this work, we investigate multi-task learning as a way of pre-training models for classification tasks in digital pathology. It is motivated by the fact that many small and medium-size datasets have been released by the community over the years whereas there is no large scale dataset similar to ImageNet in the domain. We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images. Then, we propose a simple architecture and training scheme for creating a transferable model and a robust evaluation and selection protocol in order to evaluate our method. Depending on the target task, we show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance. Fine-tuning improves performance over feature extraction and is able to recover the lack of specificity of ImageNet features, as both pre-training sources yield comparable performance. Full Article
al Temporal Event Segmentation using Attention-based Perceptual Prediction Model for Continual Learning. (arXiv:2005.02463v2 [cs.CV] UPDATED) By arxiv.org Published On :: Temporal event segmentation of a long video into coherent events requires a high level understanding of activities' temporal features. The event segmentation problem has been tackled by researchers in an offline training scheme, either by providing full, or weak, supervision through manually annotated labels or by self-supervised epoch based training. In this work, we present a continual learning perceptual prediction framework (influenced by cognitive psychology) capable of temporal event segmentation through understanding of the underlying representation of objects within individual frames. Our framework also outputs attention maps which effectively localize and track events-causing objects in each frame. The model is tested on a wildlife monitoring dataset in a continual training manner resulting in $80\%$ recall rate at $20\%$ false positive rate for frame level segmentation. Activity level testing has yielded $80\%$ activity recall rate for one false activity detection every 50 minutes. Full Article
al Differential Machine Learning. (arXiv:2005.02347v2 [q-fin.CP] UPDATED) By arxiv.org Published On :: Differential machine learning (ML) extends supervised learning, with models trained on examples of not only inputs and labels, but also differentials of labels to inputs. Differential ML is applicable in all situations where high quality first order derivatives wrt training inputs are available. In the context of financial Derivatives risk management, pathwise differentials are efficiently computed with automatic adjoint differentiation (AAD). Differential ML, combined with AAD, provides extremely effective pricing and risk approximations. We can produce fast pricing analytics in models too complex for closed form solutions, extract the risk factors of complex transactions and trading books, and effectively compute risk management metrics like reports across a large number of scenarios, backtesting and simulation of hedge strategies, or capital regulations. The article focuses on differential deep learning (DL), arguably the strongest application. Standard DL trains neural networks (NN) on punctual examples, whereas differential DL teaches them the shape of the target function, resulting in vastly improved performance, illustrated with a number of numerical examples, both idealized and real world. In the online appendices, we apply differential learning to other ML models, like classic regression or principal component analysis (PCA), with equally remarkable results. This paper is meant to be read in conjunction with its companion GitHub repo https://github.com/differential-machine-learning, where we posted a TensorFlow implementation, tested on Google Colab, along with examples from the article and additional ones. We also posted appendices covering many practical implementation details not covered in the paper, mathematical proofs, application to ML models besides neural networks and extensions necessary for a reliable implementation in production. Full Article
al Prediction of Event Related Potential Speller Performance Using Resting-State EEG. (arXiv:2005.01325v3 [cs.HC] UPDATED) By arxiv.org Published On :: Event-related potential (ERP) speller can be utilized in device control and communication for locked-in or severely injured patients. However, problems such as inter-subject performance instability and ERP-illiteracy are still unresolved. Therefore, it is necessary to predict classification performance before performing an ERP speller in order to use it efficiently. In this study, we investigated the correlations with ERP speller performance using a resting-state before an ERP speller. In specific, we used spectral power and functional connectivity according to four brain regions and five frequency bands. As a result, the delta power in the frontal region and functional connectivity in the delta, alpha, gamma bands are significantly correlated with the ERP speller performance. Also, we predicted the ERP speller performance using EEG features in the resting-state. These findings may contribute to investigating the ERP-illiteracy and considering the appropriate alternatives for each user. Full Article
al On-board Deep-learning-based Unmanned Aerial Vehicle Fault Cause Detection and Identification. (arXiv:2005.00336v2 [eess.SP] UPDATED) By arxiv.org Published On :: With the increase in use of Unmanned Aerial Vehicles (UAVs)/drones, it is important to detect and identify causes of failure in real time for proper recovery from a potential crash-like scenario or post incident forensics analysis. The cause of crash could be either a fault in the sensor/actuator system, a physical damage/attack, or a cyber attack on the drone's software. In this paper, we propose novel architectures based on deep Convolutional and Long Short-Term Memory Neural Networks (CNNs and LSTMs) to detect (via Autoencoder) and classify drone mis-operations based on sensor data. The proposed architectures are able to learn high-level features automatically from the raw sensor data and learn the spatial and temporal dynamics in the sensor data. We validate the proposed deep-learning architectures via simulations and experiments on a real drone. Empirical results show that our solution is able to detect with over 90% accuracy and classify various types of drone mis-operations (with about 99% accuracy (simulation data) and upto 88% accuracy (experimental data)). Full Article