del

Ein Beitrag zur Anatomie der Doppeldaumen / von Alexander Swedelin.

Dorpat : Schnakenburg, 1883.




del

Eine Masernepidemie in Heidelberg im Jahre 1888 / vorgelegt von Oscar Embden.

Stuttgart : G. Kroner, 1889.




del

Eine neue Methode zur Bestimmung der Schädelform von Menschen und Säugethieren / von Ch. Aeby.

Braunschweig : G. Westermann, 1862.




del

Electrical and anatomical demonstrations : delivered at the School of Massage and Electricity, in connection with the West-End Hospital for Diseases of the Nervous System, Paralysis and Epilepsy, Welbeck Street, London. A handbook for trained nurses and m

London : J. & A. Churchill, 1887.




del

Encyklopaedie der Therapie / herausgegeben von Oscar Liebreich ; unter Mitwirkung von Martin Mendelsohn und Arthur Würzburg.

Berlin : A. Hirschwald, 1896-1900.




del

Essai sur la syphilis du foie chez l'adulte / par Edouard Delavarenne.

Paris : O. Doin, 1879.




del

West Virginia Legislature Reaches Deal to End Strike, Deliver Pay Raise to Teachers

The statewide teacher strike could end today if both chambers of the legislature pass the bill to deliver a 5 percent raise to all school employees.




del

Endell Street Hospital 1915-1920: commemorative calendar. Process print, 1920.

[London?] : [Endell Street Military Hospital?], [1920] (Harlesden, London N.W. 10 : Leveridge & Co.)




del

Libro del perchè.

Bologna : Ugo Rugerius, 4 Mar. 1497.




del

Allegorical tomb of Archduchess Maria Christina of Austria, in the form of a pyramid into which sculpted mourners carry her urn. Engraving by P. Bonato, 1805, after D. Del Frate after A. Canova.

([Rome] : Raffaelle Jacomini impresse)




del

Louis Pasteur. Photogravure by Goupil & Cie, 1886, after A.G.A. Edelfelt, 1885.

Paris ; Londres ; La Haye : Imprimé & publié par Boussod, Valadon & Cie, éditeurs successeurs de Goupil & Cie ; Berlin : Verlag von Boussod, Valadon & Co. ; New-York : Published by M. Knoedler & Co., Le 1er Juin 1886.




del

An eloping couple on their way by coach to Gretna Green are delayed by snow one mile from their destination. Photogravure after L.J. Pott.

(Printed in Austria)




del

Medizin ist Wandel : das Gedankengebäude der chinesischen Medizin richtig verstehen / Andrea-Mercedes Riegel.

Baden-Baden : DWV, Deutscher Wissenschafts-Verlag, 2019.




del

Management information systems in the drug field / edited by George M. Beschner, Neil H. Sampson, National Institute on Drug Abuse ; and Christopher D'Amanda, Coordinating Office for Drug and Alcohol Abuse, City of Philadelphia.

Rockville, Maryland : National Institute on Drug Abuse, 1979.




del

Policy and guidelines for the provision of needle and syringe exchange services to young people / Tom Aldridge and Andrew Preston.

[Dorchester] : Dorset Community NHS Trust, 1997.




del

Wedding photographs of William Thomas Cadell and Anne Macansh set in Harriet Scott graphic




del

UCLA's Natalie Chou on her role models, inspiring Asian-American girls in basketball

Pac-12 Networks' Mike Yam has a conversation with UCLA's Natalie Chou during Wednesday's "Pac-12 Perspective" podcast. Chou reflects on her role models, passion for basketball and how her mom has made a big impact on her hoops career.




del

The limiting behavior of isotonic and convex regression estimators when the model is misspecified

Eunji Lim.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 2053--2097.

Abstract:
We study the asymptotic behavior of the least squares estimators when the model is possibly misspecified. We consider the setting where we wish to estimate an unknown function $f_{*}:(0,1)^{d} ightarrow mathbb{R}$ from observations $(X,Y),(X_{1},Y_{1}),cdots ,(X_{n},Y_{n})$; our estimator $hat{g}_{n}$ is the minimizer of $sum _{i=1}^{n}(Y_{i}-g(X_{i}))^{2}/n$ over $gin mathcal{G}$ for some set of functions $mathcal{G}$. We provide sufficient conditions on the metric entropy of $mathcal{G}$, under which $hat{g}_{n}$ converges to $g_{*}$ as $n ightarrow infty $, where $g_{*}$ is the minimizer of $|g-f_{*}| riangleq mathbb{E}(g(X)-f_{*}(X))^{2}$ over $gin mathcal{G}$. As corollaries of our theorem, we establish $|hat{g}_{n}-g_{*}| ightarrow 0$ as $n ightarrow infty $ when $mathcal{G}$ is the set of monotone functions or the set of convex functions. We also make a connection between the convergence rate of $|hat{g}_{n}-g_{*}|$ and the metric entropy of $mathcal{G}$. As special cases of our finding, we compute the convergence rate of $|hat{g}_{n}-g_{*}|^{2}$ when $mathcal{G}$ is the set of bounded monotone functions or the set of bounded convex functions.




del

Statistical convergence of the EM algorithm on Gaussian mixture models

Ruofei Zhao, Yuanzhi Li, Yuekai Sun.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 632--660.

Abstract:
We study the convergence behavior of the Expectation Maximization (EM) algorithm on Gaussian mixture models with an arbitrary number of mixture components and mixing weights. We show that as long as the means of the components are separated by at least $Omega (sqrt{min {M,d}})$, where $M$ is the number of components and $d$ is the dimension, the EM algorithm converges locally to the global optimum of the log-likelihood. Further, we show that the convergence rate is linear and characterize the size of the basin of attraction to the global optimum.




del

Generalised cepstral models for the spectrum of vector time series

Maddalena Cavicchioli.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 605--631.

Abstract:
The paper treats the modeling of stationary multivariate stochastic processes via a frequency domain model expressed in terms of cepstrum theory. The proposed model nests the vector exponential model of [20] as a special case, and extends the generalised cepstral model of [36] to the multivariate setting, answering a question raised by the last authors in their paper. Contemporarily, we extend the notion of generalised autocovariance function of [35] to vector time series. Then we derive explicit matrix formulas connecting generalised cepstral and autocovariance matrices of the process, and prove the consistency and asymptotic properties of the Whittle likelihood estimators of model parameters. Asymptotic theory for the special case of the vector exponential model is a significant addition to the paper of [20]. We also provide a mathematical machinery, based on matrix differentiation, and computational methods to derive our results, which differ significantly from those employed in the univariate case. The utility of the proposed model is illustrated through Monte Carlo simulation from a bivariate process characterized by a high dynamic range, and an empirical application on time varying minimum variance hedge ratios through the second moments of future and spot prices in the corn commodity market.




del

On the Letac-Massam conjecture and existence of high dimensional Bayes estimators for graphical models

Emanuel Ben-David, Bala Rajaratnam.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 580--604.

Abstract:
The Wishart distribution defined on the open cone of positive-definite matrices plays a central role in multivariate analysis and multivariate distribution theory. Its domain of parameters is often referred to as the Gindikin set. In recent years, varieties of useful extensions of the Wishart distribution have been proposed in the literature for the purposes of studying Markov random fields and graphical models. In particular, generalizations of the Wishart distribution, referred to as Type I and Type II (graphical) Wishart distributions introduced by Letac and Massam in Annals of Statistics (2007) play important roles in both frequentist and Bayesian inference for Gaussian graphical models. These distributions have been especially useful in high-dimensional settings due to the flexibility offered by their multiple-shape parameters. Concerning Type I and Type II Wishart distributions, a conjecture of Letac and Massam concerns the domain of multiple-shape parameters of these distributions. The conjecture also has implications for the existence of Bayes estimators corresponding to these high dimensional priors. The conjecture, which was first posed in the Annals of Statistics, has now been an open problem for about 10 years. In this paper, we give a necessary condition for the Letac and Massam conjecture to hold. More precisely, we prove that if the Letac and Massam conjecture holds on a decomposable graph, then no two separators of the graph can be nested within each other. For this, we analyze Type I and Type II Wishart distributions on appropriate Markov equivalent perfect DAG models and succeed in deriving the aforementioned necessary condition. This condition in particular identifies a class of counterexamples to the conjecture.




del

Consistent model selection criteria and goodness-of-fit test for common time series models

Jean-Marc Bardet, Kare Kamila, William Kengne.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 2009--2052.

Abstract:
This paper studies the model selection problem in a large class of causal time series models, which includes both the ARMA or AR($infty $) processes, as well as the GARCH or ARCH($infty $), APARCH, ARMA-GARCH and many others processes. To tackle this issue, we consider a penalized contrast based on the quasi-likelihood of the model. We provide sufficient conditions for the penalty term to ensure the consistency of the proposed procedure as well as the consistency and the asymptotic normality of the quasi-maximum likelihood estimator of the chosen model. We also propose a tool for diagnosing the goodness-of-fit of the chosen model based on a Portmanteau test. Monte-Carlo experiments and numerical applications on illustrative examples are performed to highlight the obtained asymptotic results. Moreover, using a data-driven choice of the penalty, they show the practical efficiency of this new model selection procedure and Portemanteau test.




del

Bayesian variance estimation in the Gaussian sequence model with partial information on the means

Gianluca Finocchio, Johannes Schmidt-Hieber.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 239--271.

Abstract:
Consider the Gaussian sequence model under the additional assumption that a fixed fraction of the means is known. We study the problem of variance estimation from a frequentist Bayesian perspective. The maximum likelihood estimator (MLE) for $sigma^{2}$ is biased and inconsistent. This raises the question whether the posterior is able to correct the MLE in this case. By developing a new proving strategy that uses refined properties of the posterior distribution, we find that the marginal posterior is inconsistent for any i.i.d. prior on the mean parameters. In particular, no assumption on the decay of the prior needs to be imposed. Surprisingly, we also find that consistency can be retained for a hierarchical prior based on Gaussian mixtures. In this case we also establish a limiting shape result and determine the limit distribution. In contrast to the classical Bernstein-von Mises theorem, the limit is non-Gaussian. We show that the Bayesian analysis leads to new statistical estimators outperforming the correctly calibrated MLE in a numerical simulation study.




del

Exact recovery in block spin Ising models at the critical line

Matthias Löwe, Kristina Schubert.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1796--1815.

Abstract:
We show how to exactly reconstruct the block structure at the critical line in the so-called Ising block model. This model was recently re-introduced by Berthet, Rigollet and Srivastava in [2]. There the authors show how to exactly reconstruct blocks away from the critical line and they give an upper and a lower bound on the number of observations one needs; thereby they establish a minimax optimal rate (up to constants). Our technique relies on a combination of their methods with fluctuation results obtained in [20]. The latter are extended to the full critical regime. We find that the number of necessary observations depends on whether the interaction parameter between two blocks is positive or negative: In the first case, there are about $Nlog N$ observations required to exactly recover the block structure, while in the latter case $sqrt{N}log N$ observations suffice.




del

Efficient estimation in expectile regression using envelope models

Tuo Chen, Zhihua Su, Yi Yang, Shanshan Ding.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 143--173.

Abstract:
As a generalization of the classical linear regression, expectile regression (ER) explores the relationship between the conditional expectile of a response variable and a set of predictor variables. ER with respect to different expectile levels can provide a comprehensive picture of the conditional distribution of the response variable given the predictors. We adopt an efficient estimation method called the envelope model ([8]) in ER, and construct a novel envelope expectile regression (EER) model. Estimation of the EER parameters can be performed using the generalized method of moments (GMM). We establish the consistency and derive the asymptotic distribution of the EER estimators. In addition, we show that the EER estimators are asymptotically more efficient than the ER estimators. Numerical experiments and real data examples are provided to demonstrate the efficiency gains attained by EER compared to ER, and the efficiency gains can further lead to improvements in prediction.




del

Model-based clustering with envelopes

Wenjing Wang, Xin Zhang, Qing Mai.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 82--109.

Abstract:
Clustering analysis is an important unsupervised learning technique in multivariate statistics and machine learning. In this paper, we propose a set of new mixture models called CLEMM (in short for Clustering with Envelope Mixture Models) that is based on the widely used Gaussian mixture model assumptions and the nascent research area of envelope methodology. Formulated mostly for regression models, envelope methodology aims for simultaneous dimension reduction and efficient parameter estimation, and includes a very recent formulation of envelope discriminant subspace for classification and discriminant analysis. Motivated by the envelope discriminant subspace pursuit in classification, we consider parsimonious probabilistic mixture models where the cluster analysis can be improved by projecting the data onto a latent lower-dimensional subspace. The proposed CLEMM framework and the associated envelope-EM algorithms thus provide foundations for envelope methods in unsupervised and semi-supervised learning problems. Numerical studies on simulated data and two benchmark data sets show significant improvement of our propose methods over the classical methods such as Gaussian mixture models, K-means and hierarchical clustering algorithms. An R package is available at https://github.com/kusakehan/CLEMM.




del

Non-parametric adaptive estimation of order 1 Sobol indices in stochastic models, with an application to Epidemiology

Gwenaëlle Castellan, Anthony Cousien, Viet Chi Tran.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 50--81.

Abstract:
Global sensitivity analysis is a set of methods aiming at quantifying the contribution of an uncertain input parameter of the model (or combination of parameters) on the variability of the response. We consider here the estimation of the Sobol indices of order 1 which are commonly-used indicators based on a decomposition of the output’s variance. In a deterministic framework, when the same inputs always give the same outputs, these indices are usually estimated by replicated simulations of the model. In a stochastic framework, when the response given a set of input parameters is not unique due to randomness in the model, metamodels are often used to approximate the mean and dispersion of the response by deterministic functions. We propose a new non-parametric estimator without the need of defining a metamodel to estimate the Sobol indices of order 1. The estimator is based on warped wavelets and is adaptive in the regularity of the model. The convergence of the mean square error to zero, when the number of simulations of the model tend to infinity, is computed and an elbow effect is shown, depending on the regularity of the model. Applications in Epidemiology are carried to illustrate the use of non-parametric estimators.




del

Simultaneous transformation and rounding (STAR) models for integer-valued data

Daniel R. Kowal, Antonio Canale.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1744--1772.

Abstract:
We propose a simple yet powerful framework for modeling integer-valued data, such as counts, scores, and rounded data. The data-generating process is defined by Simultaneously Transforming and Rounding (STAR) a continuous-valued process, which produces a flexible family of integer-valued distributions capable of modeling zero-inflation, bounded or censored data, and over- or underdispersion. The transformation is modeled as unknown for greater distributional flexibility, while the rounding operation ensures a coherent integer-valued data-generating process. An efficient MCMC algorithm is developed for posterior inference and provides a mechanism for adaptation of successful Bayesian models and algorithms for continuous data to the integer-valued data setting. Using the STAR framework, we design a new Bayesian Additive Regression Tree model for integer-valued data, which demonstrates impressive predictive distribution accuracy for both synthetic data and a large healthcare utilization dataset. For interpretable regression-based inference, we develop a STAR additive model, which offers greater flexibility and scalability than existing integer-valued models. The STAR additive model is applied to study the recent decline in Amazon river dolphins.




del

Nonconcave penalized estimation in sparse vector autoregression model

Xuening Zhu.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1413--1448.

Abstract:
High dimensional time series receive considerable attention recently, whose temporal and cross-sectional dependency could be captured by the vector autoregression (VAR) model. To tackle with the high dimensionality, penalization methods are widely employed. However, theoretically, the existing studies of the penalization methods mainly focus on $i.i.d$ data, therefore cannot quantify the effect of the dependence level on the convergence rate. In this work, we use the spectral properties of the time series to quantify the dependence and derive a nonasymptotic upper bound for the estimation errors. By focusing on the nonconcave penalization methods, we manage to establish the oracle properties of the penalized VAR model estimation by considering the effects of temporal and cross-sectional dependence. Extensive numerical studies are conducted to compare the finite sample performance using different penalization functions. Lastly, an air pollution data of mainland China is analyzed for illustration purpose.




del

Rate optimal Chernoff bound and application to community detection in the stochastic block models

Zhixin Zhou, Ping Li.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1302--1347.

Abstract:
The Chernoff coefficient is known to be an upper bound of Bayes error probability in classification problem. In this paper, we will develop a rate optimal Chernoff bound on the Bayes error probability. The new bound is not only an upper bound but also a lower bound of Bayes error probability up to a constant factor. Moreover, we will apply this result to community detection in the stochastic block models. As a clustering problem, the optimal misclassification rate of community detection problem can be characterized by our rate optimal Chernoff bound. This can be formalized by deriving a minimax error rate over certain parameter space of stochastic block models, then achieving such an error rate by a feasible algorithm employing multiple steps of EM type updates.




del

Consistency and asymptotic normality of Latent Block Model estimators

Vincent Brault, Christine Keribin, Mahendra Mariadassou.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1234--1268.

Abstract:
The Latent Block Model (LBM) is a model-based method to cluster simultaneously the $d$ columns and $n$ rows of a data matrix. Parameter estimation in LBM is a difficult and multifaceted problem. Although various estimation strategies have been proposed and are now well understood empirically, theoretical guarantees about their asymptotic behavior is rather sparse and most results are limited to the binary setting. We prove here theoretical guarantees in the valued settings. We show that under some mild conditions on the parameter space, and in an asymptotic regime where $log (d)/n$ and $log (n)/d$ tend to $0$ when $n$ and $d$ tend to infinity, (1) the maximum-likelihood estimate of the complete model (with known labels) is consistent and (2) the log-likelihood ratios are equivalent under the complete and observed (with unknown labels) models. This equivalence allows us to transfer the asymptotic consistency, and under mild conditions, asymptotic normality, to the maximum likelihood estimate under the observed model. Moreover, the variational estimator is also consistent and, under the same conditions, asymptotically normal.




del

On the distribution, model selection properties and uniqueness of the Lasso estimator in low and high dimensions

Karl Ewald, Ulrike Schneider.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 944--969.

Abstract:
We derive expressions for the finite-sample distribution of the Lasso estimator in the context of a linear regression model in low as well as in high dimensions by exploiting the structure of the optimization problem defining the estimator. In low dimensions, we assume full rank of the regressor matrix and present expressions for the cumulative distribution function as well as the densities of the absolutely continuous parts of the estimator. Our results are presented for the case of normally distributed errors, but do not hinge on this assumption and can easily be generalized. Additionally, we establish an explicit formula for the correspondence between the Lasso and the least-squares estimator. We derive analogous results for the distribution in less explicit form in high dimensions where we make no assumptions on the regressor matrix at all. In this setting, we also investigate the model selection properties of the Lasso and show that possibly only a subset of models might be selected by the estimator, completely independently of the observed response vector. Finally, we present a condition for uniqueness of the estimator that is necessary as well as sufficient.




del

Estimation of a semiparametric transformation model: A novel approach based on least squares minimization

Benjamin Colling, Ingrid Van Keilegom.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 769--800.

Abstract:
Consider the following semiparametric transformation model $Lambda_{ heta }(Y)=m(X)+varepsilon $, where $X$ is a $d$-dimensional covariate, $Y$ is a univariate response variable and $varepsilon $ is an error term with zero mean and independent of $X$. We assume that $m$ is an unknown regression function and that ${Lambda _{ heta }: heta inTheta }$ is a parametric family of strictly increasing functions. Our goal is to develop two new estimators of the transformation parameter $ heta $. The main idea of these two estimators is to minimize, with respect to $ heta $, the $L_{2}$-distance between the transformation $Lambda _{ heta }$ and one of its fully nonparametric estimators. We consider in particular the nonparametric estimator based on the least-absolute deviation loss constructed in Colling and Van Keilegom (2019). We establish the consistency and the asymptotic normality of the two proposed estimators of $ heta $. We also carry out a simulation study to illustrate and compare the performance of our new parametric estimators to that of the profile likelihood estimator constructed in Linton et al. (2008).




del

A Model of Fake Data in Data-driven Analysis

Data-driven analysis has been increasingly used in various decision making processes. With more sources, including reviews, news, and pictures, can now be used for data analysis, the authenticity of data sources is in doubt. While previous literature attempted to detect fake data piece by piece, in the current work, we try to capture the fake data sender's strategic behavior to detect the fake data source. Specifically, we model the tension between a data receiver who makes data-driven decisions and a fake data sender who benefits from misleading the receiver. We propose a potentially infinite horizon continuous time game-theoretic model with asymmetric information to capture the fact that the receiver does not initially know the existence of fake data and learns about it during the course of the game. We use point processes to model the data traffic, where each piece of data can occur at any discrete moment in a continuous time flow. We fully solve the model and employ numerical examples to illustrate the players' strategies and payoffs for insights. Specifically, our results show that maintaining some suspicion about the data sources and understanding that the sender can be strategic are very helpful to the data receiver. In addition, based on our model, we propose a methodology of detecting fake data that is complementary to the previous studies on this topic, which suggested various approaches on analyzing the data piece by piece. We show that after analyzing each piece of data, understanding a source by looking at the its whole history of pushing data can be helpful.




del

Universal Latent Space Model Fitting for Large Networks with Edge Covariates

Latent space models are effective tools for statistical modeling and visualization of network data. Due to their close connection to generalized linear models, it is also natural to incorporate covariate information in them. The current paper presents two universal fitting algorithms for networks with edge covariates: one based on nuclear norm penalization and the other based on projected gradient descent. Both algorithms are motivated by maximizing the likelihood function for an existing class of inner-product models, and we establish their statistical rates of convergence for these models. In addition, the theory informs us that both methods work simultaneously for a wide range of different latent space models that allow latent positions to affect edge formation in flexible ways, such as distance models. Furthermore, the effectiveness of the methods is demonstrated on a number of real world network data sets for different statistical tasks, including community detection with and without edge covariates, and network assisted learning.




del

Weighted Message Passing and Minimum Energy Flow for Heterogeneous Stochastic Block Models with Side Information

We study the misclassification error for community detection in general heterogeneous stochastic block models (SBM) with noisy or partial label information. We establish a connection between the misclassification rate and the notion of minimum energy on the local neighborhood of the SBM. We develop an optimally weighted message passing algorithm to reconstruct labels for SBM based on the minimum energy flow and the eigenvectors of a certain Markov transition matrix. The general SBM considered in this paper allows for unequal-size communities, degree heterogeneity, and different connection probabilities among blocks. We focus on how to optimally weigh the message passing to improve misclassification.




del

Lower Bounds for Testing Graphical Models: Colorings and Antiferromagnetic Ising Models

We study the identity testing problem in the context of spin systems or undirected graphical models, where it takes the following form: given the parameter specification of the model $M$ and a sampling oracle for the distribution $mu_{M^*}$ of an unknown model $M^*$, can we efficiently determine if the two models $M$ and $M^*$ are the same? We consider identity testing for both soft-constraint and hard-constraint systems. In particular, we prove hardness results in two prototypical cases, the Ising model and proper colorings, and explore whether identity testing is any easier than structure learning. For the ferromagnetic (attractive) Ising model, Daskalakis et al. (2018) presented a polynomial-time algorithm for identity testing. We prove hardness results in the antiferromagnetic (repulsive) setting in the same regime of parameters where structure learning is known to require a super-polynomial number of samples. Specifically, for $n$-vertex graphs of maximum degree $d$, we prove that if $|eta| d = omega(log{n})$ (where $eta$ is the inverse temperature parameter), then there is no polynomial running time identity testing algorithm unless $RP=NP$. In the hard-constraint setting, we present hardness results for identity testing for proper colorings. Our results are based on the presumed hardness of #BIS, the problem of (approximately) counting independent sets in bipartite graphs.




del

A New Class of Time Dependent Latent Factor Models with Applications

In many applications, observed data are influenced by some combination of latent causes. For example, suppose sensors are placed inside a building to record responses such as temperature, humidity, power consumption and noise levels. These random, observed responses are typically affected by many unobserved, latent factors (or features) within the building such as the number of individuals, the turning on and off of electrical devices, power surges, etc. These latent factors are usually present for a contiguous period of time before disappearing; further, multiple factors could be present at a time. This paper develops new probabilistic methodology and inference methods for random object generation influenced by latent features exhibiting temporal persistence. Every datum is associated with subsets of a potentially infinite number of hidden, persistent features that account for temporal dynamics in an observation. The ensuing class of dynamic models constructed by adapting the Indian Buffet Process — a probability measure on the space of random, unbounded binary matrices — finds use in a variety of applications arising in operations, signal processing, biomedicine, marketing, image analysis, etc. Illustrations using synthetic and real data are provided.




del

Latent Simplex Position Model: High Dimensional Multi-view Clustering with Uncertainty Quantification

High dimensional data often contain multiple facets, and several clustering patterns can co-exist under different variable subspaces, also known as the views. While multi-view clustering algorithms were proposed, the uncertainty quantification remains difficult --- a particular challenge is in the high complexity of estimating the cluster assignment probability under each view, and sharing information among views. In this article, we propose an approximate Bayes approach --- treating the similarity matrices generated over the views as rough first-stage estimates for the co-assignment probabilities; in its Kullback-Leibler neighborhood, we obtain a refined low-rank matrix, formed by the pairwise product of simplex coordinates. Interestingly, each simplex coordinate directly encodes the cluster assignment uncertainty. For multi-view clustering, we let each view draw a parameterization from a few candidates, leading to dimension reduction. With high model flexibility, the estimation can be efficiently carried out as a continuous optimization problem, hence enjoys gradient-based computation. The theory establishes the connection of this model to a random partition distribution under multiple views. Compared to single-view clustering approaches, substantially more interpretable results are obtained when clustering brains from a human traumatic brain injury study, using high-dimensional gene expression data.




del

Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables

We consider the problem of learning causal models from observational data generated by linear non-Gaussian acyclic causal models with latent variables. Without considering the effect of latent variables, the inferred causal relationships among the observed variables are often wrong. Under faithfulness assumption, we propose a method to check whether there exists a causal path between any two observed variables. From this information, we can obtain the causal order among the observed variables. The next question is whether the causal effects can be uniquely identified as well. We show that causal effects among observed variables cannot be identified uniquely under mere assumptions of faithfulness and non-Gaussianity of exogenous noises. However, we are able to propose an efficient method that identifies the set of all possible causal effects that are compatible with the observational data. We present additional structural conditions on the causal graph under which causal effects among observed variables can be determined uniquely. Furthermore, we provide necessary and sufficient graphical conditions for unique identification of the number of variables in the system. Experiments on synthetic data and real-world data show the effectiveness of our proposed algorithm for learning causal models.




del

Switching Regression Models and Causal Inference in the Presence of Discrete Latent Variables

Given a response $Y$ and a vector $X = (X^1, dots, X^d)$ of $d$ predictors, we investigate the problem of inferring direct causes of $Y$ among the vector $X$. Models for $Y$ that use all of its causal covariates as predictors enjoy the property of being invariant across different environments or interventional settings. Given data from such environments, this property has been exploited for causal discovery. Here, we extend this inference principle to situations in which some (discrete-valued) direct causes of $ Y $ are unobserved. Such cases naturally give rise to switching regression models. We provide sufficient conditions for the existence, consistency and asymptotic normality of the MLE in linear switching regression models with Gaussian noise, and construct a test for the equality of such models. These results allow us to prove that the proposed causal discovery method obtains asymptotic false discovery control under mild conditions. We provide an algorithm, make available code, and test our method on simulated data. It is robust against model violations and outperforms state-of-the-art approaches. We further apply our method to a real data set, where we show that it does not only output causal predictors, but also a process-based clustering of data points, which could be of additional interest to practitioners.




del

High-Dimensional Inference for Cluster-Based Graphical Models

Motivated by modern applications in which one constructs graphical models based on a very large number of features, this paper introduces a new class of cluster-based graphical models, in which variable clustering is applied as an initial step for reducing the dimension of the feature space. We employ model assisted clustering, in which the clusters contain features that are similar to the same unobserved latent variable. Two different cluster-based Gaussian graphical models are considered: the latent variable graph, corresponding to the graphical model associated with the unobserved latent variables, and the cluster-average graph, corresponding to the vector of features averaged over clusters. Our study reveals that likelihood based inference for the latent graph, not analyzed previously, is analytically intractable. Our main contribution is the development and analysis of alternative estimation and inference strategies, for the precision matrix of an unobservable latent vector Z. We replace the likelihood of the data by an appropriate class of empirical risk functions, that can be specialized to the latent graphical model and to the simpler, but under-analyzed, cluster-average graphical model. The estimators thus derived can be used for inference on the graph structure, for instance on edge strength or pattern recovery. Inference is based on the asymptotic limits of the entry-wise estimates of the precision matrices associated with the conditional independence graphs under consideration. While taking the uncertainty induced by the clustering step into account, we establish Berry-Esseen central limit theorems for the proposed estimators. It is noteworthy that, although the clusters are estimated adaptively from the data, the central limit theorems regarding the entries of the estimated graphs are proved under the same conditions one would use if the clusters were known in advance. As an illustration of the usage of these newly developed inferential tools, we show that they can be reliably used for recovery of the sparsity pattern of the graphs we study, under FDR control, which is verified via simulation studies and an fMRI data analysis. These experimental results confirm the theoretically established difference between the two graph structures. Furthermore, the data analysis suggests that the latent variable graph, corresponding to the unobserved cluster centers, can help provide more insight into the understanding of the brain connectivity networks relative to the simpler, average-based, graph.




del

Estimation of a Low-rank Topic-Based Model for Information Cascades

We consider the problem of estimating the latent structure of a social network based on the observed information diffusion events, or cascades, where the observations for a given cascade consist of only the timestamps of infection for infected nodes but not the source of the infection. Most of the existing work on this problem has focused on estimating a diffusion matrix without any structural assumptions on it. In this paper, we propose a novel model based on the intuition that an information is more likely to propagate among two nodes if they are interested in similar topics which are also prominent in the information content. In particular, our model endows each node with an influence vector (which measures how authoritative the node is on each topic) and a receptivity vector (which measures how susceptible the node is for each topic). We show how this node-topic structure can be estimated from the observed cascades, and prove the consistency of the estimator. Experiments on synthetic and real data demonstrate the improved performance and better interpretability of our model compared to existing state-of-the-art methods.




del

High-dimensional Gaussian graphical models on network-linked data

Graphical models are commonly used to represent conditional dependence relationships between variables. There are multiple methods available for exploring them from high-dimensional data, but almost all of them rely on the assumption that the observations are independent and identically distributed. At the same time, observations connected by a network are becoming increasingly common, and tend to violate these assumptions. Here we develop a Gaussian graphical model for observations connected by a network with potentially different mean vectors, varying smoothly over the network. We propose an efficient estimation algorithm and demonstrate its effectiveness on both simulated and real data, obtaining meaningful and interpretable results on a statistics coauthorship network. We also prove that our method estimates both the inverse covariance matrix and the corresponding graph structure correctly under the assumption of network “cohesion”, which refers to the empirically observed phenomenon of network neighbors sharing similar traits.




del

Identifiability of Additive Noise Models Using Conditional Variances

This paper considers a new identifiability condition for additive noise models (ANMs) in which each variable is determined by an arbitrary Borel measurable function of its parents plus an independent error. It has been shown that ANMs are fully recoverable under some identifiability conditions, such as when all error variances are equal. However, this identifiable condition could be restrictive, and hence, this paper focuses on a relaxed identifiability condition that involves not only error variances, but also the influence of parents. This new class of identifiable ANMs does not put any constraints on the form of dependencies, or distributions of errors, and allows different error variances. It further provides a statistically consistent and computationally feasible structure learning algorithm for the identifiable ANMs based on the new identifiability condition. The proposed algorithm assumes that all relevant variables are observed, while it does not assume faithfulness or a sparse graph. Demonstrated through extensive simulated and real multivariate data is that the proposed algorithm successfully recovers directed acyclic graphs.




del

Reliability estimation in a multicomponent stress-strength model for Burr XII distribution under progressive censoring

Raj Kamal Maurya, Yogesh Mani Tripathi.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 345--369.

Abstract:
We consider estimation of the multicomponent stress-strength reliability under progressive Type II censoring under the assumption that stress and strength variables follow Burr XII distributions with a common shape parameter. Maximum likelihood estimates of the reliability are obtained along with asymptotic intervals when common shape parameter may be known or unknown. Bayes estimates are also derived under the squared error loss function using different approximation methods. Further, we obtain exact Bayes and uniformly minimum variance unbiased estimates of the reliability for the case common shape parameter is known. The highest posterior density intervals are also obtained. We perform Monte Carlo simulations to compare the performance of proposed estimates and present a discussion based on this study. Finally, two real data sets are analyzed for illustration purposes.




del

A Bayesian sparse finite mixture model for clustering data from a heterogeneous population

Erlandson F. Saraiva, Adriano K. Suzuki, Luís A. Milan.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 323--344.

Abstract:
In this paper, we introduce a Bayesian approach for clustering data using a sparse finite mixture model (SFMM). The SFMM is a finite mixture model with a large number of components $k$ previously fixed where many components can be empty. In this model, the number of components $k$ can be interpreted as the maximum number of distinct mixture components. Then, we explore the use of a prior distribution for the weights of the mixture model that take into account the possibility that the number of clusters $k_{mathbf{c}}$ (e.g., nonempty components) can be random and smaller than the number of components $k$ of the finite mixture model. In order to determine clusters we develop a MCMC algorithm denominated Split-Merge allocation sampler. In this algorithm, the split-merge strategy is data-driven and was inserted within the algorithm in order to increase the mixing of the Markov chain in relation to the number of clusters. The performance of the method is verified using simulated datasets and three real datasets. The first real data set is the benchmark galaxy data, while second and third are the publicly available data set on Enzyme and Acidity, respectively.




del

Bayesian modeling and prior sensitivity analysis for zero–one augmented beta regression models with an application to psychometric data

Danilo Covaes Nogarotto, Caio Lucidius Naberezny Azevedo, Jorge Luis Bazán.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 304--322.

Abstract:
The interest on the analysis of the zero–one augmented beta regression (ZOABR) model has been increasing over the last few years. In this work, we developed a Bayesian inference for the ZOABR model, providing some contributions, namely: we explored the use of Jeffreys-rule and independence Jeffreys prior for some of the parameters, performing a sensitivity study of prior choice, comparing the Bayesian estimates with the maximum likelihood ones and measuring the accuracy of the estimates under several scenarios of interest. The results indicate, in a general way, that: the Bayesian approach, under the Jeffreys-rule prior, was as accurate as the ML one. Also, different from other approaches, we use the predictive distribution of the response to implement Bayesian residuals. To further illustrate the advantages of our approach, we conduct an analysis of a real psychometric data set including a Bayesian residual analysis, where it is shown that misleading inference can be obtained when the data is transformed. That is, when the zeros and ones are transformed to suitable values and the usual beta regression model is considered, instead of the ZOABR model. Finally, future developments are discussed.




del

A note on the “L-logistic regression models: Prior sensitivity analysis, robustness to outliers and applications”

Saralees Nadarajah, Yuancheng Si.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 183--187.

Abstract:
Da Paz, Balakrishnan and Bazan [Braz. J. Probab. Stat. 33 (2019), 455–479] introduced the L-logistic distribution, studied its properties including estimation issues and illustrated a data application. This note derives a closed form expression for moment properties of the distribution. Some computational issues are discussed.




del

Multivariate normal approximation of the maximum likelihood estimator via the delta method

Andreas Anastasiou, Robert E. Gaunt.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 136--149.

Abstract:
We use the delta method and Stein’s method to derive, under regularity conditions, explicit upper bounds for the distributional distance between the distribution of the maximum likelihood estimator (MLE) of a $d$-dimensional parameter and its asymptotic multivariate normal distribution. Our bounds apply in situations in which the MLE can be written as a function of a sum of i.i.d. $t$-dimensional random vectors. We apply our general bound to establish a bound for the multivariate normal approximation of the MLE of the normal distribution with unknown mean and variance.