de How images frame China's role in African development By feedproxy.google.com Published On :: Thu, 07 May 2020 09:21:23 +0000 7 May 2020 , Volume 96, Number 3 George Karavas Read online Political leaders, policy-makers and academics routinely refer to development as an objective process of social change through the use of technical, value-free terms. Images of poverty and inequality are regularly presented as evidence of a world that exists ‘out there’ where development unfolds. This way of seeing reflects the value of scientific forms of knowledge but also sits in tension with the normative foundations of development that take European modernization and industrialization as the benchmark for comparison. The role images play in this process is often overlooked. This article argues that a dominant mode of visuality based on a Cartesian separation between subject and object, underpinning the ascendance of European hegemony and colonialism, aligns with the core premises of orthodox development discourse. An example of how visual representations of development matter is presented through images of Africa–China relations in western media sources. Using widely circulated images depicting China's impact on African development in western news media sources as an example of why visual politics matters for policy-making, the article examines how images play a role in legitimizing development planning by rendering associated forms of epistemological and structural violence ‘invisible to the viewer’. Full Article
de COVID-19 in South Africa: Leadership, Resilience and Inequality By feedproxy.google.com Published On :: Thu, 07 May 2020 14:50:58 +0000 7 May 2020 Christopher Vandome Research Fellow, Africa Programme LinkedIn In a world looking for leadership, South Africa’s president Cyril Ramaphosa has been remarkable. One year after he carried the time-worn ANC through a national election, South Africans are crying out for more. 2020-05-07-Ramaphosa-COVID-South-Africa Cyril Ramaphosa at NASREC Expo Centre in Johannesburg where facilities are in place to treat coronavirus patients. Photo by JEROME DELAY/POOL/AFP via Getty Images. In the COVID-19 crisis so far, Cyril Ramaphosa has been widely praised for displaying the decisive leadership so many hoped for when they cast their ballot for him in May 2019. Buttressed by others such as health minister Dr Zweli Mkhize, and on a simple objective to prevent transmission, South Africa has been a lesson to the world. Act fast. Act hard.Former president Thabo Mbeki’s disastrous response to the HIV crisis cast a long shadow over his legacy, and Ramaphosa has taken note. South Africa has had one of the tightest lockdowns in the world. No exercise. No cigarettes. No alcohol.The lockdown was imposed when the country had only around 1,000 recorded cases and just two deaths. As a result, transmission from returning travellers has not yet led to an exponential infection rate within the community. The government’s swift reaction has bought much needed time with the peak now seemingly delayed to September or October.Continental and national leadershipRamaphosa has also emerged as a key focal point for Africa-wide responses. As current chair of the African Union (AU) he leads the continental engagement with the World Health Organization (WHO), and the various international finance institutions, while South African officials are working with the AU and the United Nations Economic Commission for Africa (UNECA) on a push for African debt restructuring.He has also been active in trouble shooting to unlock external assistance to the continent, including from China and Russia. Appointing special envoys is typical of his boardroom-honed leadership style.International and regional partnerships are vital for resilience and the arrival of 217 Cuban doctors to South Africa is strongly reminiscent of the liberationist solidarity of the Cold War era. And regional economies remain dependent on South Africa to protect their own vulnerable citizens. Following the 2008 financial crisis, it was South Africa’s regional trading relationships that remained robust, while trade with its main global partners in China and the US dropped.Despite the plaudits, Ramaphosa remains vulnerable to challenge at home, notably around his failure to stimulate South Africa’s moribund economy. On the eve of lockdown, Moody’s joined its peers Standard and Poor’s and Fitch in giving South Africa a below investment grade credit rating. The move was a long time coming. Long mooted economic reforms were slow to materialise, and South Africa had fallen into recession.Ramaphosa depends on a small core of close advisors and allies, initially united in apparent opposition to the kleptocratic rule of President Jacob Zuma and the deep patronage networks he created within both the party and the state. But this allegiance is being tested by economic reality. Support within the party was already drifting prior to the crisis.Disagreements are not just technocratic – there are big ideological questions in play around the role of the state in the economy, the level of intervention, and its affordability, with key government figures sceptical of rapid market reforms. Energy minister and former union stalwart Gwede Mantashe is wary of job losses, and minister of public enterprises Pravin Gordhan protective of state-owned enterprises (SOEs). Before coronavirus hit, Ramaphosa seemed content to allow these policy disputes to play themselves out with little decisive intervention.Slow progress on reform, against worsening economic performance, left Ramaphosa and his allies exposed. In January the president missed the UK’s African Investment Summit in order to assert control over a party meeting at which it was expected his detractors would seek to remove Gordhan.COVID-19 has sharpened thinkingAs the independently assertive - and eminently quotable - pro-market reformist finance minister Tito Mboweni stated, ‘you can’t eat ideology’. Accelerated reform and restructuring is required if the government turns to the International Monetary Fund (IMF) for assistance.For the first time, Gordhan has been forced to deny a bailout to beleaguered state airline South African Airways (SAA), and the government’s lockdown bailout of R300 billion has been applauded by business. Much like the fiscal stimulus and recovery plan of 2018, it relies on smart spending, targeting sectors with high multiplier effects. It also includes significant reserve bank loans.But it has been criticised for not doing enough to help the most vulnerable. There is considerable fear of what could happen when the virus takes hold in South Africa’s townships and informal settlements where social distancing is almost impossible, basic toilet facilities are shared, and HIV and TB rates high.There are mounting concerns of the humanitarian cost of a prolonged lockdown, and the government has been faster than others in implementing a tiered lockdown system, trying to get people back to work and keep the economy afloat.South Africa has been criticized by the UN for the use of lethal force by security forces in enforcing lockdown and, in a society plagued by corruption, there are fears legislation to stop the spread of false information could be used to restrict legitimate reporting on the virus response or other issues.COVID-19 shines a spotlight on societies’ fault-lines worldwide. South Africa is often touted as having one of the highest levels of inequality in the world but, in a globalized economy, these divisions are international as much as they are local.Resilience comes from within, but also depends on regional and global trading and financial systems. South Africans and international partners have long recognised Ramaphosa’s leadership qualities as an impressive voice for the global south.But he must also be an advocate for South Africa’s poor. This crisis could accelerate implementation of his landmark pro-poor National Health Insurance and Universal Health Care programmes. Or the hit of COVID-19 on top of South Africa’s existing economic woes could see them derailed entirely. Ramaphosa must push through economic reforms at the same time as managing COVID-19 and rebuilding trust in his government. Full Article
de Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPAR{alpha}-regulated genes [Lipids] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2−/−) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2−/− mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2−/− mice and a total of 91 in female Fatp2−/− mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator–activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2−/− liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities. Full Article
de Correction: Graph Algorithms for Condensing and Consolidating Gene Set Analysis Results. [Additions and Corrections] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 Full Article
de Combining Precursor and Fragment Information for Improved Detection of Differential Abundance in Data Independent Acquisition [Technological Innovation and Resources] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 In bottom-up, label-free discovery proteomics, biological samples are acquired in a data-dependent (DDA) or data-independent (DIA) manner, with peptide signals recorded in an intact (MS1) and fragmented (MS2) form. While DDA has only the MS1 space for quantification, DIA contains both MS1 and MS2 at high quantitative quality. DIA profiles of complex biological matrices such as tissues or cells can contain quantitative interferences, and the interferences at the MS1 and the MS2 signals are often independent. When comparing biological conditions, the interferences can compromise the detection of differential peptide or protein abundance and lead to false positive or false negative conclusions. We hypothesized that the combined use of MS1 and MS2 quantitative signals could improve our ability to detect differentially abundant proteins. Therefore, we developed a statistical procedure incorporating both MS1 and MS2 quantitative information of DIA. We benchmarked the performance of the MS1-MS2-combined method to the individual use of MS1 or MS2 in DIA using four previously published controlled mixtures, as well as in two previously unpublished controlled mixtures. In the majority of the comparisons, the combined method outperformed the individual use of MS1 or MS2. This was particularly true for comparisons with low fold changes, few replicates, and situations where MS1 and MS2 were of similar quality. When applied to a previously unpublished investigation of lung cancer, the MS1-MS2-combined method increased the coverage of known activated pathways. Since recent technological developments continue to increase the quality of MS1 signals (e.g. using the BoxCar scan mode for Orbitrap instruments), the combination of the MS1 and MS2 information has a high potential for future statistical analysis of DIA data. Full Article
de Multi-omic Characterization of the Mode of Action of a Potent New Antimalarial Compound, JPC-3210, Against Plasmodium falciparum [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 The increasing incidence of antimalarial drug resistance to the first-line artemisinin combination therapies underpins an urgent need for new antimalarial drugs, ideally with a novel mode of action. The recently developed 2-aminomethylphenol, JPC-3210, (MMV 892646) is an erythrocytic schizonticide with potent in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum lines, low cytotoxicity, potent in vivo efficacy against murine malaria, and favorable preclinical pharmacokinetics including a lengthy plasma elimination half-life. To investigate the impact of JPC-3210 on biochemical pathways within P. falciparum-infected red blood cells, we have applied a "multi-omics" workflow based on high resolution orbitrap mass spectrometry combined with biochemical approaches. Metabolomics, peptidomics and hemoglobin fractionation analyses revealed a perturbation in hemoglobin metabolism following JPC-3210 exposure. The metabolomics data demonstrated a specific depletion of short hemoglobin-derived peptides, peptidomics analysis revealed a depletion of longer hemoglobin-derived peptides, and the hemoglobin fractionation assay demonstrated decreases in hemoglobin, heme and hemozoin levels. To further elucidate the mechanism responsible for inhibition of hemoglobin metabolism, we used in vitro β-hematin polymerization assays and showed JPC-3210 to be an intermediate inhibitor of β-hematin polymerization, about 10-fold less potent then the quinoline antimalarials, such as chloroquine and mefloquine. Further, quantitative proteomics analysis showed that JPC-3210 treatment results in a distinct proteomic signature compared with other known antimalarials. While JPC-3210 clustered closely with mefloquine in the metabolomics and proteomics analyses, a key differentiating signature for JPC-3210 was the significant enrichment of parasite proteins involved in regulation of translation. These studies revealed that the mode of action for JPC-3210 involves inhibition of the hemoglobin digestion pathway and elevation of regulators of protein translation. Importantly, JPC-3210 demonstrated rapid parasite killing kinetics compared with other quinolones, suggesting that JPC-3210 warrants further investigation as a potentially long acting partner drug for malaria treatment. Full Article
de Profiling the Surfaceome Identifies Therapeutic Targets for Cells with Hyperactive mTORC1 Signaling [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 Aberrantly high mTORC1 signaling is a known driver of many cancers and human disorders, yet pharmacological inhibition of mTORC1 rarely confers durable clinical responses. To explore alternative therapeutic strategies, herein we conducted a proteomics survey to identify cell surface proteins upregulated by mTORC1. A comparison of the surfaceome from Tsc1–/– versus Tsc1+/+ mouse embryonic fibroblasts revealed 59 proteins predicted to be significantly overexpressed in Tsc1–/– cells. Further validation of the data in multiple mouse and human cell lines showed that mTORC1 signaling most dramatically induced the expression of the proteases neprilysin (NEP/CD10) and aminopeptidase N (APN/CD13). Functional studies showed that constitutive mTORC1 signaling sensitized cells to genetic ablation of NEP and APN, as well as the biochemical inhibition of APN. In summary, these data show that mTORC1 signaling plays a significant role in the constitution of the surfaceome, which in turn may present novel therapeutic strategies. Full Article
de Deep Characterization of the Human Antibody Response to Natural Infection Using Longitudinal Immune Repertoire Sequencing [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 Human antibody response studies are largely restricted to periods of high immune activity (e.g. vaccination). To comprehensively understand the healthy B cell immune repertoire and how this changes over time and through natural infection, we conducted immune repertoire RNA sequencing on flow cytometry-sorted B cell subsets to profile a single individual's antibodies over 11 months through two periods of natural viral infection. We found that 1) a baseline of healthy variable (V) gene usage in antibodies exists and is stable over time, but antibodies in memory cells consistently have a different usage profile relative to earlier B cell stages; 2) a single complementarity-determining region 3 (CDR3) is potentially generated from more than one VJ gene combination; and 3) IgG and IgA antibody transcripts are found at low levels in early human B cell development, suggesting that class switching may occur earlier than previously realized. These findings provide insight into immune repertoire stability, response to natural infections, and human B cell development. Full Article
de Combined EGFR and ROCK Inhibition in Triple-negative Breast Cancer Leads to Cell Death Via Impaired Autophagic Flux [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with very limited therapeutic options. We have recently shown that the combined inhibition of EGFR and ROCK in TNBC cells results in cell death, however, the underlying mechanisms remain unclear. To investigate this, here we applied a mass spectrometry-based proteomic approach to identify proteins altered on single and combination treatments. Our proteomic data revealed autophagy as the major molecular mechanism implicated in the cells' response to combinatorial treatment. We here show that EGFR inhibition by gefitinib treatment alone induces autophagy, a cellular recycling process that acts as a cytoprotective response for TNBC cells. However, combined inhibition of EGFR and ROCK leads to autophagy blockade and accumulation of autophagic vacuoles. Our data show impaired autophagosome clearance as a likely cause of antitumor activity. We propose that the inhibition of the autophagic flux on combinatorial treatment is attributed to the major cytoskeletal changes induced on ROCK inhibition, given the essential role the cytoskeleton plays throughout the various steps of the autophagy process. Full Article
de Interaction Proteomics Identifies ERbeta Association with Chromatin Repressive Complexes to Inhibit Cholesterol Biosynthesis and Exert An Oncosuppressive Role in Triple-negative Breast Cancer [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:29-08:00 Triple-negative breast cancer (TNBC) is characterized by poor response to therapy and low overall patient survival. Recently, Estrogen Receptor beta (ERβ) has been found to be expressed in a fraction of TNBCs where, because of its oncosuppressive actions on the genome, it represents a potential therapeutic target, provided a better understanding of its actions in these tumors becomes available. To this end, the cell lines Hs 578T, MDA-MB-468 and HCC1806, representing the claudin-low, basal-like 1 and 2 TNBC molecular subtypes respectively, were engineered to express ERβ under the control of a Tetracycline-inducible promoter and used to investigate the effects of this transcription factor on gene activity. The antiproliferative effects of ERβ in these cells were confirmed by multiple functional approaches, including transcriptome profiling and global mapping of receptor binding sites in the genome, that revealed direct negative regulation by ERβ of genes, encoding for key components of cellular pathways associated to TNBC aggressiveness representing novel therapeutic targets such as angiogenesis, invasion, metastasis and cholesterol biosynthesis. Supporting these results, interaction proteomics by immunoprecipitation coupled to nano LC-MS/MS mass spectrometry revealed ERβ association with several potential nuclear protein partners, including key components of regulatory complexes known to control chromatin remodeling, transcriptional and post-transcriptional gene regulation and RNA splicing. Among these, ERβ association with the Polycomb Repressor Complexes 1 and 2 (PRC1/2), known for their central role in gene regulation in cancer cells, was confirmed in all three TNBC subtypes investigated, suggesting its occurrence independently from the cellular context. These results demonstrate a significant impact of ERβ in TNBC genome activity mediated by its cooperation with regulatory multiprotein chromatin remodeling complexes, providing novel ground to devise new strategies for the treatment of these diseases based on ligands affecting the activity of this nuclear receptor or some of its protein partners. Full Article
de Advances in Tools to Determine the Glycan-Binding Specificities of Lectins and Antibodies [Reviews] By feedproxy.google.com Published On :: 2020-02-01T00:05:29-08:00 Proteins that bind carbohydrate structures can serve as tools to quantify or localize specific glycans in biological specimens. Such proteins, including lectins and glycan-binding antibodies, are particularly valuable if accurate information is available about the glycans that a protein binds. Glycan arrays have been transformational for uncovering rich information about the nuances and complexities of glycan-binding specificity. A challenge, however, has been the analysis of the data. Because protein-glycan interactions are so complex, simplistic modes of analyzing the data and describing glycan-binding specificities have proven inadequate in many cases. This review surveys the methods for handling high-content data on protein-glycan interactions. We contrast the approaches that have been demonstrated and provide an overview of the resources that are available. We also give an outlook on the promising experimental technologies for generating new insights into protein-glycan interactions, as well as a perspective on the limitations that currently face the field. Full Article
de MaXLinker: Proteome-wide Cross-link Identifications with High Specificity and Sensitivity [Technological Innovation and Resources] By feedproxy.google.com Published On :: 2020-03-01T00:05:26-08:00 Protein-protein interactions play a vital role in nearly all cellular functions. Hence, understanding their interaction patterns and three-dimensional structural conformations can provide crucial insights about various biological processes and underlying molecular mechanisms for many disease phenotypes. Cross-linking mass spectrometry (XL-MS) has the unique capability to detect protein-protein interactions at a large scale along with spatial constraints between interaction partners. The inception of MS-cleavable cross-linkers enabled the MS2-MS3 XL-MS acquisition strategy that provides cross-link information from both MS2 and MS3 level. However, the current cross-link search algorithm available for MS2-MS3 strategy follows a "MS2-centric" approach and suffers from a high rate of mis-identified cross-links. We demonstrate the problem using two new quality assessment metrics ["fraction of mis-identifications" (FMI) and "fraction of interprotein cross-links from known interactions" (FKI)]. We then address this problem, by designing a novel "MS3-centric" approach for cross-link identification and implementing it as a search engine named MaXLinker. MaXLinker outperforms the currently popular search engine with a lower mis-identification rate, and higher sensitivity and specificity. Moreover, we performed human proteome-wide cross-linking mass spectrometry using K562 cells. Employing MaXLinker, we identified a comprehensive set of 9319 unique cross-links at 1% false discovery rate, comprising 8051 intraprotein and 1268 interprotein cross-links. Finally, we experimentally validated the quality of a large number of novel interactions identified in our study, providing a conclusive evidence for MaXLinker's robust performance. Full Article
de Concentration Determination of >200 Proteins in Dried Blood Spots for Biomarker Discovery and Validation [Technological Innovation and Resources] By feedproxy.google.com Published On :: 2020-03-01T00:05:26-08:00 The use of protein biomarkers as surrogates for clinical endpoints requires extensive multilevel validation including development of robust and sensitive assays for precise measurement of protein concentration. Multiple reaction monitoring (MRM) is a well-established mass-spectrometric method that can be used for reproducible protein-concentration measurements in biological specimens collected via microsampling. The dried blood spot (DBS) microsampling technique can be performed non-invasively without the expertise of a phlebotomist, and can enhance analyte stability which facilitate the application of this technique in retrospective studies while providing lower storage and shipping costs, because cold-chain logistics can be eliminated. Thus, precise, sensitive, and multiplexed methods for measuring protein concentrations in DBSs can be used for de novo biomarker discovery and for biomarker quantification or verification experiments. To achieve this goal, MRM assays were developed for multiplexed concentration measurement of proteins in DBSs. The lower limit of quantification (LLOQ) was found to have a median total coefficient of variation (CV) of 18% for 245 proteins, whereas the median LLOQ was 5 fmol of peptide injected on column, and the median inter-day CV over 4 days for measuring endogenous protein concentration was 8%. The majority (88%) of the assays displayed parallelism, whereas the peptide standards remained stable throughout the assay workflow and after exposure to multiple freeze-thaw cycles. For 190 proteins, the measured protein concentrations remained stable in DBS stored at ambient laboratory temperature for up to 2 months. Finally, the developed assays were used to measure the concentration ranges for 200 proteins in twenty same sex, same race and age matched individuals. Full Article
de Discovery of Species-unique Peptide Biomarkers of Bacterial Pathogens by Tandem Mass Spectrometry-based Proteotyping [Research] By feedproxy.google.com Published On :: 2020-03-01T00:05:26-08:00 Mass spectrometry (MS) and proteomics offer comprehensive characterization and identification of microorganisms and discovery of protein biomarkers that are applicable for diagnostics of infectious diseases. The use of biomarkers for diagnostics is widely applied in the clinic and the use of peptide biomarkers is increasingly being investigated for applications in the clinical laboratory. Respiratory-tract infections are a predominant cause for medical treatment, although, clinical assessments and standard clinical laboratory protocols are time-consuming and often inadequate for reliable diagnoses. Novel methods, preferably applied directly to clinical samples, excluding cultivation steps, are needed to improve diagnostics of infectious diseases, provide adequate treatment and reduce the use of antibiotics and associated development of antibiotic resistance. This study applied nano-liquid chromatography (LC) coupled with tandem MS, with a bioinformatics pipeline and an in-house database of curated high-quality reference genome sequences to identify species-unique peptides as potential biomarkers for four bacterial pathogens commonly found in respiratory tract infections (RTIs): Staphylococcus aureus; Moraxella catarrhalis; Haemophilus influenzae and Streptococcus pneumoniae. The species-unique peptides were initially identified in pure cultures of bacterial reference strains, reflecting the genomic variation in the four species and, furthermore, in clinical respiratory tract samples, without prior cultivation, elucidating proteins expressed in clinical conditions of infection. For each of the four bacterial pathogens, the peptide biomarker candidates most predominantly found in clinical samples, are presented. Data are available via ProteomeXchange with identifier PXD014522. As proof-of-principle, the most promising species-unique peptides were applied in targeted tandem MS-analyses of clinical samples and their relevance for identifications of the pathogens, i.e. proteotyping, was validated, thus demonstrating their potential as peptide biomarker candidates for diagnostics of infectious diseases. Full Article
de Peptidomic Analysis of Urine from Youths with Early Type 1 Diabetes Reveals Novel Bioactivity of Uromodulin Peptides In Vitro [Research] By feedproxy.google.com Published On :: 2020-03-01T00:05:26-08:00 Chronic hyperglycemia is known to disrupt the proteolytic milieu, initiating compensatory and maladaptive pathways in the diabetic kidney. Such changes in intrarenal proteolysis are captured by the urinary peptidome. To elucidate the early kidney response to chronic hyperglycemia, we conducted a peptidomic investigation into urines from otherwise healthy youths with type 1 diabetes and their non-diabetic peers using unbiased and targeted mass spectrometry-based techniques. This cross-sectional study included two separate cohorts for the discovery (n = 30) and internal validation (n = 30) of differential peptide excretion. Peptide bioactivity was predicted using PeptideRanker and subsequently verified in vitro. Proteasix and the Nephroseq database were used to identify putative proteases responsible for peptide generation and examine their expression in diabetic nephropathy. A total of 6550 urinary peptides were identified in the discovery analysis. We further examined the subset of 162 peptides, which were quantified across all thirty samples. Of the 15 differentially excreted peptides (p < 0.05), seven derived from a C-terminal region (589SGSVIDQSRVLNLGPITRK607) of uromodulin, a kidney-specific protein. Increased excretion of five uromodulin peptides was replicated in the validation cohort using parallel reaction monitoring (p < 0.05). One of the validated peptides (SGSVIDQSRVLNLGPI) activated NFB and AP-1 signaling, stimulated cytokine release, and enhanced neutrophil migration in vitro. In silico analyses highlighted several potential proteases such as hepsin, meprin A, and cathepsin B to be responsible for generating these peptides. In summary, we identified a urinary signature of uromodulin peptides associated with early type 1 diabetes before clinical manifestations of kidney disease and discovered novel bioactivity of uromodulin peptides in vitro. Our present findings lay the groundwork for future studies to validate peptide excretion in larger and broader populations, to investigate the role of bioactive uromodulin peptides in high glucose conditions, and to examine proteases that cleave uromodulin. Full Article
de The Challenge of Classifying Metastatic Cell Properties by Molecular Profiling Exemplified with Cutaneous Melanoma Cells and Their Cerebral Metastasis from Patient Derived Mouse Xenografts [Research] By feedproxy.google.com Published On :: 2020-03-01T00:05:26-08:00 The prediction of metastatic properties from molecular analyses still poses a major challenge. Here we aimed at the classification of metastasis-related cell properties by proteome profiling making use of cutaneous and brain-metastasizing variants from single melanomas sharing the same genetic ancestry. Previous experiments demonstrated that cultured cells derived from these xenografted variants maintain a stable phenotype associated with a differential metastatic behavior: The brain metastasizing variants produce more spontaneous micro-metastases than the corresponding cutaneous variants. Four corresponding pairs of cutaneous and metastatic cells were obtained from four individual patients, resulting in eight cell-lines presently investigated. Label free proteome profiling revealed significant differences between corresponding pairs of cutaneous and cerebellar metastases from the same patient. Indeed, each brain metastasizing variant expressed several apparently metastasis-associated proteomic alterations as compared with the corresponding cutaneous variant. Among the differentially expressed proteins we identified cell adhesion molecules, immune regulators, epithelial to mesenchymal transition markers, stem cell markers, redox regulators and cytokines. Similar results were observed regarding eicosanoids, considered relevant for metastasis, such as PGE2 and 12-HETE. Multiparametric morphological analysis of cells also revealed no characteristic alterations associated with the cutaneous and brain metastasis variants. However, no correct classification regarding metastatic potential was yet possible with the present data. We thus concluded that molecular profiling is able to classify cells according to known functional categories but is not yet able to predict relevant cell properties emerging from networks consisting of many interconnected molecules. The presently observed broad diversity of molecular patterns, irrespective of restricting to one tumor type and two main classes of metastasis, highlights the important need to develop meta-analysis strategies to predict cell properties from molecular profiling data. Such base knowledge will greatly support future individualized precision medicine approaches. Full Article
de Proteomic Analysis Reveals that Topoisomerase 2A is Associated with Defective Sperm Head Morphology [Research] By feedproxy.google.com Published On :: 2020-03-01T00:05:26-08:00 Male infertility is widespread and estimated to affect 1 in 20 men. Although in some cases the etiology of the condition is well understood, for at least 50% of men, the underlying cause is yet to be classified. Male infertility, or subfertility, is often diagnosed by looking at total sperm produced, motility of the cells and overall morphology. Although counting spermatozoa and their associated motility is routine, morphology assessment is highly subjective, mainly because of the procedure being based on microscopic examination. A failure to diagnose male-infertility or sub-fertility has led to a situation where assisted conception is often used unnecessarily. As such, biomarkers of male infertility are needed to help establish a more consistent diagnosis. In the present study, we compared nuclear extracts from both high- and low-quality spermatozoa by LC-MS/MS based proteomic analysis. Our data shows that nuclear retention of specific proteins is a common facet among low-quality sperm cells. We demonstrate that the presence of Topoisomerase 2A in the sperm head is highly correlated to poor head morphology. Topoisomerase 2A is therefore a potential new biomarker for confirming male infertility in clinical practice. Full Article
de Guidance Document: Validation of a High-Performance Liquid Chromatography-Tandem Mass Spectrometry Immunopeptidomics Assay for the Identification of HLA Class I Ligands Suitable for Pharmaceutical Therapies [Commentary] By feedproxy.google.com Published On :: 2020-03-01T00:05:26-08:00 For more than two decades naturally presented, human leukocyte antigen (HLA)-restricted peptides (immunopeptidome) have been eluted and sequenced using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Since, identified disease-associated HLA ligands have been characterized and evaluated as potential active substances. Treatments based on HLA-presented peptides have shown promising results in clinical application as personalized T cell-based immunotherapy. Peptide vaccination cocktails are produced as investigational medicinal products under GMP conditions. To support clinical trials based on HLA-presented tumor-associated antigens, in this study the sensitive LC-MS/MS HLA class I antigen identification pipeline was fully validated for our technical equipment according to the current US Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidelines. The immunopeptidomes of JY cells with or without spiked-in, isotope labeled peptides, of peripheral blood mononuclear cells of healthy volunteers as well as a chronic lymphocytic leukemia and a bladder cancer sample were reliably identified using a data-dependent acquisition method. As the LC-MS/MS pipeline is used for identification purposes, the validation parameters include accuracy, precision, specificity, limit of detection and robustness. Full Article
de Tandem Mass Tag Approach Utilizing Pervanadate BOOST Channels Delivers Deeper Quantitative Characterization of the Tyrosine Phosphoproteome [Technological Innovation and Resources] By feedproxy.google.com Published On :: 2020-04-01T00:05:32-07:00 Dynamic tyrosine phosphorylation is fundamental to a myriad of cellular processes. However, the inherently low abundance of tyrosine phosphorylation in the proteome and the inefficient enrichment of phosphotyrosine(pTyr)-containing peptides has led to poor pTyr peptide identification and quantitation, critically hindering researchers' ability to elucidate signaling pathways regulated by tyrosine phosphorylation in systems where cellular material is limited. The most popular approaches to wide-scale characterization of the tyrosine phosphoproteome use pTyr enrichment with pan-specific, anti-pTyr antibodies from a large amount of starting material. Methods that decrease the amount of starting material and increase the characterization depth of the tyrosine phosphoproteome while maintaining quantitative accuracy and precision would enable the discovery of tyrosine phosphorylation networks in rarer cell populations. To achieve these goals, the BOOST (Broad-spectrum Optimization Of Selective Triggering) method leveraging the multiplexing capability of tandem mass tags (TMT) and the use of pervanadate (PV) boost channels (cells treated with the broad-spectrum tyrosine phosphatase inhibitor PV) selectively increased the relative abundance of pTyr-containing peptides. After PV boost channels facilitated selective fragmentation of pTyr-containing peptides, TMT reporter ions delivered accurate quantitation of each peptide for the experimental samples while the quantitation from PV boost channels was ignored. This method yielded up to 6.3-fold boost in pTyr quantification depth of statistically significant data derived from contrived ratios, compared with TMT without PV boost channels or intensity-based label-free (LF) quantitation while maintaining quantitative accuracy and precision, allowing quantitation of over 2300 unique pTyr peptides from only 1 mg of T cell receptor-stimulated Jurkat T cells. The BOOST strategy can potentially be applied in analyses of other post-translational modifications where treatments that broadly elevate the levels of those modifications across the proteome are available. Full Article
de Large-scale Identification of N-linked Intact Glycopeptides in Human Serum using HILIC Enrichment and Spectral Library Search [Research] By feedproxy.google.com Published On :: 2020-04-01T00:05:32-07:00 Large-scale identification of N-linked intact glycopeptides by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in human serum is challenging because of the wide dynamic range of serum protein abundances, the lack of a complete serum N-glycan database and the existence of proteoforms. In this regard, a spectral library search method was presented for the identification of N-linked intact glycopeptides from N-linked glycoproteins in human serum with target-decoy and motif-specific false discovery rate (FDR) control. Serum proteins were firstly separated into low-abundance and high-abundance proteins by acetonitrile (ACN) precipitation. After digestion, the N-linked intact glycopeptides were enriched by hydrophilic interaction liquid chromatography (HILIC) and a portion of the enriched N-linked intact glycopeptides were processed by Peptide-N-Glycosidase F (PNGase F) to generate N-linked deglycopeptides. Both N-linked intact glycopeptides and deglycopeptides were analyzed by LC-MS/MS. From N-linked deglycopeptides data sets, 764 N-linked glycoproteins, 1699 N-linked glycosites and 3328 unique N-linked deglycopeptides were identified. Four types of N-linked glycosylation motifs (NXS/T/C/V, X=P) were used to recognize the N-linked deglycopeptides. The spectra of these N-linked deglycopeptides were utilized for N-linked deglycopeptides library construction and identification of N-linked intact glycopeptides. A database containing 739 N-glycan masses was constructed and utilized during spectral library search for the identification of N-linked intact glycopeptides. In total, 526 N-linked glycoproteins, 1036 N-linked glycosites, 22,677 N-linked intact glycopeptides and 738 N-glycan masses were identified under 1% FDR, representing the most in-depth serum N-glycoproteome identified by LC-MS/MS at N-linked intact glycopeptide level. Full Article
de Arginine in C9ORF72 Dipolypeptides Mediates Promiscuous Proteome Binding and Multiple Modes of Toxicity [Research] By feedproxy.google.com Published On :: 2020-04-01T00:05:32-07:00 C9ORF72-associated Motor Neuron Disease patients feature abnormal expression of 5 dipeptide repeat (DPR) polymers. Here we used quantitative proteomics in a mouse neuronal-like cell line (Neuro2a) to demonstrate that the Arg residues in the most toxic DPRS, PR and GR, leads to a promiscuous binding to the proteome compared with a relative sparse binding of the more inert AP and GA. Notable targets included ribosomal proteins, translation initiation factors and translation elongation factors. PR and GR comprising more than 10 repeats appeared to robustly stall on ribosomes during translation suggesting Arg-rich peptide domains can electrostatically jam the ribosome exit tunnel during synthesis. Poly-GR also recruited arginine methylases, induced hypomethylation of endogenous proteins, and induced a profound destabilization of the actin cytoskeleton. Our findings point to arginine in GR and PR polymers as multivalent toxins to translation as well as arginine methylation that may explain the dysfunction of biological processes including ribosome biogenesis, mRNA splicing and cytoskeleton assembly. Full Article
de Improving Identification of In-organello Protein-Protein Interactions Using an Affinity-enrichable, Isotopically Coded, and Mass Spectrometry-cleavable Chemical Crosslinker [Research] By feedproxy.google.com Published On :: 2020-04-01T00:05:32-07:00 An experimental and computational approach for identification of protein-protein interactions by ex vivo chemical crosslinking and mass spectrometry (CLMS) has been developed that takes advantage of the specific characteristics of cyanurbiotindipropionylsuccinimide (CBDPS), an affinity-tagged isotopically coded mass spectrometry (MS)-cleavable crosslinking reagent. Utilizing this reagent in combination with a crosslinker-specific data-dependent acquisition strategy based on MS2 scans, and a software pipeline designed for integrating crosslinker-specific mass spectral information led to demonstrated improvements in the application of the CLMS technique, in terms of the detection, acquisition, and identification of crosslinker-modified peptides. This approach was evaluated on intact yeast mitochondria, and the results showed that hundreds of unique protein-protein interactions could be identified on an organelle proteome-wide scale. Both known and previously unknown protein-protein interactions were identified. These interactions were assessed based on their known sub-compartmental localizations. Additionally, the identified crosslinking distance constraints are in good agreement with existing structural models of protein complexes involved in the mitochondrial electron transport chain. Full Article
de Phenotypic Adaption of Pseudomonas aeruginosa by Hacking Siderophores Produced by Other Microorganisms [Research] By feedproxy.google.com Published On :: 2020-04-01T00:05:32-07:00 Bacteria secrete siderophores to access iron, a key nutrient poorly bioavailable and the source of strong competition between microorganisms in most biotopes. Many bacteria also use siderophores produced by other microorganisms (exosiderophores) in a piracy strategy. Pseudomonas aeruginosa, an opportunistic pathogen, produces two siderophores, pyoverdine and pyochelin, and is also able to use a panel of exosiderophores. We first investigated expression of the various iron-uptake pathways of P. aeruginosa in three different growth media using proteomic and RT-qPCR approaches and observed three different phenotypic patterns, indicating complex phenotypic plasticity in the expression of the various iron-uptake pathways. We then investigated the phenotypic plasticity of iron-uptake pathway expression in the presence of various exosiderophores (present individually or as a mixture) under planktonic growth conditions, as well as in an epithelial cell infection assay. In all growth conditions tested, catechol-type exosiderophores were clearly more efficient in inducing the expression of their corresponding transporters than the others, showing that bacteria opt for the use of catechol siderophores to access iron when they are present in the environment. In parallel, expression of the proteins of the pyochelin pathway was significantly repressed under most conditions tested, as well as that of proteins of the pyoverdine pathway, but to a lesser extent. There was no effect on the expression of the heme and ferrous uptake pathways. Overall, these data provide precise insights on how P. aeruginosa adjusts the expression of its various iron-uptake pathways (phenotypic plasticity and switching) to match varying levels of iron and competition. Full Article
de Phosphotyrosine-based Phosphoproteomics for Target Identification and Drug Response Prediction in AML Cell Lines [Research] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 Acute myeloid leukemia (AML) is a clonal disorder arising from hematopoietic myeloid progenitors. Aberrantly activated tyrosine kinases (TK) are involved in leukemogenesis and are associated with poor treatment outcome. Kinase inhibitor (KI) treatment has shown promise in improving patient outcome in AML. However, inhibitor selection for patients is suboptimal. In a preclinical effort to address KI selection, we analyzed a panel of 16 AML cell lines using phosphotyrosine (pY) enrichment-based, label-free phosphoproteomics. The Integrative Inferred Kinase Activity (INKA) algorithm was used to identify hyperphosphorylated, active kinases as candidates for KI treatment, and efficacy of selected KIs was tested. Heterogeneous signaling was observed with between 241 and 2764 phosphopeptides detected per cell line. Of 4853 identified phosphopeptides with 4229 phosphosites, 4459 phosphopeptides (4430 pY) were linked to 3605 class I sites (3525 pY). INKA analysis in single cell lines successfully pinpointed driver kinases (PDGFRA, JAK2, KIT and FLT3) corresponding with activating mutations present in these cell lines. Furthermore, potential receptor tyrosine kinase (RTK) drivers, undetected by standard molecular analyses, were identified in four cell lines (FGFR1 in KG-1 and KG-1a, PDGFRA in Kasumi-3, and FLT3 in MM6). These cell lines proved highly sensitive to specific KIs. Six AML cell lines without a clear RTK driver showed evidence of MAPK1/3 activation, indicative of the presence of activating upstream RAS mutations. Importantly, FLT3 phosphorylation was demonstrated in two clinical AML samples with a FLT3 internal tandem duplication (ITD) mutation. Our data show the potential of pY-phosphoproteomics and INKA analysis to provide insight in AML TK signaling and identify hyperactive kinases as potential targets for treatment in AML cell lines. These results warrant future investigation of clinical samples to further our understanding of TK phosphorylation in relation to clinical response in the individual patient. Full Article
de Identification of an Unconventional Subpeptidome Bound to the Behcet's Disease-associated HLA-B*51:01 that is Regulated by Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) [Research] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 Human leukocyte antigen (HLA) B*51:01 and endoplasmic reticulum aminopeptidase 1 (ERAP1) are strongly genetically associated with Behcet's disease (BD). Previous studies have defined two subgroups of HLA-B*51 peptidome containing proline (Pro) or alanine (Ala) at position 2 (P2). Little is known about the unconventional non-Pro/Ala2 HLA-B*51-bound peptides. We aimed to study the features of this novel subpeptidome, and investigate its regulation by ERAP1. CRISPR-Cas9 was used to generate an HLA-ABC-triple knockout HeLa cell line (HeLa.ABC-KO), which was subsequently transduced to express HLA-B*51:01 (HeLa.ABC-KO.B51). ERAP1 was silenced using lentiviral shRNA. Peptides bound to HLA-B*51:01 were eluted and analyzed by mass spectrometry. The characteristics of non-Pro/Ala2, Pro2, and Ala2 peptides and their alteration by ERAP1 silencing were investigated. Effects of ERAP1 silencing on cell surface expression of HLA-B*51:01 were studied using flow cytometry. More than 20% of peptides eluted from HLA-B*51:01 lacked Pro or Ala at P2. This unconventional group of HLA-B*51:01-bound peptides was relatively enriched for 8-mers (with relatively fewer 9-mers) compared with the Pro2 and Ala2 subpeptidomes and had similar N-terminal and C-terminal residue usages to Ala2 peptides (with the exception of the less abundant leucine at position ). Knockdown of ERAP1 increased the percentage of non-Pro/Ala2 from 20% to ~40%, increased the percentage of longer (10-mer and 11-mer) peptides eluted from HLA-B*51:01 complexes, and abrogated the predominance of leucine at P1. Interestingly knockdown of ERAP1 altered the length and N-terminal residue usage of non-Ala2&Pro2 and Ala2 but not the Pro2 peptides. Finally, ERAP1 silencing regulated the expression levels of cell surface HLA-B*51 in a cell-type-dependent manner. In conclusion, we have used a novel methodology to identify an unconventional but surprisingly abundant non-Pro/Ala2 HLA-B*51:01 subpeptidome. It is increased by knockdown of ERAP1, a gene affecting the risk of developing BD. This has implications for theories of disease pathogenesis. Full Article
de Human Hepatocyte Nuclear Factor 4-{alpha} Encodes Isoforms with Distinct Transcriptional Functions [Research] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 HNF4α is a nuclear receptor produced as 12 isoforms from two promoters by alternative splicing. To characterize the transcriptional capacities of all 12 HNF4α isoforms, stable lines expressing each isoform were generated. The entire transcriptome associated with each isoform was analyzed as well as their respective interacting proteome. Major differences were noted in the transcriptional function of these isoforms. The α1 and α2 isoforms were the strongest regulators of gene expression whereas the α3 isoform exhibited significantly reduced activity. The α4, α5, and α6 isoforms, which use an alternative first exon, were characterized for the first time, and showed a greatly reduced transcriptional potential with an inability to recognize the consensus response element of HNF4α. Several transcription factors and coregulators were identified as potential specific partners for certain HNF4α isoforms. An analysis integrating the vast amount of omics data enabled the identification of transcriptional regulatory mechanisms specific to certain HNF4α isoforms, hence demonstrating the importance of considering all isoforms given their seemingly diverse functions. Full Article
de The Secretome Profiling of a Pediatric Airway Epithelium Infected with hRSV Identified Aberrant Apical/Basolateral Trafficking and Novel Immune Modulating (CXCL6, CXCL16, CSF3) and Antiviral (CEACAM1) Proteins [Research] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 The respiratory epithelium comprises polarized cells at the interface between the environment and airway tissues. Polarized apical and basolateral protein secretions are a feature of airway epithelium homeostasis. Human respiratory syncytial virus (hRSV) is a major human pathogen that primarily targets the respiratory epithelium. However, the consequences of hRSV infection on epithelium secretome polarity and content remain poorly understood. To investigate the hRSV-associated apical and basolateral secretomes, a proteomics approach was combined with an ex vivo pediatric human airway epithelial (HAE) model of hRSV infection (data are available via ProteomeXchange and can be accessed at https://www.ebi.ac.uk/pride/ with identifier PXD013661). Following infection, a skewing of apical/basolateral abundance ratios was identified for several individual proteins. Novel modulators of neutrophil and lymphocyte activation (CXCL6, CSF3, SECTM1 or CXCL16), and antiviral proteins (BST2 or CEACAM1) were detected in infected, but not in uninfected cultures. Importantly, CXCL6, CXCL16, CSF3 were also detected in nasopharyngeal aspirates (NPA) from hRSV-infected infants but not healthy controls. Furthermore, the antiviral activity of CEACAM1 against RSV was confirmed in vitro using BEAS-2B cells. hRSV infection disrupted the polarity of the pediatric respiratory epithelial secretome and was associated with immune modulating proteins (CXCL6, CXCL16, CSF3) never linked with this virus before. In addition, the antiviral activity of CEACAM1 against hRSV had also never been previously characterized. This study, therefore, provides novel insights into RSV pathogenesis and endogenous antiviral responses in pediatric airway epithelium. Full Article
de Decreased Immunoglobulin G Core Fucosylation, A Player in Antibody-dependent Cell-mediated Cytotoxicity, is Associated with Autoimmune Thyroid Diseases [Research] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 Autoimmune thyroid diseases (AITD) are the most common group of autoimmune diseases, associated with lymphocyte infiltration and the production of thyroid autoantibodies, like thyroid peroxidase antibodies (TPOAb), in the thyroid gland. Immunoglobulins and cell-surface receptors are glycoproteins with distinctive glycosylation patterns that play a structural role in maintaining and modulating their functions. We investigated associations of total circulating IgG and peripheral blood mononuclear cells glycosylation with AITD and the influence of genetic background in a case-control study with several independent cohorts and over 3,000 individuals in total. The study revealed an inverse association of IgG core fucosylation with TPOAb and AITD, as well as decreased peripheral blood mononuclear cells antennary α1,2 fucosylation in AITD, but no shared genetic variance between AITD and glycosylation. These data suggest that the decreased level of IgG core fucosylation is a risk factor for AITD that promotes antibody-dependent cell-mediated cytotoxicity previously associated with TPOAb levels. Full Article
de Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches [Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 The study of protein subcellular distribution, their assembly into complexes and the set of proteins with which they interact with is essential to our understanding of fundamental biological processes. Complementary to traditional assays, proximity-dependent biotinylation (PDB) approaches coupled with mass spectrometry (such as BioID or APEX) have emerged as powerful techniques to study proximal protein interactions and the subcellular proteome in the context of living cells and organisms. Since their introduction in 2012, PDB approaches have been used in an increasing number of studies and the enzymes themselves have been subjected to intensive optimization. How these enzymes have been optimized and considerations for their use in proteomics experiments are important questions. Here, we review the structural diversity and mechanisms of the two main classes of PDB enzymes: the biotin protein ligases (BioID) and the peroxidases (APEX). We describe the engineering of these enzymes for PDB and review emerging applications, including the development of PDB for coincidence detection (split-PDB). Lastly, we briefly review enzyme selection and experimental design guidelines and reflect on the labeling chemistries and their implication for data interpretation. Full Article
de Biosynthesis of depsipeptides with a 3-hydroxybenzoate moiety and selective anticancer activities involves a chorismatase [Metabolism] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Neoantimycins are anticancer compounds of 15-membered ring antimycin-type depsipeptides. They are biosynthesized by a hybrid multimodular protein complex of nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS), typically from the starting precursor 3-formamidosalicylate. Examining fermentation extracts of Streptomyces conglobatus, here we discovered four new neoantimycin analogs, unantimycins B–E, in which 3-formamidosalicylates are replaced by an unusual 3-hydroxybenzoate (3-HBA) moiety. Unantimycins B–E exhibited levels of anticancer activities similar to those of the chemotherapeutic drug cisplatin in human lung cancer, colorectal cancer, and melanoma cells. Notably, they mostly displayed no significant toxicity toward noncancerous cells, unlike the serious toxicities generally reported for antimycin-type natural products. Using site-directed mutagenesis and heterologous expression, we found that unantimycin productions are correlated with the activity of a chorismatase homolog, the nat-hyg5 gene, from a type I PKS gene cluster. Biochemical analysis confirmed that the catalytic activity of Nat-hyg5 generates 3-HBA from chorismate. Finally, we achieved selective production of unantimycins B and C by engineering a chassis host. On the basis of these findings, we propose that unantimycin biosynthesis is directed by the neoantimycin-producing NRPS–PKS complex and initiated with the starter unit of 3-HBA. The elucidation of the biosynthetic unantimycin pathway reported here paves the way to improve the yield of these compounds for evaluation in oncotherapeutic applications. Full Article
de A peroxisome deficiency-induced reductive cytosol state up-regulates the brain-derived neurotrophic factor pathway [Metabolism] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 The peroxisome is a subcellular organelle that functions in essential metabolic pathways, including biosynthesis of plasmalogens, fatty acid β-oxidation of very-long-chain fatty acids, and degradation of hydrogen peroxide. Peroxisome biogenesis disorders (PBDs) manifest as severe dysfunction in multiple organs, including the central nervous system (CNS), but the pathogenic mechanisms in PBDs are largely unknown. Because CNS integrity is coordinately established and maintained by neural cell interactions, we here investigated whether cell-cell communication is impaired and responsible for the neurological defects associated with PBDs. Results from a noncontact co-culture system consisting of primary hippocampal neurons with glial cells revealed that a peroxisome-deficient astrocytic cell line secretes increased levels of brain-derived neurotrophic factor (BDNF), resulting in axonal branching of the neurons. Of note, the BDNF expression in astrocytes was not affected by defects in plasmalogen biosynthesis and peroxisomal fatty acid β-oxidation in the astrocytes. Instead, we found that cytosolic reductive states caused by a mislocalized catalase in the peroxisome-deficient cells induce the elevation in BDNF secretion. Our results suggest that peroxisome deficiency dysregulates neuronal axogenesis by causing a cytosolic reductive state in astrocytes. We conclude that astrocytic peroxisomes regulate BDNF expression and thereby support neuronal integrity and function. Full Article
de COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism. Full Article
de The mRNA levels of heat shock factor 1 are regulated by thermogenic signals via the cAMP-dependent transcription factor ATF3 [Metabolism] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Heat shock factor 1 (HSF1) regulates cellular adaptation to challenges such as heat shock and oxidative and proteotoxic stresses. We have recently reported a previously unappreciated role for HSF1 in the regulation of energy metabolism in fat tissues; however, whether HSF1 is differentially expressed in adipose depots and how its levels are regulated in fat tissues remain unclear. Here, we show that HSF1 levels are higher in brown and subcutaneous fat tissues than in those in the visceral depot and that HSF1 is more abundant in differentiated, thermogenic adipocytes. Gene expression experiments indicated that HSF1 is transcriptionally regulated in fat by agents that modulate cAMP levels, by cold exposure, and by pharmacological stimulation of β-adrenergic signaling. An in silico promoter analysis helped identify a putative response element for activating transcription factor 3 (ATF3) at −258 to −250 base pairs from the HSF1 transcriptional start site, and electrophoretic mobility shift and ChIP assays confirmed ATF3 binding to this sequence. Furthermore, functional assays disclosed that ATF3 is necessary and sufficient for HSF1 regulation. Detailed gene expression analysis revealed that ATF3 is one of the most highly induced ATFs in thermogenic tissues of mice exposed to cold temperatures or treated with the β-adrenergic receptor agonist CL316,243 and that its expression is induced by modulators of cAMP levels in isolated adipocytes. To the best of our knowledge, our results show for the first time that HSF1 is transcriptionally controlled by ATF3 in response to classic stimuli that promote heat generation in thermogenic tissues. Full Article
de Glucose availability but not changes in pancreatic hormones sensitizes hepatic AMPK activity during nutritional transition in rodents [Metabolism] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 The cellular energy sensor AMP-activated protein kinase (AMPK) is a metabolic regulator that mediates adaptation to nutritional variations to maintain a proper energy balance in cells. We show here that suckling-weaning and fasting-refeeding transitions in rodents are associated with changes in AMPK activation and the cellular energy state in the liver. These nutritional transitions were characterized by a metabolic switch from lipid to glucose utilization, orchestrated by modifications in glucose levels and the glucagon/insulin ratio in the bloodstream. We therefore investigated the respective roles of glucose and pancreatic hormones on AMPK activation in mouse primary hepatocytes. We found that glucose starvation transiently activates AMPK, whereas changes in glucagon and insulin levels had no impact on AMPK. Challenge of hepatocytes with metformin-induced metabolic stress strengthened both AMPK activation and cellular energy depletion under limited-glucose conditions, whereas neither glucagon nor insulin altered AMPK activation. Although both insulin and glucagon induced AMPKα phosphorylation at its Ser485/491 residue, they did not affect its activity. Finally, the decrease in cellular ATP levels in response to an energy stress was additionally exacerbated under fasting conditions and by AMPK deficiency in hepatocytes, revealing metabolic inflexibility and emphasizing the importance of AMPK for maintaining hepatic energy charge. Our results suggest that nutritional changes (i.e. glucose availability), rather than the related hormonal changes (i.e. the glucagon/insulin ratio), sensitize AMPK activation to the energetic stress induced by the dietary transition during fasting. This effect is critical for preserving the cellular energy state in the liver. Full Article
de Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Treatment of patients with triple-negative breast cancer (TNBC) is limited by a lack of effective molecular therapies targeting this disease. Recent studies have identified metabolic alterations in cancer cells that can be targeted to improve responses to standard-of-care chemotherapy regimens. Using MDA-MB-468 and SUM-159PT TNBC cells, along with LC-MS/MS and HPLC metabolomics profiling, we found here that exposure of TNBC cells to the cytotoxic chemotherapy drugs cisplatin and doxorubicin alter arginine and polyamine metabolites. This alteration was because of a reduction in the levels and activity of a rate-limiting polyamine biosynthetic enzyme, ornithine decarboxylase (ODC). Using gene silencing and inhibitor treatments, we determined that the reduction in ODC was mediated by its negative regulator antizyme, targeting ODC to the proteasome for degradation. Treatment with the ODC inhibitor difluoromethylornithine (DFMO) sensitized TNBC cells to chemotherapy, but this was not observed in receptor-positive breast cancer cells. Moreover, TNBC cell lines had greater sensitivity to single-agent DFMO, and ODC levels were elevated in TNBC patient samples. The alterations in polyamine metabolism in response to chemotherapy, as well as DFMO-induced preferential sensitization of TNBC cells to chemotherapy, reported here suggest that ODC may be a targetable metabolic vulnerability in TNBC. Full Article
de South-east Queensland poised to be digital leader: Cisco By www.smh.com.au Published On :: Fri, 14 Aug 2015 01:27:27 GMT 30,000 new jobs, $10 billion economy boost could be heading for SEQ. Full Article
de Australian Federal Police walk away from $145 million Israeli crime-fighting software deal By www.smh.com.au Published On :: Wed, 19 Aug 2015 06:25:36 GMT Police walk away from deal with contractor, conceding numerous issues have put project beyond rescue. Full Article
de Malcolm Turnbull visits Sunshine Coast to view proposal for new undersea communications cable By www.smh.com.au Published On :: Thu, 03 Sep 2015 11:59:04 GMT A plan to make the Sunshine Coast a vital internet gateway is luring Communications Minister Malcolm Turnbull to the area on Friday to view the proposal in person. Full Article
de Canberra's north-south divided over internet surfing and the NBN By www.smh.com.au Published On :: Sat, 12 Sep 2015 08:45:46 GMT It's another front in the long-running rivalry beneath north and south in the nation's capital. Full Article
de Sydney start-up Suppertime acquired by food delivery giant By www.smh.com.au Published On :: Mon, 12 Oct 2015 06:29:04 GMT Australian premium restaurant delivery service Suppertime has been snapped by a major international company, as the local food delivery market continues to heat up. Full Article
de Australian public service's 'gap in capability' to deal with digital revolution By www.smh.com.au Published On :: Thu, 29 Oct 2015 00:19:02 GMT State of the Service report outlines the major hurdle to digital reform. Full Article
de Australian companies targeted by identity thieves for tax frauds By www.smh.com.au Published On :: Tue, 10 Nov 2015 02:08:52 GMT Australian companies are having their identities hijacked by international criminals who use them to try to defraud the Australian Taxation Office. Full Article
de Identity fraudsters attack Tax Office at least 11,000 times in one year By www.smh.com.au Published On :: Tue, 03 Nov 2015 13:55:23 GMT The ATO has been targeted more than 11,000 times by identity fraudsters attempting to steal tax refunds in 2014-15. Full Article
de Delayed Australian data breach notification bill lands By www.smh.com.au Published On :: Fri, 04 Dec 2015 04:27:12 GMT Australians will be informed of certain breaches of their personal information under new laws being proposed by the Turnbull government, but only if the company or organisation breached turns over $3 million in revenue a year. Full Article
de ACT government defends seeking access to Canberrans' metadata By www.smh.com.au Published On :: Sun, 31 Jan 2016 13:00:00 GMT The ACT government has defended its right to seek access to Canberrans' private phone and internet records without a warrant. Full Article
de Hacking peak hour takes Aussies for a ride By www.smh.com.au Published On :: Tue, 23 Feb 2016 20:26:01 GMT Tuesday morning is peak hour for hackers as social engineering becomes their weapon of choice, shifting away from security exploits to focus on tricking people into doing their bidding. Full Article
de Branching out after death: where next for the 'Internet of Things'? By www.smh.com.au Published On :: Wed, 30 Mar 2016 07:53:02 GMT It turns out that even death needs the internet. Full Article
de Governments should hack less, deliver better online services: Harvard IT expert By www.smh.com.au Published On :: Sat, 30 Jul 2016 13:30:00 GMT Western governments have established the international norm of online hacking and should not be surprised when foreign governments do the same. Full Article
de Can the government really protect your privacy when it 'de-identifies' public data? By www.smh.com.au Published On :: Mon, 05 Dec 2016 12:45:00 GMT We don't really know to how to use big data and protect personal information at the same time. Full Article
de Centrelink debt debacle shows government is unprepared for digital revolution By www.smh.com.au Published On :: Mon, 06 Feb 2017 13:15:00 GMT The public service needs to embrace partnerships if it's to harvest big data's massive yields. Full Article