ntr

Servo-controlled three axis wire straightening device

A wire straightener comprises a wire feed path, a first set of rollers disposed in a first plane along the wire feed path, a second set of rollers disposed in a second plane along the wire feed path, the first and second planes being substantially perpendicular to one another, a first motor operable to adjust a position of at least one of the rollers of the first set of rollers when actuated, and a second motor operable to adjust a position of at least one of the rollers of the second set of rollers when actuated.




ntr

Power and control for wireless anti-two block system

A power generator is associated with a crane boom at or near the tip of the boom. The generator responds to movement of the lifting cable to initiate the transmission of a signal to a crane controller. The signal serves as a start-up or a wake-up signal to the crane controller which may then immediately analyze operation of, for example, an anti-two block device associated with the boom tip. The crane controller may then control the operation of the crane in accordance with signals received from the anti-two block device or immediately identify malfunctions of the anti-two block device and control the crane operations accordingly.




ntr

Method for controlling a hoisting or paying out movement and hoisting frame having tiltable cable shreave for use therein

A method for controlling a hoisting or lowering movement of a load, which is suspended from a hoisting mechanism of a crane by means of at least two hoisting cables trained round cable sheaves on the load, by monitoring the position of the load and braking and/or stopping the hoisting mechanism upon detection of an undesirable position, wherein the cable sheaves are each connected to the load for pivoting about a horizontal axis, and the position of the load is monitored by detecting a pivoting movement of at least one of the cable sheaves.




ntr

Load hook control device for a crane

A crane, in particular a lattice mast crane, having a bottom hook block with a load suspension means, in particular a load hook, wherein the bottom hook block has at least one winch whose outgoing control rope is connected or connectable to the crane boom for securing and/or aligning the load position or bottom hook block position.




ntr

Method of swing stopping control and system of swing stopping control of suspended load of crane

A method of swing stopping control of a suspended load of a crane including a hoist and a trolley solves an equation of motion, given as an equation with respect to the deviation angle of a suspended load from the vertical direction when the trolley travels, for the trolley acceleration to thereby obtain the value of the acceleration or deceleration of the trolley, obtains speed patterns corresponding to the values of the acceleration or deceleration, drives the trolley according to the obtained speed patterns, and carries out control so that the deviation angle of the suspended load from the vertical direction becomes zero at the time when the acceleration or deceleration of the trolley is ended. Thus, even if the length of a rope holding the suspended load up is changed, a required speed pattern is produced to permit highly accurate positioning.




ntr

Luffing-jib tower crane with jib angle error control

A luffing-jib tower crane, comprising a tower and a jib which is connected to the tower via a joint and is held by a luffing cable, wherein the length of the luffing cable can be changed by a drawing-in unit, by the luffing cable being wound onto or unwound from a cable drum of the drawing-in unit, wherein the angle of the jib with respect to the horizontal plane is measured by a first sensor winch is attached to the jib (first angular value), wherein a measuring device measures the length of the unwound part of the luffing cable, from which length the minimum angle of the jib with respect to the horizontal plane (second angular value) can be calculated, and the first angular value can be compared with the second angular value.




ntr

Controlling method, system and device for hook deviation

A controlling method for a hook deviation to regulate the deviation angle of a telescopic crane hook, involves following steps: A. Detecting the deviation angle and deviation direction of a rope, which is linked to the hook, in the horizontal plane relative to the direction of gravitational force; B. Judging whether the deviation angle is more than the predetermined value, if the deviation angle is more than the predetermined value, then turning to step C, and if the deviation angle is less than the predetermined value, then turning to step A; C. Compensatively controlling the deviation angle of the hook according to the deviation angle and direction. And a controlling system for the hook deviation and a controlling device for the hook deviation are provided. The method or system or device enables the detection of the deviation angle and direction of the hook in a quick and precise manner, and the compensatory control of the deviation angle of the hook is performed according to the detected deviation angle and direction, thus it avoids overdependence on human factor and reduces potential safety risks.




ntr

Gantry robot system

A gantry robot system includes a bridge assembly and a carriage assembly. The bridge assembly and/or a mounting plate supported by the carriage assembly can be rotationally skewed.




ntr

Field adjustable gas valve and method of control

A valve unit includes a valve member that moves relative to a valve seat in response to a magnetic field generated by a coil. An input signal to the coil controls the extent of movement of the valve member relative to the valve seat, to control a gas flow rate therethrough. The gas valve unit also includes a setting adjustment device that provides a setting adjustment input utilized for calibrating or adjusting at least one gas flow rate. A valve controller is configured to receive an activation signal and to responsively send an input signal to the coil to move the valve member and establish at least one desired gas flow rate corresponding to the activation signal, wherein the valve controller is configured to adjust the input signal to the coil based on the setting adjustment input, to thereby enable field adjustment of at least one gas flow rate.




ntr

Valve, fluid control device

In a fluid control device, a check valve includes a first valve housing and a first diaphragm. The first diaphragm defines a first valve chamber and a second valve chamber. An exhaust valve includes a second valve housing and a second diaphragm. The second diaphragm defines a third valve chamber and a fourth valve chamber. The check valve is opened and closed by a difference in pressure between the first valve chamber and the second valve chamber. The exhaust valve is opened and closed by a difference in pressure between the third valve chamber and the fourth valve chamber.




ntr

Flow control device and flow control method

Disclosed herein is an improved method for reversed flow through a self-adjustable (autonomous) valve or flow control device (2), comprising the step of providing an overpressure on the side of the valve (2) opposite of the side of the inlet (10) exceeding a predetermined biasing force of the resilient member (24) causing lifting of the inner body part (4a) within the outer body part (4b) against said biasing force from a first position of fluid flow between an inner and an outer side of the valve (2) via the flow path (11) and to a second position of reversed fluid flow between said inner and outer side through the second flow path (25). An improved self-adjustable (autonomous) valve or flow control device (2) and use of said improved valve or flow control device are also disclosed.




ntr

Gas valve and method of control

A stepper-motor gas valve control is disclosed that includes a main diaphragm in a chamber that controllably displaces a valve relative to an opening in response to changes in pressure, to adjust fuel flow through the valve. A servo-regulator diaphragm is provided to regulate flow to the main diaphragm, to thereby control the rate of fuel flow. A stepper motor is configured to move in a stepwise manner to displace the servo-regulator diaphragm, to control fluid flow to the main diaphragm. A controller mounted on the stepper-motor regulated gas valve control receives and converts an input control signal from a heating system to a reference value between 0 and 5 volts, and selects a corresponding motor step value. The control responsively moves the stepper-motor in a step wise manner to displace the servo-regulator diaphragm and thereby regulates the rate of fuel flow through the valve.




ntr

Fluid flow control device having a seat ring retainer

A control valve having a retainer for securing a seat ring within the valve body of the device is disclosed. The seat ring is disposed within a bore in the fluid flow path of the valve body of the control valve, and the retainer is attached to the inner surface of the valve body to retain the seat ring within the bore. The retainer includes threaded openings therethrough for receiving bolts that are tightened down on the seat ring to hold the seat ring against the inner surface of the bore and/or a gasket to form a tight seal and prevent leakage when the control device is in the closed position.




ntr

Electromagnetic flow controller

Systems, methods and apparatus for providing an electromagnetic flow controller. In one embodiment, an electromagnetic flow controller can have two substrates, a permanent magnet, and two electrical traces. One of the substrates may deflect away from the other substrate upon applying an electrical signal to at least one of the two electrical traces.




ntr

Fuel transfer system controlled by float valves

A fuel transfer system for an aircraft includes an upper tank, a lower tank, a fuel transfer line connecting the upper tank to the lower tank, an upper fuel transfer line outlet in the lower tank, a lower fuel transfer line outlet in the lower tank, an upper float valve associated with the upper fuel transfer line outlet, and a lower float valve associated with the lower fuel transfer line outlet. The upper fuel transfer line outlet, which is in the lower tank, is in fluid communication with the upper tank. The lower fuel transfer line outlet, which is located in the lower tank, is in fluid communication with the upper tank.




ntr

Gas concentration controller system

The present invention is one that prevents standard gas from remaining in a standard gas line to prevent a concentration of standard gas from being reduced due to adsorption, modification, or the like, and has: a diluent gas line provided with a diluent gas flow rate controlling mechanism; a standard gas line provided with a standard gas flow rate controlling mechanism; an output gas line joined by the diluent gas line and standard gas line and outputs the standard gas having a predetermined concentration; an exhaust gas line connected to an upstream side of the standard gas flow rate controlling mechanism in the standard gas line and provided with an on/off valve and a flow rate control part; and a control part that, depending on a flow rate of the standard gas flowing through the standard gas line or the type of the standard gas, switches on/off the on/off valve.




ntr

Self-expanding pseudo-braided intravascular device

A self-expanding, pseudo-braided device embodying a high expansion ratio and flexibility as well as comformability and improved radial force. The pseudo-braided device is particularly suited for advancement through and deployment within highly tortuous and very distal vasculature. Various forms of the pseudo-braided device are adapted for the repair of aneurysms and stenoses as well as for use in thrombectomies and embolic protection therapy.




ntr

System and method for vehicle communication, vehicle control, and/or route inspection

In a system and method for communicating data in a locomotive consist or other vehicle consist (comprising at least first and second linked vehicles), a first electronic component in the first vehicle of the vehicle consist is monitored to determine if the component is in (or enters) a failure state. In the failure state, the first electronic component is unable to perform a designated function. Upon determining the failure state, data is transmitted from the first vehicle to a second electronic component on the second vehicle, over a communication channel linking the first vehicle and the second vehicle. The second electronic component is operated based on the transmitted data, with the second electronic component performing the designated function that the first electronic component is unable to perform.




ntr

Train end and train integrity circuit for train control system

A train system that includes a plurality of train units including a first train unit and second train unit coupled together. Each first and second train unit includes a controller configured to detect a change in train configuration of the train units, and comprising a plurality of inputs; train integrity signal lines spanning each train unit and coupled with the controller at the plurality of inputs and configured to transmit signals between a front end and a rear end of the train system, the signals indicating a status of train integrity of the train system; and a plurality of relays in communication with the controller, and configured to indicate a coupling or non-coupling status of each train unit.




ntr

Device for automatically controlling signals and multiple trans traveling on the same track

An electrical device not only controls train signals as trains advance, but also alters the voltage in the tracks leading up to the signals so that the trains will actually stop at a red signal, slow at an amber aspect and continue on at full speed when the signal is showing green. The electrical device of the present invention can change the “block signal” from “green” to “red”, thereby signaling the engineer behind the train to come to a stop. In addition, the electrical device can simultaneously change the voltage in the tracks to stop the approaching train at the red signal. Only when the forward train has cleared will the approaching train get a clear signal and voltage to resume its forward progress.




ntr

Train operation control system

In accordance with a predetermined segment definition rule based on a point-switch protection section, a point switch control direction, and a train advancing direction, a plurality of segments are defined in advance with respect to a railway network. Segment competition information in which a competitive relationship between the plurality of segments is set in advance is prepared. A segment use permission setting part determines whether or not a competition for a use-requested segment in terms of a train operation occurs between the plurality of trains, by using segment competition information and segment use permission status information. A use-requested segment for which it is determined that no competition occurs is incorporated, as a use permission segment, into use permission segment information of the corresponding train. In accordance with a result of the competition determination, the segment use permission status information is updated.




ntr

On-board device for train control system

An on-board device capable of receiving train control signals from ground-side equipment of train control systems of different types or the like to control the speed of a train and the like appropriately, is provided. An on-board device 10 mounted on a train 1 includes ATC/TD antennas 11a, 11b that receive an ATC signal including train control information from loop coils installed along a route of the train 1, a vehicle radio set 12 that receives a CBTC signal including train control information from wayside radio sets installed along the route, an ATC control unit 141 that controls the train 1 based on the train control information in the ATC signal, a CBTC control unit 142 that controls the train 1 based on the train control information in the CBTC signal, and a selection unit 143 that selects the ATC control unit 141 or the CBTC control unit 142.




ntr

Train control system with pulse-code-modulated cab signaling

A train control system with pulse code-modulated cab signaling, especially for defining traveling speeds, includes a code generator acting upon a signal generator in dependence on a direction of travel. An output signal of the signal generator is supplied to a current track circuit covering a track section. In order to economize on components, the signal generator includes a transmitting device for modulating the input signals of both code generators. The transmitting device is connected to circuit connection adaptation devices on one of two entry ends of the track section through travel direction-specific outputs.




ntr

Ground device for train control system

A ground device 1 transmits train control information to an on-board device mounted on a train. The ground device 1 receives a train detection signal (TD signal) from a train with an ATC/TD on-board device mounted thereon through loop coils 21 to 2m, and receives a train position signal from a train with a CBTC on-board device mounted thereon through wayside radio sets 61 to 6n. Based on the input train detection signal and train position signal, the ground device 1 detects the position of each train traveling on a route R, generates control information on each train based on the detected position of each train, and converts the control information to an ATC signal and a CBTC signal. The ATC signal is transmitted to the loop coils 21 to 2m through information transmission units 4, and the CBTC signal is transmitted through the wayside radio sets 61 to 6n.




ntr

Train control system

With respect to each of trains, a ground device 6 detects a train location in the control section on the basis of a propagation time of a radio wave between a vehicle radio set 4 and a wayside radio set 5, in the case in which the ground device 6 determines that the number of trains has reached the controllable number of trains or there is the possibility that the number of trains reaches the controllable number of trains in its own control section, a ground device 6 disposed in an adjacent control section to the control section in which the number of trains is reaching the controllable number of trains, when a train 2 scheduled to travel toward the control section stops in a station 8, prevents departure of the train 2 scheduled to pass through the border of the control section by making the train 2 wait at the station 8.




ntr

Warning horn control system, radar system, and method

There is provided a radar system that includes an emitter system (e.g., an antenna), configured to emit electromagnetic pulses and detect electromagnetic pulses, and a reflection target, placed opposite the emitter system. The emitter system and the reflection target define an area of interest. A controller is configured to identify a reflection from the reflection target and, if the reflection is not identified, to stop sending a radar check signal. The radar system may be part of a warning horn control system, where the radar check signal is used as a control input for activating a warning horn.




ntr

Train control system

A train control system includes: an on-board device 3 mounted on each of trains 2; a vehicle radio set 4; wayside radio sets 5 disposed on a ground; and a ground device 6 connected to the wayside radio sets 5. The ground device 6 obtains a location information of a train 2 and a location information of a following train 2 based on results of distance measurement based on communication between the wayside radio sets 5 and the vehicle radio sets 4, and the ground device 6 transmits them to an on-board device 3 of the train 2. The on-board device 3 calculates a stop limit position of the following train 2 based on the location information of the train 2 and the location information of the following train 2, and the on-board device 3 transmits the calculated stop limit position to the following train 2.




ntr

Containerized locomotive distributed power control

A distributed power (DP) control system is contained within a non-freight carrying intermodal container for communicating with and receive instructions and/or commands from a command system of a lead distributed power locomotive within a train. The container is configured to be provided on a car adjacent to a remote non-distributed powered (non-DP) locomotive provided within a length of the train. One or more connection hoses connect the distributed power control system within the container to the non-DP locomotive to control application of at least its brake system.




ntr

Device for coating intramedullary rods with cement

A mold for forming a coated intramedullary (IM) nail can include a tubular member having an insertion end and an opposite end. The tubular member can comprise a sidewall extending along a longitudinal axis between an outer surface and an inner surface. The sidewall can define at least one threaded inlet port therealong. The tubular member can be configured to receive the IM nail therein. The tubular member can be further configured to locate a flowable material against the IM nail within the inner surface.




ntr

Method and apparatus for managing ammunition dispensing from a magazine using a flexible projectile control bar

A double-magazine (“Dmag”) able to house projectile ammunition for a projectile launcher having a first ammunition channel, a second ammunition channel, and a flexible projectile control bar (“FPCB”) is disclosed. In one embodiment, the first ammunition channel contains a first set or column of projectiles and the second ammunition channel which is situated in parallel to the first ammunition channel is configured to house a second set of projectiles. Dmag also includes a follower with a follower lock capable of moving along the first ammunition channel. The follower is configured to push the first set of projectiles toward a first ammunition supply port of the first ammunition channel. The FPCB has a first flexible flap which keeps the first set of projectiles from reaching the loading port of the launcher until the follower lock is released.




ntr

Coaxial and concentric cutting machine and a method for use thereof

A concentric coaxial cutting machine which cuts cylinders, cylindroids or cones using a chain saw from a single larger object such as a wood tree trunk, a block of ice or a block of plastic. An embodiment of the invention comprises a transverse support member having directly or indirectly mounted thereon; a headstock member including; a headstock spindle member mounted to said headstock member including; a drive spindle rotationally mounted to said headstock spindle member and adapted to rotationally retain one end of an object to be centrically cut; a tailstock member including; a tailstock spindle member mounted to said tailstock member including; a tailstock spindle rotationally mounted to said tailstock spindle member and adapted to retain an opposite end of the object; a drive assembly in rotational communication with the drive spindle and adapted to rotate said drive spindle around a common axis with said tailstock spindle; and, a first chain saw variably aligned at an angle to said common axis and adapted to concentrically cut the object from at least the opposite end.




ntr

Control of lumen loss in a liquid-filled LED bulb

A liquid-filled light emitting diode (LED) bulb including a base, a shell connected to the base forming an enclosed volume, a thermally conductive liquid held within the enclosed volume, a support structure connected to the base, and several LEDs attached to the support structure. The thermally conductive liquid has an oxygen content of at least 5 cubic centimeters of oxygen per liter of the thermally conductive fluid.




ntr

Phosphor distribution in LED lamps using centrifugal force

A method of manufacturing an LED lamp is disclosed. The method includes admixing an uncured curable liquid resin and a phosphor, dispensing the uncured admixture on an LED chip, centrifuging the chip and the admixture to disperse the phosphor particles in the uncured resin, and curing the resin while the phosphor particles remain distributed.




ntr

Liquid control mobility (LCM) receptacles

The present disclosure is directed to a liquid control mobility receptacle for storage, filtration, distribution, and transportation of liquids. The liquid control mobility receptacle has a main body that encloses a front security enclosure, a pump enclosure, and a main enclosure for storage of liquids. The main enclosure is disposed between the pump enclosure and the front security enclosure. An internal power source is enclosed within the front security enclosure and is electrically coupled to a pump, which is enclosed in pump enclosure. A fill line is provided to pump liquid from a liquid source into the main enclosure. A recirculation line is provided to recirculate fluid in within the main enclosure. A supply line is provided for pumping fluid out of the main enclosure. In some examples, the liquid control mobility receptacle has an internal power source that is a diesel engine, and the security enclosure further houses a fuel enclosure that is fluidly coupled to the diesel engine. In some further examples, the liquid control mobility receptacle has an internal power source that is a solar power generator, and a top wall of the security enclosure further includes a plurality of solar panels that are electrically coupled to the solar power generator.




ntr

Monorail vehicle apparatus with gravity-controlled roll attitude and loading

Monorail vehicle that travels on a non-featured rail with substantial profile variation and controls roll attitude, lateral location, and loading through judicious placement of the vehicle's center of gravity without using springs or suspensions. The vehicle has a bogie for engaging the non-featured rail so the center of gravity has a lateral offset r1 from the rail centerline to produce a roll moment Nr determined by vehicle's mass and value of r1. The center of gravity also has a vertical offset r2. The bogie uses first and second assemblies for engaging the rail to produce a pair of surface normal reaction forces to thus control roll attitude and loading by the placement of the center of gravity, thereby enabling accurate alignment of the monorail vehicle.




ntr

Vehicle control device and vehicle control system

A vehicle control system and a vehicle control device can switch control of a supporting device for support a drive of a vehicle between an ordinary travel in which the vehicle travels in a state that a power source for causing the vehicle to travel is operated and an inertia travel in which the vehicle travels in a state that an operation of the power source is stopped. Accordingly, since the vehicle control system and the vehicle control device switch the control of the supporting device between the ordinary travel and the inertia travel, the vehicle control system and the vehicle control device achieve an effect that the vehicle can be caused to appropriately travel by inertia.




ntr

Constant quantity control nebulization device

Disclosed is a constant quantity control nebulization device including a main body, a nebulization module, a fixing plate and a rotary ring, and the device is installed to a container that contains a liquid to be nebulized. A first liquid storage space with a predetermined volume is defined at the top of the main body, and the nebulization module is installed in the main body and interconnected to the first liquid storage space, and the fixing plate is fixed onto the main body and has a first through hole, the rotary ring is sheathed on the top of the main body and axially coupled to the fixing plate, and the rotary ring has a second through hole corresponding to the first through hole. The consumption of the liquid to be nebulized can be controlled by rotating the rotary ring to improve the convenience of operation significantly.




ntr

Material spreader utilizing vehicle power and having operational wireless control

A material spreader assembly for the broadcast spreading of particulate material from the trailer hitch of a vehicle. A hopper for storing the particulate material is supported by a frame having a trailer hitch coupler for connection to the vehicle. A spreader including a spinner driven by an electric motor receives and disperses the particulate material. A control circuit receives electric current from the vehicle via a plug interface and a wiring harness and controls the operation of the spreader. A remote communicates user commands to the control circuit. The control circuit includes a motor control processor that controls a motor power relay and a motor driver to gradually ramp up the current supplied to the spreader for start up the spreader while preventing a high transient current draw spike. Component feedback sensors enable the motor control processor to provide an emergency shut off feature and warning signals.




ntr

Formation and control of fluidic species

This invention generally relates to systems and methods for the formation and/or control of fluidic species, and articles produced by such systems and methods. In some cases, the invention involves unique fluid channels, systems, controls, and/or restrictions, and combinations thereof. In certain embodiments, the invention allows fluidic streams (which can be continuous or discontinuous, i.e., droplets) to be formed and/or combined, at a variety of scales, including microfluidic scales. In one set of embodiments, a fluidic stream may be produced from a channel, where a cross-sectional dimension of the fluidic stream is smaller than that of the channel, for example, through the use of structural elements, other fluids, and/or applied external fields, etc. In some cases, a Taylor cone may be produced. In another set of embodiments, a fluidic stream may be manipulated in some fashion, for example, to create tubes (which may be hollow or solid), droplets, nested tubes or droplets, arrays of tubes or droplets, meshes of tubes, etc. In some cases, droplets produced using certain embodiments of the invention may be charged or substantially charged, which may allow their further manipulation, for instance, using applied external fields. Non-limiting examples of such manipulations include producing charged droplets, coalescing droplets (especially at the microscale), synchronizing droplet formation, aligning molecules within the droplet, etc. In some cases, the droplets and/or the fluidic streams may include colloids, cells, therapeutic agents, and the like.




ntr

Air spray gun with pattern control tip

A spray gun includes a main piston chamber having an actuatable piston and a gun block. The gun block includes a mixing chamber that has a pair of impingement holes that each tangentially intersects with an exit hole of the mixing chamber at opposing tangential points. The gun block also includes a tip that is coupled to an end of the mixing chamber and has a pattern channel that is substantially axially aligned with the exit hole of the mixing chamber. The length of the pattern channel is less than the length of the exit hole of the mixing chamber. In some versions, the ratio of the pattern channel to the combined length of the pattern channel and exit hole can be between 31%, inclusive, and 5%, inclusive. A selectively coupleable handle may be provided such that users can utilize different handles with the spray gun.




ntr

System and method for wireless irrigation utilizing a centralized control server and field module matrix

The invention is a centralized server-based system containing a database with relevant information regarding features, parameters, and characteristics of a particular irrigation system, which utilizes proprietary irrigation software to control a plurality of field modules, at one or more remote locations, via a network bridge adapter. An irrigation system may comprise a single server, or multiple servers that may be configured so that control of the entire system is centralized, and control of one or multiple irrigation locations may be accomplished remotely by wirelessly accessing, monitoring and controlling a location's field module matrix.




ntr

Control assembly for controlling the rotation of a turnstile

A control assembly for controlling rotation of a turnstile, includes a torque-restoring mechanism (13) with springs (20), a motion converting transmission with a multiplying gearing (56, 57) converting a rotation of the turnstile over 120° into a rotation of the rotary shaft entering the hydraulic damper (26) over 180°. The hydraulic damper (26) has two pistons mounted onto a single piston rod. A cam or crank mechanism converts rotation of the rotary shaft into reciprocating motion of the two pistons. The first piston damps the rotary movement of the turnstile when moving in one direction while the other piston damps this movement when the pistons move in the other direction, therefore damping the turnstile in both directions. A motion converting transmission in combination with a double-piston mechanism avoids any loss of hydraulic fluid, while achieving a gradually increasing damping force to effectively stop the rotation of the turnstile.




ntr

Media processing device, check processing device, and method of controlling a media processing device

A compact media processing device enables recording on a process medium and then processing the process medium based on the result of recording. The media processing device conveys a process medium and processes the conveyed process medium by a first process unit disposed to the conveyance path, and an operation selection unit then determines the content of the next operation based on the result of the first process. After the next operation is determined, the conveyance control unit conveys the process medium upstream to or upstream of the process position of a second process unit. A process control unit then applies the selected operation to the process medium by the second process unit that is disposed downstream from the first process unit on the conveyance path of the process medium.




ntr

Financial device, method of controlling the same, and medium processing apparatus

Provided is a financial device, which comprises a medium entrance, a medium processing apparatus, and a control unit. A medium is deposited or withdrawn through the medium entrance. The medium processing apparatus processes the medium. The control unit controls the medium processing apparatus. The medium processing apparatus comprises a front guider, a rear guider behind the front guider, a pushing member pushing a medium disposed in a medium processing space, and a supporting guider supporting the medium in the medium processing space. The control unit controls an operation of the medium processing apparatus such that states of the front guider, the rear guider, the pushing member, and the supporting guider when moving of a medium is completed in the medium processing space to deposit the medium are the same as states of the front guider, the rear guider, the pushing member, and the supporting guider when moving of a medium is completed in the medium processing space to withdraw or return the medium.




ntr

Airflow control apparatus

An adjustable blocking arrangement for electronic hardware or computer racks, for preventing the undesired leakage of air through rack spaces not filled with hardware. An airflow control device is provided comprising a flexible web and a magazine adapted to receive the part of the flexible web that is not deployed. The device is adapted such that a length of the web may be deployed to sealingly block a space in the rack that is not filled with hardware modules, to prevent the flow of air through the space. The device may comprising a detection system adapted to detect the space in the rack that is not filled with hardware modules, and a processing system adapted to receive a signal from the detection system, and as a function of the signal to automatically deploy or retract the flexible web so as to sealingly block the space.




ntr

Process control by blending biomass feedstocks

A process and system is disclosed for optimizing a key parameter of a biomass feedstock that enhances bio-oil production. The process and system involves optimizing the values of the key parameter in multiple biomass feedstocks by regulating their feed rates and blending those feedstocks to produce a cumulative biomass feedstock with an optimal value for the key parameter. The key parameter in the biomass feedstocks is measured and the feed rates of the multiple biomass feedstocks are adjusted in order to produce a cumulative biomass feedstock exhibiting optimal values for the desired key parameter. The key parameters can include compositional properties, such as lignin content or mineral content, and/or fluidization properties of the biomass materials, such as density, particle cohesion force, or particle size.




ntr

Controllable air ducts for feeding of additional combustion air into the area of flue gas channels of coke oven chambers

A device for feeding and controlling secondary air from secondary air ducts into flue gas channels of horizontal coke oven chambers is shown. The flue gas channels are located underneath the coke oven chamber floor on which coal carbonization is realized. The flue gas channels serve for combustion of partly burnt coking gases from the coke oven chamber. The partly burnt gases are burnt with secondary air, thus heating the coke cake also from below to ensure even coal carbonization. Secondary air comes from the secondary air ducts connected to atmospheric air and to the flue gas channels. Controlling elements are mounted in the connecting channels between the flue gas channels and secondary air ducts which can precisely control the air flow into the flue gas channels. Thereby, it is possible to achieve a much more regular heating and heat distribution in coke oven chambers. The actual controlling devices in the connecting channels can be formed by turnable pipe sections, wall bricks, or metal flaps. It is particularly advantageous to utilize a hump-like facility (tabouret) which sits in the secondary air ducts and which is comprised of a tabouret plate with a central opening that is slid under the corresponding embranchment to regulate the gas stream. The controlling mechanism can be actuated manually, electrically, or pneumatically. Thereby, the controlling device can also be automated.




ntr

Method and device for controlling the register settings of a printing press

A method for controlling register settings of a printing press, includes rotating imaging cylinders of a first print unit and a second print unit, located downstream of the first print unit in a movement direction of a print medium, at a rotational speed to print an image on the print medium. The method includes of changing a length of the print image to a pre-determined length. The method further includes changing a register setting of the imaging cylinder of the second print unit based on the predetermined change in length of the print image to avoid misalignment of the print image printed by the first and the second print units on the print medium. Changing the register setting is dependent on a length of a section of the print medium between the first and the second print units. A device for controlling register settings of a printing press is also disclosed.




ntr

Systems for dampening fluid removal, vapor control and recovery for ink-based digital printing

A system for dampening fluid recovery in an ink-based digital printing system includes a seal manifold having a front seal portion, the front seal portion having an upper wall facing the imaging surface, the upper wall being configured to define an air flow channel with the imaging surface, the upper wall being contoured to form a distance between the upper wall and the imaging surface at an evaporation location that is less than distance between the upper wall and the imaging surface at locations interposing the evaporation location and a vacuum inlet channel of the seal manifold.




ntr

Environmental control subsystem for a variable data lithographic apparatus

Methods and structures are disclosed to minimize the presence of vapor clouding in the path between an energy (e.g., radiation) source and the dampening fluid layer in a variable data lithography system. Also disclosed are conditions for optimizing vaporization of regions of the dampening fluid layer for a given laser source power. Conditions are also disclosed for minimizing re-condensation of vaporized dampening fluid onto the patterned dampening fluid layer. Accordingly, a reduction in the power required for, and an increase in the reproducibility of, patterning of a dampening fluid layer over a reimageable surface in a variable data lithography system are disclosed.