li

Bayesian robustness to outliers in linear regression and ratio estimation

Alain Desgagné, Philippe Gagnon.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 205--221.

Abstract:
Whole robustness is a nice property to have for statistical models. It implies that the impact of outliers gradually vanishes as they approach plus or minus infinity. So far, the Bayesian literature provides results that ensure whole robustness for the location-scale model. In this paper, we make two contributions. First, we generalise the results to attain whole robustness in simple linear regression through the origin, which is a necessary step towards results for general linear regression models. We allow the variance of the error term to depend on the explanatory variable. This flexibility leads to the second contribution: we provide a simple Bayesian approach to robustly estimate finite population means and ratios. The strategy to attain whole robustness is simple since it lies in replacing the traditional normal assumption on the error term by a super heavy-tailed distribution assumption. As a result, users can estimate the parameters as usual, using the posterior distribution.




li

Unlikeness is us : fourteen from the Exeter book

Exeter book. Selections. English
9781554471751 (softcover)




li

Nights below Foord Street : literature and popular culture in postindustrial Nova Scotia

Thompson, Peter, 1981- author.
0773559345




li

Novel bodies : disability and sexuality in eighteenth-century British literature

Farr, Jason S., 1978- author.
9781684481088 hardcover alkaline paper




li

Public-private partnerships in Canada : law, policy and value for money

Murphy, Timothy J. (Timothy John), author.
9780433457985 (Cloth)




li

Reclaiming indigenous governance : reflections and insights from Australia, Canada, New Zealand, and the United States

9780816539970 (paperback)




li

Globalizing capital : a history of the international monetary system

Eichengreen, Barry J., author.
9780691193908 (paperback)




li

Documenting rebellions : a study of four lesbian and gay archives in queer times

Sheffield, Rebecka Taves, author.
9781634000918 paperback




li

Can $p$-values be meaningfully interpreted without random sampling?

Norbert Hirschauer, Sven Grüner, Oliver Mußhoff, Claudia Becker, Antje Jantsch.

Source: Statistics Surveys, Volume 14, 71--91.

Abstract:
Besides the inferential errors that abound in the interpretation of $p$-values, the probabilistic pre-conditions (i.e. random sampling or equivalent) for using them at all are not often met by observational studies in the social sciences. This paper systematizes different sampling designs and discusses the restrictive requirements of data collection that are the indispensable prerequisite for using $p$-values.




li

Scalar-on-function regression for predicting distal outcomes from intensively gathered longitudinal data: Interpretability for applied scientists

John J. Dziak, Donna L. Coffman, Matthew Reimherr, Justin Petrovich, Runze Li, Saul Shiffman, Mariya P. Shiyko.

Source: Statistics Surveys, Volume 13, 150--180.

Abstract:
Researchers are sometimes interested in predicting a distal or external outcome (such as smoking cessation at follow-up) from the trajectory of an intensively recorded longitudinal variable (such as urge to smoke). This can be done in a semiparametric way via scalar-on-function regression. However, the resulting fitted coefficient regression function requires special care for correct interpretation, as it represents the joint relationship of time points to the outcome, rather than a marginal or cross-sectional relationship. We provide practical guidelines, based on experience with scientific applications, for helping practitioners interpret their results and illustrate these ideas using data from a smoking cessation study.




li

Pitfalls of significance testing and $p$-value variability: An econometrics perspective

Norbert Hirschauer, Sven Grüner, Oliver Mußhoff, Claudia Becker.

Source: Statistics Surveys, Volume 12, 136--172.

Abstract:
Data on how many scientific findings are reproducible are generally bleak and a wealth of papers have warned against misuses of the $p$-value and resulting false findings in recent years. This paper discusses the question of what we can(not) learn from the $p$-value, which is still widely considered as the gold standard of statistical validity. We aim to provide a non-technical and easily accessible resource for statistical practitioners who wish to spot and avoid misinterpretations and misuses of statistical significance tests. For this purpose, we first classify and describe the most widely discussed (“classical”) pitfalls of significance testing, and review published work on these misuses with a focus on regression-based “confirmatory” study. This includes a description of the single-study bias and a simulation-based illustration of how proper meta-analysis compares to misleading significance counts (“vote counting”). Going beyond the classical pitfalls, we also use simulation to provide intuition that relying on the statistical estimate “$p$-value” as a measure of evidence without considering its sample-to-sample variability falls short of the mark even within an otherwise appropriate interpretation. We conclude with a discussion of the exigencies of informed approaches to statistical inference and corresponding institutional reforms.




li

An approximate likelihood perspective on ABC methods

George Karabatsos, Fabrizio Leisen.

Source: Statistics Surveys, Volume 12, 66--104.

Abstract:
We are living in the big data era, as current technologies and networks allow for the easy and routine collection of data sets in different disciplines. Bayesian Statistics offers a flexible modeling approach which is attractive for describing the complexity of these datasets. These models often exhibit a likelihood function which is intractable due to the large sample size, high number of parameters, or functional complexity. Approximate Bayesian Computational (ABC) methods provides likelihood-free methods for performing statistical inferences with Bayesian models defined by intractable likelihood functions. The vastity of the literature on ABC methods created a need to review and relate all ABC approaches so that scientists can more readily understand and apply them for their own work. This article provides a unifying review, general representation, and classification of all ABC methods from the view of approximate likelihood theory. This clarifies how ABC methods can be characterized, related, combined, improved, and applied for future research. Possible future research in ABC is then outlined.




li

A survey of bootstrap methods in finite population sampling

Zeinab Mashreghi, David Haziza, Christian Léger.

Source: Statistics Surveys, Volume 10, 1--52.

Abstract:
We review bootstrap methods in the context of survey data where the effect of the sampling design on the variability of estimators has to be taken into account. We present the methods in a unified way by classifying them in three classes: pseudo-population, direct, and survey weights methods. We cover variance estimation and the construction of confidence intervals for stratified simple random sampling as well as some unequal probability sampling designs. We also address the problem of variance estimation in presence of imputation to compensate for item non-response.




li

Adaptive clinical trial designs for phase I cancer studies

Oleksandr Sverdlov, Weng Kee Wong, Yevgen Ryeznik.

Source: Statistics Surveys, Volume 8, 2--44.

Abstract:
Adaptive clinical trials are becoming increasingly popular research designs for clinical investigation. Adaptive designs are particularly useful in phase I cancer studies where clinical data are scant and the goals are to assess the drug dose-toxicity profile and to determine the maximum tolerated dose while minimizing the number of study patients treated at suboptimal dose levels. In the current work we give an overview of adaptive design methods for phase I cancer trials. We find that modern statistical literature is replete with novel adaptive designs that have clearly defined objectives and established statistical properties, and are shown to outperform conventional dose finding methods such as the 3+3 design, both in terms of statistical efficiency and in terms of minimizing the number of patients treated at highly toxic or nonefficacious doses. We discuss statistical, logistical, and regulatory aspects of these designs and present some links to non-commercial statistical software for implementing these methods in practice.




li

The theory and application of penalized methods or Reproducing Kernel Hilbert Spaces made easy

Nancy Heckman

Source: Statist. Surv., Volume 6, 113--141.

Abstract:
The popular cubic smoothing spline estimate of a regression function arises as the minimizer of the penalized sum of squares $sum_{j}(Y_{j}-mu(t_{j}))^{2}+lambda int_{a}^{b}[mu''(t)]^{2},dt$, where the data are $t_{j},Y_{j}$, $j=1,ldots,n$. The minimization is taken over an infinite-dimensional function space, the space of all functions with square integrable second derivatives. But the calculations can be carried out in a finite-dimensional space. The reduction from minimizing over an infinite dimensional space to minimizing over a finite dimensional space occurs for more general objective functions: the data may be related to the function $mu$ in another way, the sum of squares may be replaced by a more suitable expression, or the penalty, $int_{a}^{b}[mu''(t)]^{2},dt$, might take a different form. This paper reviews the Reproducing Kernel Hilbert Space structure that provides a finite-dimensional solution for a general minimization problem. Particular attention is paid to the construction and study of the Reproducing Kernel Hilbert Space corresponding to a penalty based on a linear differential operator. In this case, one can often calculate the minimizer explicitly, using Green’s functions.




li

Curse of dimensionality and related issues in nonparametric functional regression

Gery Geenens

Source: Statist. Surv., Volume 5, 30--43.

Abstract:
Recently, some nonparametric regression ideas have been extended to the case of functional regression. Within that framework, the main concern arises from the infinite dimensional nature of the explanatory objects. Specifically, in the classical multivariate regression context, it is well-known that any nonparametric method is affected by the so-called “curse of dimensionality”, caused by the sparsity of data in high-dimensional spaces, resulting in a decrease in fastest achievable rates of convergence of regression function estimators toward their target curve as the dimension of the regressor vector increases. Therefore, it is not surprising to find dramatically bad theoretical properties for the nonparametric functional regression estimators, leading many authors to condemn the methodology. Nevertheless, a closer look at the meaning of the functional data under study and on the conclusions that the statistician would like to draw from it allows to consider the problem from another point-of-view, and to justify the use of slightly modified estimators. In most cases, it can be entirely legitimate to measure the proximity between two elements of the infinite dimensional functional space via a semi-metric, which could prevent those estimators suffering from what we will call the “curse of infinite dimensionality”.

References:
[1] Ait-Saïdi, A., Ferraty, F., Kassa, K. and Vieu, P. (2008). Cross-validated estimations in the single-functional index model, Statistics, 42, 475–494.

[2] Aneiros-Perez, G. and Vieu, P. (2008). Nonparametric time series prediction: A semi-functional partial linear modeling, J. Multivariate Anal., 99, 834–857.

[3] Baillo, A. and Grané, A. (2009). Local linear regression for functional predictor and scalar response, J. Multivariate Anal., 100, 102–111.

[4] Burba, F., Ferraty, F. and Vieu, P. (2009). k-Nearest Neighbour method in functional nonparametric regression, J. Nonparam. Stat., 21, 453–469.

[5] Cardot, H., Ferraty, F. and Sarda, P. (1999). Functional linear model, Stat. Probabil. Lett., 45, 11–22.

[6] Crambes, C., Kneip, A. and Sarda, P. (2009). Smoothing splines estimators for functional linear regression, Ann. Statist., 37, 35–72.

[7] Delsol, L. (2009). Advances on asymptotic normality in nonparametric functional time series analysis, Statistics, 43, 13–33.

[8] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications, Chapman and Hall, London.

[9] Fan, J. and Zhang, J.-T. (2000). Two-step estimation of functional linear models with application to longitudinal data, J. Roy. Stat. Soc. B, 62, 303–322.

[10] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis, Springer-Verlag, New York.

[11] Ferraty, F., Laksaci, A. and Vieu, P. (2006). Estimating Some Characteristics of the Conditional Distribution in Nonparametric Functional Models, Statist. Inf. Stoch. Proc., 9, 47–76.

[12] Ferraty, F., Mas, A. and Vieu, P. (2007). Nonparametric regression on functional data: inference and practical aspects, Aust. NZ. J. Stat., 49, 267–286.

[13] Ferraty, F., Van Keilegom, I. and Vieu, P. (2010). On the validity of the bootstrap in nonparametric functional regression, Scand. J. Stat., 37, 286–306.

[14] Ferraty, F., Laksaci, A., Tadj, A. and Vieu, P. (2010). Rate of uniform consistency for nonparametric estimates with functional variables, J. Stat. Plan. Inf., 140, 335–352.

[15] Ferraty, F. and Romain, Y. (2011). Oxford handbook on functional data analysis (Eds), Oxford University Press.

[16] Gasser, T., Hall, P. and Presnell, B. (1998). Nonparametric estimation of the mode of a distribution of random curves, J. Roy. Stat. Soc. B, 60, 681–691.

[17] Geenens, G. (2011). A nonparametric functional method for signature recognition, Manuscript.

[18] Härdle, W., Müller, M., Sperlich, S. and Werwatz, A. (2004). Nonparametric and semiparametric models, Springer-Verlag, Berlin.

[19] James, G.M. (2002). Generalized linear models with functional predictors, J. Roy. Stat. Soc. B, 64, 411–432.

[20] Masry, E. (2005). Nonparametric regression estimation for dependent functional data: asymptotic normality, Stochastic Process. Appl., 115, 155–177.

[21] Nadaraya, E.A. (1964). On estimating regression, Theory Probab. Applic., 9, 141–142.

[22] Quintela-Del-Rio, A. (2008). Hazard function given a functional variable: nonparametric estimation under strong mixing conditions, J. Nonparam. Stat., 20, 413–430.

[23] Rachdi, M. and Vieu, P. (2007). Nonparametric regression for functional data: automatic smoothing parameter selection, J. Stat. Plan. Inf., 137, 2784–2801.

[24] Ramsay, J. and Silverman, B.W. (1997). Functional Data Analysis, Springer-Verlag, New York.

[25] Ramsay, J. and Silverman, B.W. (2002). Applied functional data analysis; methods and case study, Springer-Verlag, New York.

[26] Ramsay, J. and Silverman, B.W. (2005). Functional Data Analysis, 2nd Edition, Springer-Verlag, New York.

[27] Stone, C.J. (1982). Optimal global rates of convergence for nonparametric regression, Ann. Stat., 10, 1040–1053.

[28] Watson, G.S. (1964). Smooth regression analysis, Sankhya A, 26, 359–372.

[29] Yeung, D.T., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T. and Rigoll, G. (2004). SVC2004: First International Signature Verification Competition, Proceedings of the International Conference on Biometric Authentication (ICBA), Hong Kong, July 2004.




li

Data confidentiality: A review of methods for statistical disclosure limitation and methods for assessing privacy

Gregory J. Matthews, Ofer Harel

Source: Statist. Surv., Volume 5, 1--29.

Abstract:
There is an ever increasing demand from researchers for access to useful microdata files. However, there are also growing concerns regarding the privacy of the individuals contained in the microdata. Ideally, microdata could be released in such a way that a balance between usefulness of the data and privacy is struck. This paper presents a review of proposed methods of statistical disclosure control and techniques for assessing the privacy of such methods under different definitions of disclosure.

References:
Abowd, J., Woodcock, S., 2001. Disclosure limitation in longitudinal linked data. Confidentiality, Disclosure, and Data Access: Theory and Practical Applications for Statistical Agencies, 215–277.

Adam, N.R., Worthmann, J.C., 1989. Security-control methods for statistical databases: a comparative study. ACM Comput. Surv. 21 (4), 515–556.

Armstrong, M., Rushton, G., Zimmerman, D.L., 1999. Geographically masking health data to preserve confidentiality. Statistics in Medicine 18 (5), 497–525.

Bethlehem, J.G., Keller, W., Pannekoek, J., 1990. Disclosure control of microdata. Jorunal of the American Statistical Association 85, 38–45.

Blum, A., Dwork, C., McSherry, F., Nissam, K., 2005. Practical privacy: The sulq framework. In: Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. pp. 128–138.

Bowden, R.J., Sim, A.B., 1992. The privacy bootstrap. Journal of Business and Economic Statistics 10 (3), 337–345.

Carlson, M., Salabasis, M., 2002. A data-swapping technique for generating synthetic samples; a method for disclosure control. Res. Official Statist. (5), 35–64.

Cox, L.H., 1980. Suppression methodology and statistical disclosure control. Journal of the American Statistical Association 75, 377–385.

Cox, L.H., 1984. Disclosure control methods for frequency count data. Tech. rep., U.S. Bureau of the Census.

Cox, L.H., 1987. A constructive procedure for unbiased controlled rounding. Journal of the American Statistical Association 82, 520–524.

Cox, L.H., 1994. Matrix masking methods for disclosure limitation in microdata. Survey Methodology 6, 165–169.

Cox, L.H., Fagan, J.T., Greenberg, B., Hemmig, R., 1987. Disclosure avoidance techniques for tabular data. Tech. rep., U.S. Bureau of the Census.

Dalenius, T., 1977. Towards a methodology for statistical disclosure control. Statistik Tidskrift 15, 429–444.

Dalenius, T., 1986. Finding a needle in a haystack - or identifying anonymous census record. Journal of Official Statistics 2 (3), 329–336.

Dalenius, T., Denning, D., 1982. A hybrid scheme for release of statistics. Statistisk Tidskrift.

Dalenius, T., Reiss, S.P., 1982. Data-swapping: A technique for disclosure control. Journal of Statistical Planning and Inference 6, 73–85.

De Waal, A., Hundepool, A., Willenborg, L., 1995. Argus: Software for statistical disclosure control of microdata. U.S. Census Bureau.

DeGroot, M.H., 1962. Uncertainty, information, and sequential experiments. Annals of Mathematical Statistics 33, 404–419.

DeGroot, M.H., 1970. Optimal Statistical Decisions. Mansell, London.

Dinur, I., Nissam, K., 2003. Revealing information while preserving privacy. In: Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principlesof Database Systems. pp. 202–210.

Domingo-Ferrer, J., Torra, V., 2001a. A Quantitative Comparison of Disclosure Control Methods for Microdata. In: Doyle, P., Lane, J., Theeuwes, J., Zayatz, L. (Eds.), Confidentiality, Disclosure and Data Access - Theory and Practical Applications for Statistical Agencies. North-Holland, Amsterdam, Ch. 6, pp. 113–135.

Domingo-Ferrer, J., Torra, V., 2001b. Disclosure control methods and information loss for microdata. In: Doyle, P., Lane, J., Theeuwes, J., Zayatz, L. (Eds.), Confidentiality, Disclosure and Data Access - Theory and Practical Applications for Statistical Agencies. North-Holland, Amsterdam, Ch. 5, pp. 93–112.

Duncan, G., Lambert, D., 1986. Disclosure-limited data dissemination. Journal of the American Statistical Association 81, 10–28.

Duncan, G., Lambert, D., 1989. The risk of disclosure for microdata. Journal of Business & Economic Statistics 7, 207–217.

Duncan, G., Pearson, R., 1991. Enhancing access to microdata while protecting confidentiality: prospects for the future (with discussion). Statistical Science 6, 219–232.

Dwork, C., 2006. Differential privacy. In: ICALP. Springer, pp. 1–12.

Dwork, C., 2008. An ad omnia approach to defining and achieving private data analysis. In: Lecture Notes in Computer Science. Springer, p. 10.

Dwork, C., Lei, J., 2009. Differential privacy and robust statistics. In: Proceedings of the 41th Annual ACM Symposium on Theory of Computing (STOC). pp. 371–380.

Dwork, C., Mcsherry, F., Nissim, K., Smith, A., 2006. Calibrating noise to sensitivity in private data analysis. In: Proceedings of the 3rd Theory of Cryptography Conference. Springer, pp. 265–284.

Dwork, C., Nissam, K., 2004. Privacy-preserving datamining on vertically partitioned databases. In: Advances in Cryptology: Proceedings of Crypto. pp. 528–544.

Elliot, M., 2000. DIS: a new approach to the measurement of statistical disclosure risk. International Journal of Risk Assessment and Management 2, 39–48.

Federal Committee on Statistical Methodology (FCSM), 2005. Statistical policy working group 22 - report on statistical disclosure limitation methodology. U.S. Census Bureau.

Fellegi, I.P., 1972. On the question of statistical confidentiality. Journal of the American Statistical Association 67 (337), 7–18.

Fienberg, S.E., McIntyre, J., 2004. Data swapping: Variations on a theme by Dalenius and Reiss. In: Domingo-Ferrer, J., Torra, V. (Eds.), Privacy in Statistical Databases. Vol. 3050 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg, pp. 519, http://dx.doi.org/10.1007/ 978-3-540-25955-8_2

Fuller, W., 1993. Masking procedurse for microdata disclosure limitation. Journal of Official Statistics 9, 383–406.

General Assembly of the United Nations, 1948. Universal declaration of human rights.

Gouweleeuw, J., P. Kooiman, L.W., de Wolf, P.-P., 1998. Post randomisation for statistical disclosure control: Theory and implementation. Journal of Official Statistics 14 (4), 463–478.

Greenberg, B., 1987. Rank swapping for masking ordinal microdata. Tech. rep., U.S. Bureau of the Census (unpublished manuscript), Suitland, Maryland, USA.

Greenberg, B.G., Abul-Ela, A.-L.A., Simmons, W.R., Horvitz, D.G., 1969. The unrelated question randomized response model: Theoretical framework. Journal of the American Statistical Association 64 (326), 520–539.

Harel, O., Zhou, X.-H., 2007. Multiple imputation: Review and theory, implementation and software. Statistics in Medicine 26, 3057–3077.

Hundepool, A., Domingo-ferrer, J., Franconi, L., Giessing, S., Lenz, R., Longhurst, J., Nordholt, E.S., Seri, G., paul De Wolf, P., 2006. A CENtre of EXcellence for Statistical Disclosure Control Handbook on Statistical Disclosure Control Version 1.01.

Hundepool, A., Wetering, A. v.d., Ramaswamy, R., Wolf, P.d., Giessing, S., Fischetti, M., Salazar, J., Castro, J., Lowthian, P., Feb. 2005. τ-argus 3.1 user manual. Statistics Netherlands, Voorburg NL.

Hundepool, A., Willenborg, L., 1996. μ- and τ-argus: Software for statistical disclosure control. Third International Seminar on Statistical Confidentiality, Bled.

Karr, A., Kohnen, C.N., Oganian, A., Reiter, J.P., Sanil, A.P., 2006. A framework for evaluating the utility of data altered to protect confidentiality. American Statistician 60 (3), 224–232.

Kaufman, S., Seastrom, M., Roey, S., 2005. Do disclosure controls to protect confidentiality degrade the quality of the data? In: American Statistical Association, Proceedings of the Section on Survey Research.

Kennickell, A.B., 1997. Multiple imputation and disclosure protection: the case of the 1995 survey of consumer finances. Record Linkage Techniques, 248–267.

Kim, J., 1986. Limiting disclosure in microdata based on random noise and transformation. Bureau of the Census.

Krumm, J., 2007. Inference attacks on location tracks. Proceedings of Fifth International Conference on Pervasive Computingy, 127–143.

Li, N., Li, T., Venkatasubramanian, S., 2007. t-closeness: Privacy beyond k-anonymity and l-diversity. In: Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on. pp. 106–115.

Liew, C.K., Choi, U.J., Liew, C.J., 1985. A data distortion by probability distribution. ACM Trans. Database Syst. 10 (3), 395–411.

Little, R.J.A., 1993. Statistical analysis of masked data. Journal of Official Statistics 9, 407–426.

Little, R.J.A., Rubin, D.B., 1987. Statistical Analysis with Missing Data. John Wiley & Sons.

Liu, F., Little, R.J.A., 2002. Selective multiple mputation of keys for statistical disclosure control in microdata. In: Proceedings Joint Statistical Meet. pp. 2133–2138.

Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L., April 2008. Privacy: Theory meets practice on the map. In: International Conference on Data Engineering. Cornell University Comuputer Science Department, Cornell, USA, p. 10.

Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M., 2007. L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1 (1), 3.

Manning, A.M., Haglin, D.J., Keane, J.A., 2008. A recursive search algorithm for statistical disclosure assessment. Data Min. Knowl. Discov. 16 (2), 165–196.

Marsh, C., Skinner, C., Arber, S., Penhale, B., Openshaw, S., Hobcraft, J., Lievesley, D., Walford, N., 1991. The case for samples of anonymized records from the 1991 census. Journal of the Royal Statistical Society 154 (2), 305–340.

Matthews, G.J., Harel, O., Aseltine, R.H., 2010a. Assessing database privacy using the area under the receiver-operator characteristic curve. Health Services and Outcomes Research Methodology 10 (1), 1–15.

Matthews, G.J., Harel, O., Aseltine, R.H., 2010b. Examining the robustness of fully synthetic data techniques for data with binary variables. Journal of Statistical Computation and Simulation 80 (6), 609–624.

Moore, Jr., R., 1996. Controlled data-swapping techniques for masking public use microdata. Census Tech Report.

Mugge, R., 1983. Issues in protecting confidentiality in national health statistics. Proceedings of the Section on Survey Research Methods.

Nissim, K., Raskhodnikova, S., Smith, A., 2007. Smooth sensitivity and sampling in private data analysis. In: STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing. pp. 75–84.

Paass, G., 1988. Disclosure risk and disclosure avoidance for microdata. Journal of Business and Economic Statistics 6 (4), 487–500.

Palley, M., Simonoff, J., 1987. The use of regression methodology for the compromise of confidential information in statistical databases. ACM Trans. Database Systems 12 (4), 593–608.

Raghunathan, T.E., Reiter, J.P., Rubin, D.B., 2003. Multiple imputation for statistical disclosure limitation. Journal of Official Statistics 19 (1), 1–16.

Rajasekaran, S., Harel, O., Zuba, M., Matthews, G.J., Aseltine, Jr., R., 2009. Responsible data releases. In: Proceedings 9th Industrial Conference on Data Mining (ICDM). Springer LNCS, pp. 388–400.

Reiss, S.P., 1984. Practical data-swapping: The first steps. CM Transactions on Database Systems 9, 20–37.

Reiter, J.P., 2002. Satisfying disclosure restriction with synthetic data sets. Journal of Official Statistics 18 (4), 531–543.

Reiter, J.P., 2003. Inference for partially synthetic, public use microdata sets. Survey Methodology 29 (2), 181–188.

Reiter, J.P., 2004a. New approaches to data dissemination: A glimpse into the future (?). Chance 17 (3), 11–15.

Reiter, J.P., 2004b. Simultaneous use of multiple imputation for missing data and disclosure limitation. Survey Methodology 30 (2), 235–242.

Reiter, J.P., 2005a. Estimating risks of identification disclosure in microdata. Journal of the American Statistical Association 100, 1103–1112.

Reiter, J.P., 2005b. Releasing multiply imputed, synthetic public use microdata: An illustration and empirical study. Journal of the Royal Statistical Society, Series A: Statistics in Society 168 (1), 185–205.

Reiter, J.P., 2005c. Using CART to generate partially synthetic public use microdata. Journal of Official Statistics 21 (3), 441–462.

Rubin, D.B., 1987. Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons.

Rubin, D.B., 1993. Comment on “Statistical disclosure limitation”. Journal of Official Statistics 9, 461–468.

Rubner, Y., Tomasi, C., Guibas, L.J., 1998. A metric for distributions with applications to image databases. Computer Vision, IEEE International Conference on 0, 59.

Sarathy, R., Muralidhar, K., 2002a. The security of confidential numerical data in databases. Information Systems Research 13 (4), 389–403.

Sarathy, R., Muralidhar, K., 2002b. The security of confidential numerical data in databases. Info. Sys. Research 13 (4), 389–403.

Schafer, J.L., Graham, J.W., 2002. Missing data: Our view of state of the art. Psychological Methods 7 (2), 147–177.

Singh, A., Yu, F., Dunteman, G., 2003. MASSC: A new data mask for limiting statistical information loss and disclosure. In: Proceedings of the Joint UNECE/EUROSTAT Work Session on Statistical Data Confidentiality. pp. 373–394.

Skinner, C., 2009. Statistical disclosure control for survey data. In: Pfeffermann, D and Rao, C.R. eds. Handbook of Statistics Vol. 29A: Sample Surveys: Design, Methods and Applications. pp. 381–396.

Skinner, C., Marsh, C., Openshaw, S., Wymer, C., 1994. Disclosure control for census microdata. Journal of Official Statistics 10, 31–51.

Skinner, C., Shlomo, N., 2008. Assessing identification risk in survey microdata using log-linear models. Journal of the American Statistical Association 103, 989–1001.

Skinner, C.J., Elliot, M.J., 2002. A measure of disclosure risk for microdata. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 64 (4), 855–867.

Smith, A., 2008. Efficient, dfferentially private point estimators. arXiv:0809.4794v1 [cs.CR].

Spruill, N.L., 1982. Measures of confidentiality. Statistics of Income and Related Administrative Record Research, 131–136.

Spruill, N.L., 1983. The confidentiality and analytic usefulness of masked business microdata. In: Proceedings of the Section on Survey Reserach Microdata. American Statistical Association, pp. 602–607.

Sweeney, L., 1996. Replacing personally-identifying information in medical records, the scrub system. In: American Medical Informatics Association. Hanley and Belfus, Inc., pp. 333–337.

Sweeney, L., 1997. Guaranteeing anonymity when sharing medical data, the datafly system. Journal of the American Medical Informatics Association 4, 51–55.

Sweeney, L., 2002a. Achieving k-anonymity privacy protection using generalization and suppression. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 10 (5), 571–588.

Sweeney, L., 2002b. k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 10 (5), 557–570.

Tendick, P., 1991. Optimal noise addition for preserving confidentiality in multivariate data. Journal of Statistical Planning and Inference 27 (2), 341–353.

United Nations Economic Comission for Europe (UNECE), 2007. Manging statistical cinfidentiality and microdata access: Principles and guidlinesof good practice.

Warner, S.L., 1965. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association 60 (309), 63–69.

Wasserman, L., Zhou, S., 2010. A statistical framework for differential privacy. Journal of the American Statistical Association 105 (489), 375–389.

Willenborg, L., de Waal, T., 2001. Elements of Statistical Disclosure Control. Springer-Verlag.

Woodward, B., 1995. The computer-based patient record and confidentiality. The New England Journal of Medicine, 1419–1422.




li

Discrete variations of the fractional Brownian motion in the presence of outliers and an additive noise

Sophie Achard, Jean-François Coeurjolly

Source: Statist. Surv., Volume 4, 117--147.

Abstract:
This paper gives an overview of the problem of estimating the Hurst parameter of a fractional Brownian motion when the data are observed with outliers and/or with an additive noise by using methods based on discrete variations. We show that the classical estimation procedure based on the log-linearity of the variogram of dilated series is made more robust to outliers and/or an additive noise by considering sample quantiles and trimmed means of the squared series or differences of empirical variances. These different procedures are compared and discussed through a large simulation study and are implemented in the R package dvfBm.




li

A survey of cross-validation procedures for model selection

Sylvain Arlot, Alain Celisse

Source: Statist. Surv., Volume 4, 40--79.

Abstract:
Used to estimate the risk of an estimator or to perform model selection, cross-validation is a widespread strategy because of its simplicity and its (apparent) universality. Many results exist on model selection performances of cross-validation procedures. This survey intends to relate these results to the most recent advances of model selection theory, with a particular emphasis on distinguishing empirical statements from rigorous theoretical results. As a conclusion, guidelines are provided for choosing the best cross-validation procedure according to the particular features of the problem in hand.




li

Start your Chinese Family Search at the State Library of...

Start your Chinese Family Search at the State Library of NSW   One in ten Sydneysiders claims Chinese ancestry




li

Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis. (arXiv:2005.02535v1 [econ.EM] CROSS LISTED)

Arctic sea ice extent (SIE) in September 2019 ranked second-to-lowest in history and is trending downward. The understanding of how internal variability amplifies the effects of external $ ext{CO}_2$ forcing is still limited. We propose the VARCTIC, which is a Vector Autoregression (VAR) designed to capture and extrapolate Arctic feedback loops. VARs are dynamic simultaneous systems of equations, routinely estimated to predict and understand the interactions of multiple macroeconomic time series. Hence, the VARCTIC is a parsimonious compromise between fullblown climate models and purely statistical approaches that usually offer little explanation of the underlying mechanism. Our "business as usual" completely unconditional forecast has SIE hitting 0 in September by the 2060s. Impulse response functions reveal that anthropogenic $ ext{CO}_2$ emission shocks have a permanent effect on SIE - a property shared by no other shock. Further, we find Albedo- and Thickness-based feedbacks to be the main amplification channels through which $ ext{CO}_2$ anomalies impact SIE in the short/medium run. Conditional forecast analyses reveal that the future path of SIE crucially depends on the evolution of $ ext{CO}_2$ emissions, with outcomes ranging from recovering SIE to it reaching 0 in the 2050s. Finally, Albedo and Thickness feedbacks are shown to play an important role in accelerating the speed at which predicted SIE is heading towards 0.




li

Generating Thermal Image Data Samples using 3D Facial Modelling Techniques and Deep Learning Methodologies. (arXiv:2005.01923v2 [cs.CV] UPDATED)

Methods for generating synthetic data have become of increasing importance to build large datasets required for Convolution Neural Networks (CNN) based deep learning techniques for a wide range of computer vision applications. In this work, we extend existing methodologies to show how 2D thermal facial data can be mapped to provide 3D facial models. For the proposed research work we have used tufts datasets for generating 3D varying face poses by using a single frontal face pose. The system works by refining the existing image quality by performing fusion based image preprocessing operations. The refined outputs have better contrast adjustments, decreased noise level and higher exposedness of the dark regions. It makes the facial landmarks and temperature patterns on the human face more discernible and visible when compared to original raw data. Different image quality metrics are used to compare the refined version of images with original images. In the next phase of the proposed study, the refined version of images is used to create 3D facial geometry structures by using Convolution Neural Networks (CNN). The generated outputs are then imported in blender software to finally extract the 3D thermal facial outputs of both males and females. The same technique is also used on our thermal face data acquired using prototype thermal camera (developed under Heliaus EU project) in an indoor lab environment which is then used for generating synthetic 3D face data along with varying yaw face angles and lastly facial depth map is generated.




li

A bimodal gamma distribution: Properties, regression model and applications. (arXiv:2004.12491v2 [stat.ME] UPDATED)

In this paper we propose a bimodal gamma distribution using a quadratic transformation based on the alpha-skew-normal model. We discuss several properties of this distribution such as mean, variance, moments, hazard rate and entropy measures. Further, we propose a new regression model with censored data based on the bimodal gamma distribution. This regression model can be very useful to the analysis of real data and could give more realistic fits than other special regression models. Monte Carlo simulations were performed to check the bias in the maximum likelihood estimation. The proposed models are applied to two real data sets found in literature.




li

A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging. (arXiv:2004.12314v3 [cs.CV] UPDATED)

Segmentation of cardiac images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) widely used for visualizing diseased cardiac structures, is a crucial first step for clinical diagnosis and treatment. However, direct segmentation of LGE-MRIs is challenging due to its attenuated contrast. Since most clinical studies have relied on manual and labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the "2018 Left Atrium Segmentation Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double, sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved far superior results than traditional methods and pipelines containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for cardiac LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field.




li

On a phase transition in general order spline regression. (arXiv:2004.10922v2 [math.ST] UPDATED)

In the Gaussian sequence model $Y= heta_0 + varepsilon$ in $mathbb{R}^n$, we study the fundamental limit of approximating the signal $ heta_0$ by a class $Theta(d,d_0,k)$ of (generalized) splines with free knots. Here $d$ is the degree of the spline, $d_0$ is the order of differentiability at each inner knot, and $k$ is the maximal number of pieces. We show that, given any integer $dgeq 0$ and $d_0in{-1,0,ldots,d-1}$, the minimax rate of estimation over $Theta(d,d_0,k)$ exhibits the following phase transition: egin{equation*} egin{aligned} inf_{widetilde{ heta}}sup_{ hetainTheta(d,d_0, k)}mathbb{E}_ heta|widetilde{ heta} - heta|^2 asymp_d egin{cases} kloglog(16n/k), & 2leq kleq k_0,\ klog(en/k), & k geq k_0+1. end{cases} end{aligned} end{equation*} The transition boundary $k_0$, which takes the form $lfloor{(d+1)/(d-d_0) floor} + 1$, demonstrates the critical role of the regularity parameter $d_0$ in the separation between a faster $log log(16n)$ and a slower $log(en)$ rate. We further show that, once encouraging an additional '$d$-monotonicity' shape constraint (including monotonicity for $d = 0$ and convexity for $d=1$), the above phase transition is eliminated and the faster $kloglog(16n/k)$ rate can be achieved for all $k$. These results provide theoretical support for developing $ell_0$-penalized (shape-constrained) spline regression procedures as useful alternatives to $ell_1$- and $ell_2$-penalized ones.




li

Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A Multi-Agent Deep Reinforcement Learning Approach. (arXiv:2003.02157v2 [physics.soc-ph] UPDATED)

In recent years, multi-access edge computing (MEC) is a key enabler for handling the massive expansion of Internet of Things (IoT) applications and services. However, energy consumption of a MEC network depends on volatile tasks that induces risk for energy demand estimations. As an energy supplier, a microgrid can facilitate seamless energy supply. However, the risk associated with energy supply is also increased due to unpredictable energy generation from renewable and non-renewable sources. Especially, the risk of energy shortfall is involved with uncertainties in both energy consumption and generation. In this paper, we study a risk-aware energy scheduling problem for a microgrid-powered MEC network. First, we formulate an optimization problem considering the conditional value-at-risk (CVaR) measurement for both energy consumption and generation, where the objective is to minimize the loss of energy shortfall of the MEC networks and we show this problem is an NP-hard problem. Second, we analyze our formulated problem using a multi-agent stochastic game that ensures the joint policy Nash equilibrium, and show the convergence of the proposed model. Third, we derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based asynchronous advantage actor-critic (A3C) algorithm with shared neural networks. This method mitigates the curse of dimensionality of the state space and chooses the best policy among the agents for the proposed problem. Finally, the experimental results establish a significant performance gain by considering CVaR for high accuracy energy scheduling of the proposed model than both the single and random agent models.




li

Cyclic Boosting -- an explainable supervised machine learning algorithm. (arXiv:2002.03425v2 [cs.LG] UPDATED)

Supervised machine learning algorithms have seen spectacular advances and surpassed human level performance in a wide range of specific applications. However, using complex ensemble or deep learning algorithms typically results in black box models, where the path leading to individual predictions cannot be followed in detail. In order to address this issue, we propose the novel "Cyclic Boosting" machine learning algorithm, which allows to efficiently perform accurate regression and classification tasks while at the same time allowing a detailed understanding of how each individual prediction was made.




li

A priori generalization error for two-layer ReLU neural network through minimum norm solution. (arXiv:1912.03011v3 [cs.LG] UPDATED)

We focus on estimating emph{a priori} generalization error of two-layer ReLU neural networks (NNs) trained by mean squared error, which only depends on initial parameters and the target function, through the following research line. We first estimate emph{a priori} generalization error of finite-width two-layer ReLU NN with constraint of minimal norm solution, which is proved by cite{zhang2019type} to be an equivalent solution of a linearized (w.r.t. parameter) finite-width two-layer NN. As the width goes to infinity, the linearized NN converges to the NN in Neural Tangent Kernel (NTK) regime citep{jacot2018neural}. Thus, we can derive the emph{a priori} generalization error of two-layer ReLU NN in NTK regime. The distance between NN in a NTK regime and a finite-width NN with gradient training is estimated by cite{arora2019exact}. Based on the results in cite{arora2019exact}, our work proves an emph{a priori} generalization error bound of two-layer ReLU NNs. This estimate uses the intrinsic implicit bias of the minimum norm solution without requiring extra regularity in the loss function. This emph{a priori} estimate also implies that NN does not suffer from curse of dimensionality, and a small generalization error can be achieved without requiring exponentially large number of neurons. In addition the research line proposed in this paper can also be used to study other properties of the finite-width network, such as the posterior generalization error.




li

Sampling random graph homomorphisms and applications to network data analysis. (arXiv:1910.09483v2 [math.PR] UPDATED)

A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph $F$ into a large network $mathcal{G}$. We propose two complementary MCMC algorithms for sampling a random graph homomorphisms and establish bounds on their mixing times and concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neigborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut distance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also apply our framework for network clustering and classification problems using the Facebook100 dataset and Word Adjacency Networks of a set of classic novels.




li

DualSMC: Tunneling Differentiable Filtering and Planning under Continuous POMDPs. (arXiv:1909.13003v4 [cs.LG] UPDATED)

A major difficulty of solving continuous POMDPs is to infer the multi-modal distribution of the unobserved true states and to make the planning algorithm dependent on the perceived uncertainty. We cast POMDP filtering and planning problems as two closely related Sequential Monte Carlo (SMC) processes, one over the real states and the other over the future optimal trajectories, and combine the merits of these two parts in a new model named the DualSMC network. In particular, we first introduce an adversarial particle filter that leverages the adversarial relationship between its internal components. Based on the filtering results, we then propose a planning algorithm that extends the previous SMC planning approach [Piche et al., 2018] to continuous POMDPs with an uncertainty-dependent policy. Crucially, not only can DualSMC handle complex observations such as image input but also it remains highly interpretable. It is shown to be effective in three continuous POMDP domains: the floor positioning domain, the 3D light-dark navigation domain, and a modified Reacher domain.




li

Margin-Based Generalization Lower Bounds for Boosted Classifiers. (arXiv:1909.12518v4 [cs.LG] UPDATED)

Boosting is one of the most successful ideas in machine learning. The most well-accepted explanations for the low generalization error of boosting algorithms such as AdaBoost stem from margin theory. The study of margins in the context of boosting algorithms was initiated by Schapire, Freund, Bartlett and Lee (1998) and has inspired numerous boosting algorithms and generalization bounds. To date, the strongest known generalization (upper bound) is the $k$th margin bound of Gao and Zhou (2013). Despite the numerous generalization upper bounds that have been proved over the last two decades, nothing is known about the tightness of these bounds. In this paper, we give the first margin-based lower bounds on the generalization error of boosted classifiers. Our lower bounds nearly match the $k$th margin bound and thus almost settle the generalization performance of boosted classifiers in terms of margins.




li

Nonstationary Bayesian modeling for a large data set of derived surface temperature return values. (arXiv:2005.03658v1 [stat.ME])

Heat waves resulting from prolonged extreme temperatures pose a significant risk to human health globally. Given the limitations of observations of extreme temperature, climate models are often used to characterize extreme temperature globally, from which one can derive quantities like return values to summarize the magnitude of a low probability event for an arbitrary geographic location. However, while these derived quantities are useful on their own, it is also often important to apply a spatial statistical model to such data in order to, e.g., understand how the spatial dependence properties of the return values vary over space and emulate the climate model for generating additional spatial fields with corresponding statistical properties. For these objectives, when modeling global data it is critical to use a nonstationary covariance function. Furthermore, given that the output of modern global climate models can be on the order of $mathcal{O}(10^4)$, it is important to utilize approximate Gaussian process methods to enable inference. In this paper, we demonstrate the application of methodology introduced in Risser and Turek (2020) to conduct a nonstationary and fully Bayesian analysis of a large data set of 20-year return values derived from an ensemble of global climate model runs with over 50,000 spatial locations. This analysis uses the freely available BayesNSGP software package for R.




li

Visualisation and knowledge discovery from interpretable models. (arXiv:2005.03632v1 [cs.LG])

Increasing number of sectors which affect human lives, are using Machine Learning (ML) tools. Hence the need for understanding their working mechanism and evaluating their fairness in decision-making, are becoming paramount, ushering in the era of Explainable AI (XAI). In this contribution we introduced a few intrinsically interpretable models which are also capable of dealing with missing values, in addition to extracting knowledge from the dataset and about the problem. These models are also capable of visualisation of the classifier and decision boundaries: they are the angle based variants of Learning Vector Quantization. We have demonstrated the algorithms on a synthetic dataset and a real-world one (heart disease dataset from the UCI repository). The newly developed classifiers helped in investigating the complexities of the UCI dataset as a multiclass problem. The performance of the developed classifiers were comparable to those reported in literature for this dataset, with additional value of interpretability, when the dataset was treated as a binary class problem.




li

Phase Transitions of the Maximum Likelihood Estimates in the Tensor Curie-Weiss Model. (arXiv:2005.03631v1 [math.ST])

The $p$-tensor Curie-Weiss model is a two-parameter discrete exponential family for modeling dependent binary data, where the sufficient statistic has a linear term and a term with degree $p geq 2$. This is a special case of the tensor Ising model and the natural generalization of the matrix Curie-Weiss model, which provides a convenient mathematical abstraction for capturing, not just pairwise, but higher-order dependencies. In this paper we provide a complete description of the limiting properties of the maximum likelihood (ML) estimates of the natural parameters, given a single sample from the $p$-tensor Curie-Weiss model, for $p geq 3$, complementing the well-known results in the matrix ($p=2$) case (Comets and Gidas (1991)). Our results unearth various new phase transitions and surprising limit theorems, such as the existence of a 'critical' curve in the parameter space, where the limiting distribution of the ML estimates is a mixture with both continuous and discrete components. The number of mixture components is either two or three, depending on, among other things, the sign of one of the parameters and the parity of $p$. Another interesting revelation is the existence of certain 'special' points in the parameter space where the ML estimates exhibit a superefficiency phenomenon, converging to a non-Gaussian limiting distribution at rate $N^{frac{3}{4}}$. We discuss how these results can be used to construct confidence intervals for the model parameters and, as a byproduct of our analysis, obtain limit theorems for the sample mean, which provide key insights into the statistical properties of the model.




li

Know Your Clients' behaviours: a cluster analysis of financial transactions. (arXiv:2005.03625v1 [econ.EM])

In Canada, financial advisors and dealers by provincial securities commissions, and those self-regulatory organizations charged with direct regulation over investment dealers and mutual fund dealers, respectively to collect and maintain Know Your Client (KYC) information, such as their age or risk tolerance, for investor accounts. With this information, investors, under their advisor's guidance, make decisions on their investments which are presumed to be beneficial to their investment goals. Our unique dataset is provided by a financial investment dealer with over 50,000 accounts for over 23,000 clients. We use a modified behavioural finance recency, frequency, monetary model for engineering features that quantify investor behaviours, and machine learning clustering algorithms to find groups of investors that behave similarly. We show that the KYC information collected does not explain client behaviours, whereas trade and transaction frequency and volume are most informative. We believe the results shown herein encourage financial regulators and advisors to use more advanced metrics to better understand and predict investor behaviours.




li

Nonparametric Estimation of the Fisher Information and Its Applications. (arXiv:2005.03622v1 [cs.IT])

This paper considers the problem of estimation of the Fisher information for location from a random sample of size $n$. First, an estimator proposed by Bhattacharya is revisited and improved convergence rates are derived. Second, a new estimator, termed a clipped estimator, is proposed. Superior upper bounds on the rates of convergence can be shown for the new estimator compared to the Bhattacharya estimator, albeit with different regularity conditions. Third, both of the estimators are evaluated for the practically relevant case of a random variable contaminated by Gaussian noise. Moreover, using Brown's identity, which relates the Fisher information and the minimum mean squared error (MMSE) in Gaussian noise, two corresponding consistent estimators for the MMSE are proposed. Simulation examples for the Bhattacharya estimator and the clipped estimator as well as the MMSE estimators are presented. The examples demonstrate that the clipped estimator can significantly reduce the required sample size to guarantee a specific confidence interval compared to the Bhattacharya estimator.




li

Predictive Modeling of ICU Healthcare-Associated Infections from Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling Approach. (arXiv:2005.03582v1 [cs.LG])

Early detection of patients vulnerable to infections acquired in the hospital environment is a challenge in current health systems given the impact that such infections have on patient mortality and healthcare costs. This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units by means of machine-learning methods. The aim is to support decision making addressed at reducing the incidence rate of infections. In this field, it is necessary to deal with the problem of building reliable classifiers from imbalanced datasets. We propose a clustering-based undersampling strategy to be used in combination with ensemble classifiers. A comparative study with data from 4616 patients was conducted in order to validate our proposal. We applied several single and ensemble classifiers both to the original dataset and to data preprocessed by means of different resampling methods. The results were analyzed by means of classic and recent metrics specifically designed for imbalanced data classification. They revealed that the proposal is more efficient in comparison with other approaches.




li

Sequential Aggregation of Probabilistic Forecasts -- Applicaton to Wind Speed Ensemble Forecasts. (arXiv:2005.03540v1 [stat.AP])

In the field of numerical weather prediction (NWP), the probabilistic distribution of the future state of the atmosphere is sampled with Monte-Carlo-like simulations, called ensembles. These ensembles have deficiencies (such as conditional biases) that can be corrected thanks to statistical post-processing methods. Several ensembles exist and may be corrected with different statistiscal methods. A further step is to combine these raw or post-processed ensembles. The theory of prediction with expert advice allows us to build combination algorithms with theoretical guarantees on the forecast performance. This article adapts this theory to the case of probabilistic forecasts issued as step-wise cumulative distribution functions (CDF). The theory is applied to wind speed forecasting, by combining several raw or post-processed ensembles, considered as CDFs. The second goal of this study is to explore the use of two forecast performance criteria: the Continous ranked probability score (CRPS) and the Jolliffe-Primo test. Comparing the results obtained with both criteria leads to reconsidering the usual way to build skillful probabilistic forecasts, based on the minimization of the CRPS. Minimizing the CRPS does not necessarily produce reliable forecasts according to the Jolliffe-Primo test. The Jolliffe-Primo test generally selects reliable forecasts, but could lead to issuing suboptimal forecasts in terms of CRPS. It is proposed to use both criterion to achieve reliable and skillful probabilistic forecasts.




li

Modeling High-Dimensional Unit-Root Time Series. (arXiv:2005.03496v1 [stat.ME])

In this paper, we propose a new procedure to build a structural-factor model for a vector unit-root time series. For a $p$-dimensional unit-root process, we assume that each component consists of a set of common factors, which may be unit-root non-stationary, and a set of stationary components, which contain the cointegrations among the unit-root processes. To further reduce the dimensionality, we also postulate that the stationary part of the series is a nonsingular linear transformation of certain common factors and idiosyncratic white noise components as in Gao and Tsay (2019a, b). The estimation of linear loading spaces of the unit-root factors and the stationary components is achieved by an eigenanalysis of some nonnegative definite matrix, and the separation between the stationary factors and the white noises is based on an eigenanalysis and a projected principal component analysis. Asymptotic properties of the proposed method are established for both fixed $p$ and diverging $p$ as the sample size $n$ tends to infinity. Both simulated and real examples are used to demonstrate the performance of the proposed method in finite samples.




li

Feature Selection Methods for Uplift Modeling. (arXiv:2005.03447v1 [cs.LG])

Uplift modeling is a predictive modeling technique that estimates the user-level incremental effect of a treatment using machine learning models. It is often used for targeting promotions and advertisements, as well as for the personalization of product offerings. In these applications, there are often hundreds of features available to build such models. Keeping all the features in a model can be costly and inefficient. Feature selection is an essential step in the modeling process for multiple reasons: improving the estimation accuracy by eliminating irrelevant features, accelerating model training and prediction speed, reducing the monitoring and maintenance workload for feature data pipeline, and providing better model interpretation and diagnostics capability. However, feature selection methods for uplift modeling have been rarely discussed in the literature. Although there are various feature selection methods for standard machine learning models, we will demonstrate that those methods are sub-optimal for solving the feature selection problem for uplift modeling. To address this problem, we introduce a set of feature selection methods designed specifically for uplift modeling, including both filter methods and embedded methods. To evaluate the effectiveness of the proposed feature selection methods, we use different uplift models and measure the accuracy of each model with a different number of selected features. We use both synthetic and real data to conduct these experiments. We also implemented the proposed filter methods in an open source Python package (CausalML).




li

Multi-Label Sampling based on Local Label Imbalance. (arXiv:2005.03240v1 [cs.LG])

Class imbalance is an inherent characteristic of multi-label data that hinders most multi-label learning methods. One efficient and flexible strategy to deal with this problem is to employ sampling techniques before training a multi-label learning model. Although existing multi-label sampling approaches alleviate the global imbalance of multi-label datasets, it is actually the imbalance level within the local neighbourhood of minority class examples that plays a key role in performance degradation. To address this issue, we propose a novel measure to assess the local label imbalance of multi-label datasets, as well as two multi-label sampling approaches based on the local label imbalance, namely MLSOL and MLUL. By considering all informative labels, MLSOL creates more diverse and better labeled synthetic instances for difficult examples, while MLUL eliminates instances that are harmful to their local region. Experimental results on 13 multi-label datasets demonstrate the effectiveness of the proposed measure and sampling approaches for a variety of evaluation metrics, particularly in the case of an ensemble of classifiers trained on repeated samples of the original data.




li

Subdomain Adaptation with Manifolds Discrepancy Alignment. (arXiv:2005.03229v1 [cs.LG])

Reducing domain divergence is a key step in transfer learning problems. Existing works focus on the minimization of global domain divergence. However, two domains may consist of several shared subdomains, and differ from each other in each subdomain. In this paper, we take the local divergence of subdomains into account in transfer. Specifically, we propose to use low-dimensional manifold to represent subdomain, and align the local data distribution discrepancy in each manifold across domains. A Manifold Maximum Mean Discrepancy (M3D) is developed to measure the local distribution discrepancy in each manifold. We then propose a general framework, called Transfer with Manifolds Discrepancy Alignment (TMDA), to couple the discovery of data manifolds with the minimization of M3D. We instantiate TMDA in the subspace learning case considering both the linear and nonlinear mappings. We also instantiate TMDA in the deep learning framework. Extensive experimental studies demonstrate that TMDA is a promising method for various transfer learning tasks.




li

Deep Learning Framework for Detecting Ground Deformation in the Built Environment using Satellite InSAR data. (arXiv:2005.03221v1 [cs.CV])

The large volumes of Sentinel-1 data produced over Europe are being used to develop pan-national ground motion services. However, simple analysis techniques like thresholding cannot detect and classify complex deformation signals reliably making providing usable information to a broad range of non-expert stakeholders a challenge. Here we explore the applicability of deep learning approaches by adapting a pre-trained convolutional neural network (CNN) to detect deformation in a national-scale velocity field. For our proof-of-concept, we focus on the UK where previously identified deformation is associated with coal-mining, ground water withdrawal, landslides and tunnelling. The sparsity of measurement points and the presence of spike noise make this a challenging application for deep learning networks, which involve calculations of the spatial convolution between images. Moreover, insufficient ground truth data exists to construct a balanced training data set, and the deformation signals are slower and more localised than in previous applications. We propose three enhancement methods to tackle these problems: i) spatial interpolation with modified matrix completion, ii) a synthetic training dataset based on the characteristics of real UK velocity map, and iii) enhanced over-wrapping techniques. Using velocity maps spanning 2015-2019, our framework detects several areas of coal mining subsidence, uplift due to dewatering, slate quarries, landslides and tunnel engineering works. The results demonstrate the potential applicability of the proposed framework to the development of automated ground motion analysis systems.




li

Efficient Characterization of Dynamic Response Variation Using Multi-Fidelity Data Fusion through Composite Neural Network. (arXiv:2005.03213v1 [stat.ML])

Uncertainties in a structure is inevitable, which generally lead to variation in dynamic response predictions. For a complex structure, brute force Monte Carlo simulation for response variation analysis is infeasible since one single run may already be computationally costly. Data driven meta-modeling approaches have thus been explored to facilitate efficient emulation and statistical inference. The performance of a meta-model hinges upon both the quality and quantity of training dataset. In actual practice, however, high-fidelity data acquired from high-dimensional finite element simulation or experiment are generally scarce, which poses significant challenge to meta-model establishment. In this research, we take advantage of the multi-level response prediction opportunity in structural dynamic analysis, i.e., acquiring rapidly a large amount of low-fidelity data from reduced-order modeling, and acquiring accurately a small amount of high-fidelity data from full-scale finite element analysis. Specifically, we formulate a composite neural network fusion approach that can fully utilize the multi-level, heterogeneous datasets obtained. It implicitly identifies the correlation of the low- and high-fidelity datasets, which yields improved accuracy when compared with the state-of-the-art. Comprehensive investigations using frequency response variation characterization as case example are carried out to demonstrate the performance.




li

MAZE: Data-Free Model Stealing Attack Using Zeroth-Order Gradient Estimation. (arXiv:2005.03161v1 [stat.ML])

Model Stealing (MS) attacks allow an adversary with black-box access to a Machine Learning model to replicate its functionality, compromising the confidentiality of the model. Such attacks train a clone model by using the predictions of the target model for different inputs. The effectiveness of such attacks relies heavily on the availability of data necessary to query the target model. Existing attacks either assume partial access to the dataset of the target model or availability of an alternate dataset with semantic similarities.

This paper proposes MAZE -- a data-free model stealing attack using zeroth-order gradient estimation. In contrast to prior works, MAZE does not require any data and instead creates synthetic data using a generative model. Inspired by recent works in data-free Knowledge Distillation (KD), we train the generative model using a disagreement objective to produce inputs that maximize disagreement between the clone and the target model. However, unlike the white-box setting of KD, where the gradient information is available, training a generator for model stealing requires performing black-box optimization, as it involves accessing the target model under attack. MAZE relies on zeroth-order gradient estimation to perform this optimization and enables a highly accurate MS attack.

Our evaluation with four datasets shows that MAZE provides a normalized clone accuracy in the range of 0.91x to 0.99x, and outperforms even the recent attacks that rely on partial data (JBDA, clone accuracy 0.13x to 0.69x) and surrogate data (KnockoffNets, clone accuracy 0.52x to 0.97x). We also study an extension of MAZE in the partial-data setting and develop MAZE-PD, which generates synthetic data closer to the target distribution. MAZE-PD further improves the clone accuracy (0.97x to 1.0x) and reduces the query required for the attack by 2x-24x.




li

On the Optimality of Randomization in Experimental Design: How to Randomize for Minimax Variance and Design-Based Inference. (arXiv:2005.03151v1 [stat.ME])

I study the minimax-optimal design for a two-arm controlled experiment where conditional mean outcomes may vary in a given set. When this set is permutation symmetric, the optimal design is complete randomization, and using a single partition (i.e., the design that only randomizes the treatment labels for each side of the partition) has minimax risk larger by a factor of $n-1$. More generally, the optimal design is shown to be the mixed-strategy optimal design (MSOD) of Kallus (2018). Notably, even when the set of conditional mean outcomes has structure (i.e., is not permutation symmetric), being minimax-optimal for variance still requires randomization beyond a single partition. Nonetheless, since this targets precision, it may still not ensure sufficient uniformity in randomization to enable randomization (i.e., design-based) inference by Fisher's exact test to appropriately detect violations of null. I therefore propose the inference-constrained MSOD, which is minimax-optimal among all designs subject to such uniformity constraints. On the way, I discuss Johansson et al. (2020) who recently compared rerandomization of Morgan and Rubin (2012) and the pure-strategy optimal design (PSOD) of Kallus (2018). I point out some errors therein and set straight that randomization is minimax-optimal and that the "no free lunch" theorem and example in Kallus (2018) are correct.




li

Entries open for State Library’s $20,000 short film competition

Thursday 21 November 2019

The State Library of NSW is inviting entries for its short film prize Shortstacks, with a total of $20,000 on offer across two categories.




li

State Library creates a new space for Aboriginal communities to connect with their cultural heritage

Thursday 20 February 2020
In an Australian first, the State Library of NSW launched a new digital space for Aboriginal communities to connect with their histories and cultures.




li

Public libraries report spike in demand for books in language

Tuesday 17 March 2020
NSW residents are reading more and more books in languages other than English than ever before with the State Library of NSW reporting a 20% increase in requests from public libraries for multicultural material just in the last 12 months.




li

Shortlists announced for 2020 NSW Premier’s Literary Awards

Friday 20 March 2020
Contemporary works by leading and emerging Australian writers have been shortlisted for the 2020 NSW Premier's Literary Awards, the State Library of NSW announced today.