the

Problem Notes for SAS®9 - 65872: You see a "java.lang.IllegalArgumentException" error in the log file when you use the CECL_Cycle workflow template in SAS Solution for CECL

The problem occurs on a content release on the SAS Risk Governance Framework.




the

Problem Notes for SAS®9 - 65904: SAS Federation Server stops responding when you run queries against X_OBJECT_PRIVILEGES in SYSCAT and the queries run for hours

The select * from "SYSCAT"."SYSCAT"."X_EFFECTIVE_OBJECT_PRIVILEGES" query runs for hours. In this scenario, SAS Federation Server stops responding, making it unavailable for use. Restarting SAS Federation Server solves t




the

Problem Notes for SAS®9 - 65914: You see the error "Driver does not support this optional feature" after trying to insert or append data to a Databricks table

You can create create a Databricks table by using PROC SQL, but you cannot insert data into the table. PROC APPEND cannot create a new table or append data to an existing table.




the

Problem Notes for SAS®9 - 65574: Decimal values are rounded after they are inserted into a new Databricks table via SAS/ACCESS Interface to JDBC

A DATA step and PROC SQL can round numeric values while creating and loading data into a new Databricks table via JDBC.




the

Problem Notes for SAS®9 - 65898: A misleading SASTRACE message appears in the log when you insert a row into an Oracle table using SAS/ACCESS Interface to Oracle with DBIDIRECTEXEC

When you add one row to an Oracle table using DBIDIRECTEXEC, you see the following misleading trace message: "ORACLE: 4294967296 rows inserted/updated/deleted." You should see something similar to the following: "ORACLE: 1 rows inserte




the

Problem Notes for SAS®9 - 64980: The PRINT procedure contains a buffer-overrun vulnerability

Severity: Medium Description: PROC PRINT might fail with a buffer overrun when you submit it in conjunction with certain malformed SAS statements.



the

Problem Notes for SAS®9 - 64550: SAS Enterprise Case Management contains a cross-site scripting vulnerability in the CASE_ID parameter

Severity: Medium Description: SAS Enterprise Case Management contains a cross-site scripting vulnerability in the CASE_ID parameter. Potential Impact:




the

Problem Notes for SAS®9 - 65893: Custom sorts are sorted incorrectly when they are used in a hierarchy in SAS Visual Analytics Designer

A custom sort might be sorted incorrectly when the data item is used in a custom category, which is then used in a hierarchy. The issue can occur in the following scenario:




the

Problem Notes for SAS®9 - 65844: STRESS task fails with "Fatal error in PMPI_Bcast: Other MPI error, error stack: PMPI_Bcast(1478)"

In SAS  High-Performance Risk, a STRESS task might fail with a message like the following in the SAS log while the compute server is sending the ScenarioCF/Value data to the HPRisk Engine:



the

Problem Notes for SAS®9 - 65572: The length of a string variable might be longer than specified with the MAX_CHAR_LEN= option

When you read in a BigQuery table, the length of string variables might be longer than the length specified with the MAX_CHAR_LEN= option when running your SAS software   with UTF-8. By




the

Problem Notes for SAS®9 - 65883: SAS Workflow Studio returns a "cannot load" error when you try to open the CECL_Cycle_AFS workflow template for SAS Solution for CECL

You might see the following error in SAS Workflow Studio when you try to open the CECL_Cycle_AFS workflow template that is shipped with SAS Solution for CECL:



the

Problem Notes for SAS®9 - 65856: The process of updating a lookup table in SAS Business Rules Manager (running in UNIX operating environments) does not work properly

Under UNIX, the process of updating a lookup table in SAS Business Rules Manager does not work properly. The problem occurs when you perform these steps:  Open a lookup table. Cl




the

Problem Notes for SAS®9 - 65868: Saving a report distribution in SAS Visual Analytics Designer fails with "The name is invalid"

When you attempt to save a report distribution in SAS Visual Analytics Designer, you might see the error shown in the following display:  imgalt="" src="{fusion_65868_1_distributionerror.png}" />



the

Around the Horn: Pham, Choi aim to boost Rays

Over the past couple of weeks leading up to Spring Training, MLB.com went around the horn to examine each area of the Rays' 2019 roster. The final installment focuses on Tampa Bay's outfield and designated hitters.




the

The Rays' Spring Training battle to watch

The next five weeks will see lots of shuffling on Major League rosters. Here are the most intriguing positional battles on each of the 30 MLB clubs.




the

Cash reminder: Stay focused on the now

All 66 players on the Rays' Spring Training roster took the field Monday as Tampa Bay went through its first full-squad workout.




the

Does general anesthesia affect neurodevelopment in infants and children?




the

Linking risk factors and outcomes in autism spectrum disorder: is there evidence for resilience?




the

Autoimmune complications of immunotherapy: pathophysiology and management




the

Substrate recognition and ATPase activity of the E. coli cysteine/cystine ABC transporter YecSC-FliY [Microbiology]

Sulfur is essential for biological processes such as amino acid biogenesis, iron–sulfur cluster formation, and redox homeostasis. To acquire sulfur-containing compounds from the environment, bacteria have evolved high-affinity uptake systems, predominant among which is the ABC transporter family. Theses membrane-embedded enzymes use the energy of ATP hydrolysis for transmembrane transport of a wide range of biomolecules against concentration gradients. Three distinct bacterial ABC import systems of sulfur-containing compounds have been identified, but the molecular details of their transport mechanism remain poorly characterized. Here we provide results from a biochemical analysis of the purified Escherichia coli YecSC-FliY cysteine/cystine import system. We found that the substrate-binding protein FliY binds l-cystine, l-cysteine, and d-cysteine with micromolar affinities. However, binding of the l- and d-enantiomers induced different conformational changes of FliY, where the l- enantiomer–substrate-binding protein complex interacted more efficiently with the YecSC transporter. YecSC had low basal ATPase activity that was moderately stimulated by apo FliY, more strongly by d-cysteine–bound FliY, and maximally by l-cysteine– or l-cystine–bound FliY. However, at high FliY concentrations, YecSC reached maximal ATPase rates independent of the presence or nature of the substrate. These results suggest that FliY exists in a conformational equilibrium between an open, unliganded form that does not bind to the YecSC transporter and closed, unliganded and closed, liganded forms that bind this transporter with variable affinities but equally stimulate its ATPase activity. These findings differ from previous observations for similar ABC transporters, highlighting the extent of mechanistic diversity in this large protein family.




the

Detailed analyses of the crucial functions of Zn transporter proteins in alkaline phosphatase activation [Enzymology]

Numerous zinc ectoenzymes are metalated by zinc and activated in the compartments of the early secretory pathway before reaching their destination. Zn transporter (ZNT) proteins located in these compartments are essential for ectoenzyme activation. We have previously reported that ZNT proteins, specifically ZNT5–ZNT6 heterodimers and ZNT7 homodimers, play critical roles in the activation of zinc ectoenzymes, such as alkaline phosphatases (ALPs), by mobilizing cytosolic zinc into these compartments. However, this process remains incompletely understood. Here, using genetically-engineered chicken DT40 cells, we first determined that Zrt/Irt-like protein (ZIP) transporters that are localized to the compartments of the early secretory pathway play only a minor role in the ALP activation process. These transporters included ZIP7, ZIP9, and ZIP13, performing pivotal functions in maintaining cellular homeostasis by effluxing zinc out of the compartments. Next, using purified ALP proteins, we showed that zinc metalation on ALP produced in DT40 cells lacking ZNT5–ZNT6 heterodimers and ZNT7 homodimers is impaired. Finally, by genetically disrupting both ZNT5 and ZNT7 in human HAP1 cells, we directly demonstrated that the tissue-nonspecific ALP-activating functions of both ZNT complexes are conserved in human cells. Furthermore, using mutant HAP1 cells, we uncovered a previously-unrecognized and unique spatial regulation of ZNT5–ZNT6 heterodimer formation, wherein ZNT5 recruits ZNT6 to the Golgi apparatus to form the heterodimeric complex. These findings fill in major gaps in our understanding of the molecular mechanisms underlying zinc ectoenzyme activation in the compartments of the early secretory pathway.




the

ADAM10 and ADAM17 proteases mediate proinflammatory cytokine-induced and constitutive cleavage of endomucin from the endothelial surface [Membrane Biology]

Contact between inflammatory cells and endothelial cells (ECs) is a crucial step in vascular inflammation. Recently, we demonstrated that the cell-surface level of endomucin (EMCN), a heavily O-glycosylated single-transmembrane sialomucin, interferes with the interactions between inflammatory cells and ECs. We have also shown that, in response to an inflammatory stimulus, EMCN is cleared from the cell surface by an unknown mechanism. In this study, using adenovirus-mediated overexpression of a tagged EMCN in human umbilical vein ECs, we found that treatment with tumor necrosis factor α (TNF-α) or the strong oxidant pervanadate leads to loss of cell-surface EMCN and increases the levels of the C-terminal fragment of EMCN 3- to 4-fold. Furthermore, treatment with the broad-spectrum matrix metalloproteinase inhibitor batimastat (BB94) or inhibition of ADAM metallopeptidase domain 10 (ADAM10) and ADAM17 with two small-molecule inhibitors, GW280264X and GI254023X, or with siRNA significantly reduced basal and TNFα-induced cell-surface EMCN cleavage. Release of the C-terminal fragment of EMCN by TNF-α treatment was blocked by chemical inhibition of ADAM10 alone or in combination with ADAM17. These results indicate that cell-surface EMCN undergoes constitutive cleavage and that TNF-α treatment dramatically increases this cleavage, which is mediated predominantly by ADAM10 and ADAM17. As endothelial cell-surface EMCN attenuates leukocyte–EC interactions during inflammation, we propose that EMCN is a potential therapeutic target to manage vascular inflammation.




the

Glucagon Resistance at the Level of Amino Acid Turnover in Obese Subjects with Hepatic Steatosis

Glucagon secretion is regulated by circulating glucose, but it has turned out that amino acids also play an important role, and that hepatic amino acid metabolism and glucagon are linked in a mutual feed-back cycle, the liver-alpha cell axis. On this background, we hypothesized that hepatic steatosis might impair glucagon’s action on hepatic amino acid metabolism and lead to hyperaminoacidemia and hyperglucagonemia.

We subjected 15 healthy lean and 15 obese steatotic male participants to a pancreatic clamp with somatostatin and evaluated hepatic glucose and amino acid metabolism during basal and high physiological levels of glucagon. The degree of steatosis was evaluated from liver biopsies.

Total RNA sequencing of liver biopsies revealed perturbations in the expression of genes predominantly involved in amino acid metabolism in the obese steatotic individuals. This group was also characterized by fasting hyperglucagonemia, hyperaminoacidemia and an absent lowering of amino acid levels in response to high levels of glucagon. Endogenous glucose production was similar between lean and obese individuals.

Our results suggest that hepatic steatosis causes resistance to the effect of glucagon on amino acid metabolism resulting in increased amino acid concentrations as well as increased glucagon secretion providing a likely explanation of fatty liver-associated hyperglucagonemia.




the

Connecting Rodent and Human Pharmacokinetic Models for the Design and Translation of Glucose-Responsive Insulin

Despite considerable progress, development of glucose-responsive insulins (GRI) still largely depends on empirical knowledge and tedious experimentation – especially on rodents. To assist the rational design and clinical translation of the therapeutic, we present a Pharmacokinetic Algorithm Mapping GRI Efficacies in Rodents and Humans (PAMERAH), built upon our previous human model. PAMERAH constitutes a framework for predicting the therapeutic efficacy of a GRI candidate from its user-specified mechanism of action, kinetics, and dosage, which we show is accurate when checked against data from experiments and literature. Results from simulated glucose clamps also agree quantitatively with recent GRI publications. We demonstrate that the model can be used to explore the vast number of permutations constituting the GRI parameter space, and thereby identify the optimal design ranges that yield desired performance. A design guide aside, PAMERAH more importantly can facilitate GRI’s clinical translation by connecting each candidate’s efficacies in rats, mice, and humans. The resultant mapping helps find GRIs which appear promising in rodents but underperform in humans (i.e. false-positives). Conversely, it also allows for the discovery of optimal human GRI dynamics not captured by experiments on a rodent population (false-negatives). We condense such information onto a translatability grid as a straightforward, visual guide for GRI development.




the

Adipose Triglyceride Lipase is a Key Lipase for the Mobilization of Lipid Droplets in Human Beta Cells and Critical for the Maintenance of Syntaxin1a Level in Beta Cells

Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse beta cells, LDs are prominent in human beta cells, however, the regulation of LD mobilization (lipolysis) in human beta cells remains unclear. We found that glucose increases lipolysis in non-diabetic human islets, but not in type 2 diabetic (T2D) islets, indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets (shATGL) increased triglycerides, and the number and size of LDs indicating that ATGL is the principal lipase in human beta cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS) and insulin secretion to IBMX and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL deficient INS1 cells and human pseudoislets showed reduced Stx1a, a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human beta cells and supports insulin secretion by stabilizing Stx1a. The dysregulated lipolysis may contribute to LD accumulation and beta cell dysfunction in T2D islets.




the

Adipose Triglyceride Lipase is a Key Lipase for the Mobilization of Lipid Droplets in Human Beta Cells and Critical for the Maintenance of Syntaxin1a Level in Beta Cells

Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse beta cells, LDs are prominent in human beta cells, however, the regulation of LD mobilization (lipolysis) in human beta cells remains unclear. We found that glucose increases lipolysis in non-diabetic human islets, but not in type 2 diabetic (T2D) islets, indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets (shATGL) increased triglycerides, and the number and size of LDs indicating that ATGL is the principal lipase in human beta cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS) and insulin secretion to IBMX and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL deficient INS1 cells and human pseudoislets showed reduced Stx1a, a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human beta cells and supports insulin secretion by stabilizing Stx1a. The dysregulated lipolysis may contribute to LD accumulation and beta cell dysfunction in T2D islets.




the

Coregulator Sin3a Promotes Postnatal Murine {beta}-Cell Fitness by Regulating Genes in Ca2+ Homeostasis, Cell Survival, Vesicle Biosynthesis, Glucose Metabolism, and Stress Response

Swi-independent 3a and 3b (Sin3a and Sin3b) are paralogous transcriptional coregulators that direct cellular differentiation, survival, and function. Here, we report that mouse Sin3a and Sin3b are co-produced in most pancreatic cells during embryogenesis but become much more enriched in endocrine cells in adults, implying continued essential roles in mature endocrine-cell function. Mice with loss of Sin3a in endocrine progenitors were normal during early postnatal stages but gradually developed diabetes before weaning. These physiological defects were preceded by the compromised survival, insulin-vesicle packaging, insulin secretion, and nutrient-induced Ca2+ influx of Sin3a-deficient β-cells. RNA-seq coupled with candidate chromatin-immunoprecipitation assays revealed several genes that could be directly regulated by Sin3a in β-cells, which modulate Ca2+/ion transport, cell survival, vesicle/membrane trafficking, glucose metabolism, and stress responses. Lastly, mice with loss of both Sin3a and Sin3b in multipotent embryonic pancreatic progenitors had significantly reduced islet-cell mass at birth, caused by decreased endocrine-progenitor production and increased β-cell death. These findings highlight the stage-specific requirements for the presumed "general" coregulators Sin3a and Sin3b in islet β-cells, with Sin3a being dispensable for differentiation but required for postnatal function and survival.




the

Hybrid Insulin Peptides are Recognized by Human T Cells in the Context of DRB1*04:01

T cells isolated from the pancreatic infiltrates of non-obese diabetic mice have been shown to recognize epitopes formed by the covalent cross-linking of proinsulin and secretory granule peptides. Formation of such hybrid insulin peptides (HIPs) was confirmed through mass spectrometry and responses to HIPs were observed among the islet-infiltrating T cells of pancreatic organ donors and in the peripheral blood of individuals with type 1 diabetes (T1D). However, questions remain about the prevalence of HIP-specific T cells in humans, the sequences they recognize, and their role in disease. We identified six novel HIPs that are recognized in the context of DRB1*04:01, discovered by utilizing a library of theoretical HIP sequences derived from insulin fragments covalently linked to one another or to fragments of secretory granule proteins or other islet-derived proteins. We demonstrate that T cells that recognize these HIPs are detectable in the peripheral blood of subjects with T1D and exhibit an effector memory phenotype. HIP-reactive T cell clones produced Th1-associated cytokines and proliferated in response to human islet preparations. These results support the relevance of HIPs in human disease, further establishing a novel post-translational modification that may contribute to the loss of peripheral tolerance in T1D.




the

Hyperuricemia Predisposes to the Onset of Diabetes via Promoting Pancreatic {beta}-Cell Death in Uricase Deficiency Male Mice

Clinical studies have shown a link between hyperuricemia (HU) and diabetes, while the exact effect of soluble serum urate on glucose metabolism remains elusive. This study aims to characterize the glucose metabolic phenotypes and investigate the underlying molecular mechanisms using a novel spontaneous HU mouse model in which the Uricase (Uox) gene is absent. In an attempt to study the role of HU in glycometabolism, we implemented external stimulation on Uox-knockout (KO) and wild-type (WT) males with a high-fat diet (HFD) and/or injections of multiple low-dose streptozotocin (MLD-STZ) to provoke the potential role of urate. Notably, while Uox-KO mice developed glucose intolerance in the basal condition, no mice spontaneously developed diabetes, even with aging. HFD-fed Uox-KO mice manifested similar insulin sensitivity compared with WT controls. HU augmented the existing glycometabolism abnormality induced by MLD-STZ and eventually led to diabetes, as evidenced by the increased random glucose. Reduced β-cell masses and increased terminal deoxynucleotidyl TUNEL-positive β-cells suggested that HU-mediated diabetes was cell death dependent. However, urate-lowering treatment (ULT) cannot ameliorate the diabetes incidence or reverse β-cell apoptosis with significance. ULT displayed a significant therapeutic effect of HU-crystal– associated kidney injury and tubulointerstitial damage in diabetes. Moreover, we present transcriptomic analysis of isolated islets, using Uox-KO versus WT mice and streptozotocin-induced diabetic WT (STZ-WT) versus diabetic Uox-KO (STZ-KO) mice. Shared differentially expressed genes of HU primacy revealed Stk17β is a possible target gene in HU-related β-cell death. Together, this study suggests that HU accelerates but does not cause diabetes by inhibiting islet β-cell survival.




the

Secretory Functions of Macrophages in the Human Pancreatic Islet are Regulated by Endogenous Purinergic Signaling

Endocrine cells of the pancreatic islet interact with their microenvironment to maintain tissue homeostasis. Communication with local macrophages is particularly important in this context, but the homeostatic functions of human islet macrophages are not known. Here we show that the human islet contains macrophages in perivascular regions that are the main local source of the anti-inflammatory cytokine Il-10 and the metalloproteinase MMP9. Macrophage production and secretion of these homeostatic factors is controlled by endogenous purinergic signals. In obese and diabetic states, macrophage expression of purinergic receptors, MMP9, and Il-10 is reduced. We propose that in those states exacerbated beta cell activity due to increased insulin demand and increased cell death produces high levels of ATP that downregulate purinergic receptor expression. Loss of ATP sensing in macrophages may reduce their secretory capacity.




the

Elevated First-Trimester Neutrophil Count Is Closely Associated with the Development of Maternal Gestational Diabetes Mellitus and Adverse Pregnancy Outcomes

Chronic low-grade inflammation plays a central role in the pathophysiology of gestational diabetes mellitus (GDM). In order to investigate the ability of different inflammatory blood cell parameters in predicting the development of GDM and pregnancy outcomes, 258 women with GDM and 1154 women without were included in this retrospective study. First-trimester neutrophil count outperformed white blood cell (WBC) count, and neutrophil-to-lymphocyte ratio (NLR) in the predictability for GDM. Subjects were grouped based on tertiles of neutrophil count during their first-trimester pregnancy. The results showed that as the neutrophil count increased, there was a step-wise increase in GDM incidence, as well as glucose and glycosylated hemoglobin (HbA1c) level, Homeostasis Model Assessment for Insulin Resistance (HOMA-IR), macrosomia incidence and newborn weight. Neutrophil count was positively associated with pre-pregnancy Body Mass Index (BMI), HOMA-IR and newborn weight. Additionally, neutrophil count was an independent risk factor for the development of GDM, regardless of the history of GDM. Spline regression showed that there was a significant linear association between GDM incidence and continuous neutrophil count when it exceeded 5.0 x 109/L. This work suggested that first-trimester neutrophil count is closely associated with the development of GDM and adverse pregnancy outcomes.




the

TWIST1-Reprogrammed Endothelial Cell Transplantation Potentiates Neovascularization-Mediated Diabetic Wound Tissue Regeneration

Hypo-vascularised diabetic non-healing wounds are due to reduced number and impaired physiology of endogenous endothelial progenitor cell (EPC) population that, limits their recruitment and mobilization at the wound site. To enrich the EPC repertoire from non-endothelial precursors, abundantly available mesenchymal stromal cells (MSCs) were reprogrammed into induced-endothelial cells (iECs). We identified cell signaling molecular targets by meta-analysis of microarray datasets. BMP-2 induction leads to the expression of inhibitory Smad 6/7-dependent negative transcriptional regulation of ID1, rendering the latter's reduced binding to TWIST1 during transdifferentiation of WJ-MSC into iEC. TWIST1, in turn, regulates endothelial genes transcription, positively of pro-angiogenic-KDR and negatively, in part, of anti-angiogenic-SFRP4. Twist1 reprogramming enhanced the endothelial lineage commitment of WJ-MSC, increased the vasculogenic potential of reprogrammed EC (rEC). Transplantation of stable TWIST1-rECs into full-thickness type 1 and 2 diabetic-splinted wound healing murine model enhanced the microcirculatory blood flow and accelerated the wound tissue regeneration. An increased or decreased co-localization of GFP with KDR/SFRP4 and CD31 in the regenerated diabetic wound bed with TWIST1 overexpression or silencing (piLenti-TWIST1-shRNA-GFP), respectively further confirmed improved neovascularization. This study depicted the reprogramming of WJ-MSCs into rECs using unique transcription factors, TWIST1 for an efficacious cell transplantation therapy to induce neovascularization–mediated diabetic wound tissue regeneration.




the

Motifs of Three HLA-DQ Amino Acid Residues ({alpha}44, {beta}57, {beta}135) Capture Full Association with the Risk of Type 1 Diabetes in DQ2 and DQ8 Children

HLA-DQA1 and -DQB1 are strongly associated with type 1 diabetes (T1D), and DQ8.1 and DQ2.5 are major risk haplotypes. Next generation targeted sequencing of HLA-DQA1 and -DQB1 in Swedish newly diagnosed 1-18 year-old patients (n=962) and controls (n=636) was used to construct abbreviated DQ haplotypes, converted into amino acid (AA) residues, and assessed for their associations with T1D. A hierarchically-organized haplotype (HOH) association analysis, allowed 45 unique DQ haplotypes to be categorized into seven clusters. The DQ8/9 cluster included two DQ8.1 risk and the DQ9 resistant haplotypes, and the DQ2 cluster, included the DQ2.5 risk and DQ2.2 resistant haplotypes. Within each cluster, HOH found residues α44Q (OR 3.29, p=2.38*10-85 ) and β57A (OR 3.44, p=3.80*10-84) to be associated with T1D in the DQ8/9 cluster representing all ten residues (α22, α23, α44, α49, α51, α53, α54, α73, α184, β57) due to complete linkage-disequilibrium (LD) of α44 with eight such residues. Within the DQ2 cluster and due to LD, HOH analysis found α44C and β135D to share the risk for T1D (OR 2.10, p=1.96*10-20). The motif "QAD" of α44, β57, and β135 captured the T1D risk association of DQ8.1 (OR 3.44, p=3.80*10-84), the corresponding motif "CAD" captured the risk association of DQ2.5 (OR 2.10, p=1.96*10-20). Two risk associations were related to GADA and IA-2A, but in opposite directions. "CAD" was positively associated with GADA (OR 1.56; p=6.35*10-8) but negatively with IA-2A (OR 0.59, p= 6.55*10-11). "QAD" was negatively associated with GADA (OR 0.88; p= 3.70*10-3) but positively with IA-2A (OR 1.64; p= 2.40*10-14), despite a single difference at α44. The residues are found in and around anchor pockets 1 and 9, as potential TCR contacts, in the areas for CD4 binding and putative homodimer formation. The identification of three HLA-DQ AA (α44, β57, β135) conferring T1D risk should sharpen functional and translational studies.




the

Myo-Inositol Oxygenase (MIOX) Overexpression Drives the Progression of Renal Tubulo-Interstitial Injury in Diabetes

Conceivably, upregulation of myo-inositol oxygenase (MIOX) is associated with altered cellular redox. Its promoter includes oxidant-response elements, and we also discovered binding sites for XBP-1, a transcription factor of ER stress response. Previous studies indicate that MIOX’s upregulation in acute tubular injury is mediated by oxidant and ER stress. Here, we investigated if hyperglycemia leads to accentuation of oxidant and ER stress, while boosting each other’s activities and thereby augmenting tubulo-interstitial injury/fibrosis. We generated MIOX-overexpressing transgenic (MIOX-TG) and -knockout (MIOX-KO) mice. A diabetic state was induced by streptozotocin administration. Also, MIOX-KO were crossbred with Ins2Akita to generate Ins2Akita/KO mice. MIOX-TG mice had worsening renal functions with kidneys having increased oxidant/ER stress, as reflected by DCF/DHE staining, perturbed NAD/NADH and GSH/GSSG ratios, increased NOX-4 expression, apoptosis and its executionary molecules, accentuation of TGF-β signaling, Smads and XBP-1 nuclear translocation, expression of GRP78 and XBP1 (ER stress markers) and accelerated tubulo-interstitial fibrosis. These changes were not seen in MIOX-KO mice. Interestingly, such changes were remarkably reduced in Ins2Akita/KO mice, and likewise in vitro experiments with XBP1-siRNA. These findings suggest that MIOX expression accentuates while its deficiency shields kidneys from tubulo-interstitial injury by dampening oxidant and ER stress, which mutually enhance each other’s activity.




the

The Metabolic Responses to 24-h Fasting and Mild Cold Exposure in Overweight Individuals are Correlated and Accompanied by Changes in FGF21 Concentration

A greater decrease in 24-h energy expenditure (24EE) during 24h fasting defines a thriftier metabolic phenotype prone to weight gain during overfeeding and resistant to weight loss during caloric restriction. As the thermogenic response to mild cold exposure (COLD) may similarly characterize this human phenotype identified by acute fasting conditions, we analyzed changes in 24EE and sleeping metabolic rate (SLEEP) in a whole-room indirect calorimeter during 24h fasting at thermoneutrality (24°C) and during energy balance both at thermoneutrality (24°C) and mild cold (19°C) in 20 healthy volunteers (80% male, age: 36.6±11.4y, percentage body fat: 34.8±10.5%). Greater decrease in 24EE during fasting (thriftier phenotype) was associated with less increase in 24EE during COLD, i.e. less cold-induced thermogenesis. Greater decreases in plasma fibroblast growth factor 21 (FGF21) after 24h fasting and after COLD were highly correlated and associated with greater decreases in SLEEP in both conditions. We conclude that the metabolic responses to short-term fasting and COLD are associated and mediated by the liver-derived hormone FGF21. Thus, the 24EE response to COLD further identifies the thrifty versus spendthrift phenotype, providing an additional setting to investigate the physiological mechanisms underlying the human metabolic phenotype and characterizing the individual susceptibility to weight change.




the

Role of VIP and Sonic Hedgehog Signaling Pathways in Mediating Epithelial Wound Healing, Sensory Nerve Regeneration and their Defects in Diabetic Corneas

Diabetic Keratopathy, a sight-threatening corneal disease, comprises several symptomatic conditions including delayed epithelial wound healing, recurrent erosions, and sensory nerve (SN) neuropathy. We investigated the role of neuropeptides in mediating corneal wound healing, including epithelial wound closure and SN regeneration. Denervation by Resiniferatoxin severely impaired corneal wound healing and markedly up-regulated pro-inflammatory gene expression. Exogenous neuropeptides CGRP, SP, and VIP partially reversed Resiniferatoxin’s effects, with VIP specifically inducing IL-10 expression. Hence, we focused on VIP and observed that wounding induced VIP and VIPR1 expression in normal (NL), but not diabetic (DM) mouse corneas. Targeting VIPR1 in NL corneas attenuated corneal wound healing, dampened wound-induced expression of neurotrophic factors, and exacerbated inflammatory responses while exogenous VIP had the opposite effects in DM corneas. Remarkably, wounding and diabetes also affected the expression of Sonic Hedgehog (SHH) in a VIP-dependent manner. Downregulating SHH expression in NL corneas decreased, while exogenous SHH in DM corneas increased the rates of corneal wound healing. Furthermore, inhibition of SHH signaling dampened VIP-promoted corneal wound healing. We conclude that VIP regulates epithelial wound healing, inflammatory response, and nerve regeneration in the corneas in a SHH-dependent manner, suggesting a therapeutic potential for these molecules in treating diabetic keratopathy.




the

The Effects of B1344, a Novel Fibroblast Growth Factor 21 Analog, on Nonalcoholic Steatohepatitis in Nonhuman Primates

Nonalcoholic steatohepatitis has emerged as a major cause of liver diseases with no effective therapies. Here, we evaluate the efficacies and pharmacokinetics of B1344, a long-acting PEGylated FGF21 analog, in a nongenetically modified nonhuman primate species that underwent liver biopsy, and demonstrate the potential for efficacies in humans. B1344 is sufficient to selectively activate signaling from the βKlotho/FGFR1c receptor complex. In cynomolgus monkeys with nonalcoholic fatty liver disease, administration of B1344 via subcutaneous injection for eleven weeks caused a profound reduction of hepatic steatosis, inflammation and fibrosis, and amelioration of liver injury and hepatocyte death as evidenced by liver biopsy and biochemical analysis. Moreover, improvement of metabolic parameters was observed in the monkey, including reduction of body weight and improvement of lipid profiles and glycemic control. To determine the role of B1344 in the progression of murine NAFLD independent of obesity, administration of B1344 were performed in mice fed with methionine and choline deficiency diet. Consistently, B1344 administration prevented the mice from lipotoxicity damage and nonalcoholic steatohepatitis at a dose-dependent manner. These results provide preclinical validation for an innovative therapeutics to NAFLD, and support further clinical testing of B1344 for treating nonalcoholic steatohepatitis and other metabolic diseases in humans.




the

MANF Promotes Diabetic Corneal Epithelial Wound Healing and Nerve Regeneration by Attenuating Hyperglycemia-Induced Endoplasmic Reticulum Stress

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a neurotrophic factor widely expressed in mammalian tissues, and it exerts critical protective effects on neurons and other cell types in various disease models, such as those for diabetes. However, to date, the expression and roles of MANF in the cornea, with or without diabetic keratopathy (DK), remain unclear. Here, we demonstrate that MANF is abundantly expressed in normal corneal epithelial cells; however, MANF expression was significantly reduced in both unwounded and wounded corneal epithelium in streptozotocin-induced type 1 diabetic C57BL/6 mice. Recombinant human MANF significantly promoted normal and diabetic corneal epithelial wound healing and nerve regeneration. Furthermore, MANF inhibited hyperglycemia-induced endoplasmic reticulum (ER) stress and ER stress–mediated apoptosis. Attenuation of ER stress with 4-phenylbutyric acid (4-PBA) also ameliorated corneal epithelial closure and nerve regeneration. However, the beneficial effects of MANF and 4-PBA were abolished by an Akt inhibitor and Akt-specific small interfering RNA (siRNA). Finally, we reveal that the subconjunctival injection of MANF-specific siRNA prevents corneal epithelial wound healing and nerve regeneration. Our results provide important evidence that hyperglycemia-suppressed MANF expression may contribute to delayed corneal epithelial wound healing and impaired nerve regeneration by increasing ER stress, and MANF may be a useful therapeutic modality for treating DK.




the

Lactation vs Formula Feeding: Insulin, Glucose and Fatty Acid Metabolism During the Postpartum Period

Milk production may involve a transient development of insulin resistance in non-mammary tissues to support redistribution of maternal macronutrients to match the requirements of the lactating mammary gland. In the present study, adipose and liver metabolic responses were measured in the fasting state and during a 2-step (10 and 20 mU/m2/min) hyperinsulinemic-euglycemic clamp with stable isotopes, in 6-week postpartum women who were lactating (n=12) or formula-feeding (n=6) their infants and who were closely matched for baseline characteristics (e.g., parity, body composition, intrahepatic lipid). When controlling for the low insulin concentrations of both groups, the lactating women exhibited a fasting rate of endogenous glucose production (EGP) that was 2.6-fold greater, and a lipolysis rate that was 2.3-fold greater than the formula-feeding group. During the clamp, the groups exhibited similar suppression rates of EGP and lipolysis. In the lactating women only, higher prolactin concentrations were associated with greater suppression rates of lipolysis, lower intrahepatic lipid and plasma triacylglycerol concentrations. These data suggest that whole-body alterations in glucose transport may be organ specific and facilitate nutrient partitioning during lactation. Recapitulating a shift toward noninsulin-mediated glucose uptake could be an early postpartum strategy to enhance lactation success in women at risk for delayed onset of milk production.




the

Nutrient-Induced Metabolic Stress, Adaptation, Detoxification, and Toxicity in the Pancreatic {beta}-Cell

Paraphrasing the Swiss physician and father of toxicology Paracelsus (1493–1541) on chemical agents used as therapeutics, "the dose makes the poison," it is now realized that this aptly applies to the calorigenic nutrients. The case here is the pancreatic islet β-cell presented with excessive levels of nutrients such as glucose, lipids, and amino acids. The short-term effects these nutrients exert on the β-cell are enhanced insulin biosynthesis and secretion and changes in glucose sensitivity. However, chronic fuel surfeit triggers additional compensatory and adaptive mechanisms by β-cells to cope with the increased insulin demand or to protect itself. When these mechanisms fail, toxicity due to the nutrient surplus ensues, leading to β-cell dysfunction, dedifferentiation, and apoptosis. The terms glucotoxicity, lipotoxicity, and glucolipotoxicity have been widely used, but there is some confusion as to what they mean precisely and which is most appropriate for a given situation. Here we address the gluco-, lipo-, and glucolipo-toxicities in β-cells by assessing the evidence both for and against each of them. We also discuss potential mechanisms and defend the view that many of the identified "toxic" effects of nutrient excess, which may also include amino acids, are in fact beneficial adaptive processes. In addition, candidate fuel-excess detoxification pathways are evaluated. Finally, we propose that a more general term should be used for the in vivo situation of overweight-associated type 2 diabetes reflecting both the adaptive and toxic processes to mixed calorigenic nutrients excess: "nutrient-induced metabolic stress" or, in brief, "nutri-stress."




the

Glucolipotoxicity, {beta}-Cells, and Diabetes: The Emperor Has No Clothes

Reduction of β-cell mass and function is central to the pathogenesis of type 2 diabetes. The terms glucotoxicity, lipotoxicity, and glucolipotoxicity are used to describe potentially responsible processes. The premise is that chronically elevated glucose levels are toxic to β-cells, that elevated lipid levels in the form of circulating free fatty acids (FFA) also have toxic effects, and that the combination of the two, glucolipotoxicity, is particularly harmful. Much work has shown that high concentrations of FFA can be very damaging to β-cells when used for in vitro experiments, and when infused in large amounts in humans and rodents they produce suppression of insulin secretion. The purpose of this Perspective is to raise doubts about whether the FFA levels found in real-life situations are ever high enough to cause problems. Evidence supporting the importance of glucotoxicity is strong because there is such a tight correlation between defective insulin secretion and rising glucose levels. However, there is virtually no convincing evidence that the alterations in FFA levels occurring during progression to diabetes are pathogenic. Thus, the terms lipotoxicity and glucolipotoxicity should be used with great caution, if at all, because evidence supporting their importance has not yet emerged.




the

Remnants of the Triglyceride-Rich Lipoproteins, Diabetes, and Cardiovascular Disease

Diabetes is now a pandemic disease. Moreover, a large number of people with prediabetes are at risk for developing frank diabetes worldwide. Both type 1 and type 2 diabetes increase the risk of atherosclerotic cardiovascular disease (CVD). Even with statin treatment to lower LDL cholesterol, patients with diabetes have a high residual CVD risk. Factors mediating the residual risk are incompletely characterized. An attractive hypothesis is that remnant lipoprotein particles (RLPs), derived by lipolysis from VLDL and chylomicrons, contribute to this residual risk. RLPs constitute a heterogeneous population of lipoprotein particles, varying markedly in size and composition. Although a universally accepted definition is lacking, for the purpose of this review we define RLPs as postlipolytic partially triglyceride-depleted particles derived from chylomicrons and VLDL that are relatively enriched in cholesteryl esters and apolipoprotein (apo)E. RLPs derived from chylomicrons contain apoB48, while those derived from VLDL contain apoB100. Clarity as to the role of RLPs in CVD risk is hampered by lack of a widely accepted definition and a paucity of adequate methods for their accurate and precise quantification. New specific methods for RLP quantification would greatly improve our understanding of their biology and role in promoting atherosclerosis in diabetes and other disorders.




the

The FKH domain in FOXP3 mRNA frequently contains mutations in hepatocellular carcinoma that influence the subcellular localization and functions of FOXP3 [Molecular Bases of Disease]

The transcription factor forkhead box P3 (FOXP3) is a biomarker for regulatory T cells and can also be expressed in cancer cells, but its function in cancer appears to be divergent. The role of hepatocyte-expressed FOXP3 in hepatocellular carcinoma (HCC) is unknown. Here, we collected tumor samples and clinical information from 115 HCC patients and used five human cancer cell lines. We examined FOXP3 mRNA sequences for mutations, used a luciferase assay to assess promoter activities of FOXP3's target genes, and employed mouse tumor models to confirm in vitro results. We detected mutations in the FKH domain of FOXP3 mRNAs in 33% of the HCC tumor tissues, but in none of the adjacent nontumor tissues. None of the mutations occurred at high frequency, indicating that they occurred randomly. Notably, the mutations were not detected in the corresponding regions of FOXP3 genomic DNA, and many of them resulted in amino acid substitutions in the FKH region, altering FOXP3's subcellular localization. FOXP3 delocalization from the nucleus to the cytoplasm caused loss of transcriptional regulation of its target genes, inactivated its tumor-inhibitory capability, and changed cellular responses to histone deacetylase (HDAC) inhibitors. More complex FKH mutations appeared to be associated with worse prognosis in HCC patients. We conclude that mutations in the FKH domain of FOXP3 mRNA frequently occur in HCC and that these mutations are caused by errors in transcription and are not derived from genomic DNA mutations. Our results suggest that transcriptional mutagenesis of FOXP3 plays a role in HCC.




the

Inhibition of the erythropoietin-producing receptor EPHB4 antagonizes androgen receptor overexpression and reduces enzalutamide resistance [Molecular Bases of Disease]

Prostate cancer (PCa) cells heavily rely on an active androgen receptor (AR) pathway for their survival. Enzalutamide (MDV3100) is a second-generation antiandrogenic drug that was approved by the Food and Drug Administration in 2012 to treat patients with castration-resistant prostate cancer (CRPC). However, emergence of resistance against this drug is inevitable, and it has been a major challenge to develop interventions that help manage enzalutamide-resistant CRPC. Erythropoietin-producing human hepatocellular (Eph) receptors are targeted by ephrin protein ligands and have a broad range of functions. Increasing evidence indicates that this signaling pathway plays an important role in tumorigenesis. Overexpression of EPH receptor B4 (EPHB4) has been observed in multiple types of cancer, being closely associated with proliferation, invasion, and metastasis of tumors. Here, using RNA-Seq analyses of clinical and preclinical samples, along with several biochemical and molecular methods, we report that enzalutamide-resistant PCa requires an active EPHB4 pathway that supports drug resistance of this tumor type. Using a small kinase inhibitor and RNAi-based gene silencing to disrupt EPHB4 activity, we found that these disruptions re-sensitize enzalutamide-resistant PCa to the drug both in vitro and in vivo. Mechanistically, we found that EPHB4 stimulates the AR by inducing proto-oncogene c-Myc (c-Myc) expression. Taken together, these results provide critical insight into the mechanism of enzalutamide resistance in PCa, potentially offering a therapeutic avenue for enhancing the efficacy of enzalutamide to better manage this common malignancy.




the

Cell-specific expression of the transcriptional regulator RHAMM provides a timing mechanism that controls appropriate wound re-epithelialization [Glycobiology and Extracellular Matrices]

Prevention of aberrant cutaneous wound repair and appropriate regeneration of an intact and functional integument require the coordinated timing of fibroblast and keratinocyte migration. Here, we identified a mechanism whereby opposing cell-specific motogenic functions of a multifunctional intracellular and extracellular protein, the receptor for hyaluronan-mediated motility (RHAMM), coordinates fibroblast and keratinocyte migration speed and ensures appropriate timing of excisional wound closure. We found that, unlike in WT mice, in Rhamm-null mice, keratinocyte migration initiates prematurely in the excisional wounds, resulting in wounds that have re-surfaced before the formation of normal granulation tissue, leading to a defective epidermal architecture. We also noted aberrant keratinocyte and fibroblast migration in the Rhamm-null mice, indicating that RHAMM suppresses keratinocyte motility but increases fibroblast motility. This cell context–dependent effect resulted from cell-specific regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) activation and expression of a RHAMM target gene encoding matrix metalloprotease 9 (MMP-9). In fibroblasts, RHAMM promoted ERK1/2 activation and MMP-9 expression, whereas in keratinocytes, RHAMM suppressed these activities. In keratinocytes, loss of RHAMM function or expression promoted epidermal growth factor receptor–regulated MMP-9 expression via ERK1/2, which resulted in cleavage of the ectodomain of the RHAMM partner protein CD44 and thereby increased keratinocyte motility. These results identify RHAMM as a key factor that integrates the timing of wound repair by controlling cell migration.




the

Proline-rich 11 (PRR11) drives F-actin assembly by recruiting the actin-related protein 2/3 complex in human non-small cell lung carcinoma [DNA and Chromosomes]

The actin cytoskeleton is extremely dynamic and supports diverse cellular functions in many physiological and pathological processes, including tumorigenesis. However, the mechanisms that regulate the actin-related protein 2/3 (ARP2/3) complex and thereby promote actin polymerization and organization in cancer cells are not well-understood. We previously implicated the proline-rich 11 (PRR11) protein in lung cancer development. In this study, using immunofluorescence staining, actin polymerization assays, and siRNA-mediated gene silencing, we uncovered that cytoplasmic PRR11 is involved in F-actin polymerization and organization. We found that dysregulation of PRR11 expression results in F-actin rearrangement and nuclear instability in non-small cell lung cancer cells. Results from molecular mechanistic experiments indicated that PRR11 associates with and recruits the ARP2/3 complex, facilitates F-actin polymerization, and thereby disrupts the F-actin cytoskeleton, leading to abnormal nuclear lamina assembly and chromatin reorganization. Inhibition of the ARP2/3 complex activity abolished irregular F-actin polymerization, lamina assembly, and chromatin reorganization due to PRR11 overexpression. Notably, experiments with truncated PRR11 variants revealed that PRR11 regulates F-actin through different regions. We found that deletion of either the N or C terminus of PRR11 abrogates its effects on F-actin polymerization and nuclear instability and that deletion of amino acid residues 100–184 or 100–200 strongly induces an F-actin structure called the actin comet tail, not observed with WT PRR11. Our findings indicate that cytoplasmic PRR11 plays an essential role in regulating F-actin assembly and nuclear stability by recruiting the ARP2/3 complex in human non-small cell lung carcinoma cells.




the

Two- and three-color STORM analysis reveals higher-order assembly of leukotriene synthetic complexes on the nuclear envelope of murine neutrophils [Computational Biology]

Over the last several years it has become clear that higher order assemblies on membranes, exemplified by signalosomes, are a paradigm for the regulation of many membrane signaling processes. We have recently combined two-color direct stochastic optical reconstruction microscopy (dSTORM) with the (Clus-DoC) algorithm that combines cluster detection and colocalization analysis to observe the organization of 5-lipoxygenase (5-LO) and 5-lipoxygenase–activating protein (FLAP) into higher order assemblies on the nuclear envelope of mast cells; these assemblies were linked to leukotriene (LT) C4 production. In this study we investigated whether higher order assemblies of 5-LO and FLAP included cytosolic phospholipase A2 (cPLA2) and were linked to LTB4 production in murine neutrophils. Using two- and three-color dSTORM supported by fluorescence lifetime imaging microscopy we identified higher order assemblies containing 40 molecules (median) (IQR: 23, 87) of 5-LO, and 53 molecules (62, 156) of FLAP monomer. 98 (18, 154) molecules of cPLA2 were clustered with 5-LO, and 77 (33, 114) molecules of cPLA2 were associated with FLAP. These assemblies were tightly linked to LTB4 formation. The activation-dependent close associations of cPLA2, FLAP, and 5-LO in higher order assemblies on the nuclear envelope support a model in which arachidonic acid is generated by cPLA2 in apposition to FLAP, facilitating its transfer to 5-LO to initiate LT synthesis.




the

The mitochondrial protein PGAM5 suppresses energy consumption in brown adipocytes by repressing expression of uncoupling protein 1 [Metabolism]

Accumulating evidence suggests that brown adipose tissue (BAT) is a potential therapeutic target for managing obesity and related diseases. PGAM family member 5, mitochondrial serine/threonine protein phosphatase (PGAM5), is a protein phosphatase that resides in the mitochondria and regulates many biological processes, including cell death, mitophagy, and immune responses. Because BAT is a mitochondria-rich tissue, we have hypothesized that PGAM5 has a physiological function in BAT. We previously reported that PGAM5-knockout (KO) mice are resistant to severe metabolic stress. Importantly, lipid accumulation is suppressed in PGAM5-KO BAT, even under unstressed conditions, raising the possibility that PGAM5 deficiency stimulates lipid consumption. However, the mechanism underlying this observation is undetermined. Here, using an array of biochemical approaches, including quantitative RT-PCR, immunoblotting, and oxygen consumption assays, we show that PGAM5 negatively regulates energy expenditure in brown adipocytes. We found that PGAM5-KO brown adipocytes have an enhanced oxygen consumption rate and increased expression of uncoupling protein 1 (UCP1), a protein that increases energy consumption in the mitochondria. Mechanistically, we found that PGAM5 phosphatase activity and intramembrane cleavage are required for suppression of UCP1 activity. Furthermore, utilizing a genome-wide siRNA screen in HeLa cells to search for regulators of PGAM5 cleavage, we identified a set of candidate genes, including phosphatidylserine decarboxylase (PISD), which catalyzes the formation of phosphatidylethanolamine at the mitochondrial membrane. Taken together, these results indicate that PGAM5 suppresses mitochondrial energy expenditure by down-regulating UCP1 expression in brown adipocytes and that its phosphatase activity and intramembrane cleavage are required for UCP1 suppression.




the

S-Palmitoylation of the sodium channel Nav1.6 regulates its activity and neuronal excitability [Cell Biology]

S-Palmitoylation is a reversible post-translational lipid modification that dynamically regulates protein functions. Voltage-gated sodium channels are subjected to S-palmitoylation and exhibit altered functions in different S-palmitoylation states. Our aim was to investigate whether and how S-palmitoylation regulates Nav1.6 channel function and to identify S-palmitoylation sites that can potentially be pharmacologically targeted. Acyl-biotin exchange assay showed that Nav1.6 is modified by S-palmitoylation in the mouse brain and in a Nav1.6 stable HEK 293 cell line. Using whole-cell voltage clamp, we discovered that enhancing S-palmitoylation with palmitic acid increases Nav1.6 current, whereas blocking S-palmitoylation with 2-bromopalmitate reduces Nav1.6 current and shifts the steady-state inactivation in the hyperpolarizing direction. Three S-palmitoylation sites (Cys1169, Cys1170, and Cys1978) were identified. These sites differentially modulate distinct Nav1.6 properties. Interestingly, Cys1978 is exclusive to Nav1.6 among all Nav isoforms and is evolutionally conserved in Nav1.6 among most species. Cys1978 S-palmitoylation regulates current amplitude uniquely in Nav1.6. Furthermore, we showed that eliminating S-palmitoylation at specific sites alters Nav1.6-mediated excitability in dorsal root ganglion neurons. Therefore, our study reveals S-palmitoylation as a potential isoform-specific mechanism to modulate Nav activity and neuronal excitability in physiological and diseased conditions.




the

Certain ortho-hydroxylated brominated ethers are promiscuous kinase inhibitors that impair neuronal signaling and neurodevelopmental processes [Cell Biology]

The developing nervous system is remarkably sensitive to environmental signals, including disruptive toxins, such as polybrominated diphenyl ethers (PBDEs). PBDEs are an environmentally pervasive class of brominated flame retardants whose neurodevelopmental toxicity mechanisms remain largely unclear. Using dissociated cortical neurons from embryonic Rattus norvegicus, we found here that chronic exposure to 6-OH–BDE-47, one of the most prevalent hydroxylated PBDE metabolites, suppresses both spontaneous and evoked neuronal electrical activity. On the basis of our previous work on mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) (MEK) biology and our observation that 6-OH–BDE-47 is structurally similar to kinase inhibitors, we hypothesized that certain hydroxylated PBDEs mediate neurotoxicity, at least in part, by impairing the MEK–ERK axis of MAPK signal transduction. We tested this hypothesis on three experimental platforms: 1) in silico, where modeling ligand–protein docking suggested that 6-OH–BDE-47 is a promiscuous ATP-competitive kinase inhibitor; 2) in vitro in dissociated neurons, where 6-OH–BDE-47 and another specific hydroxylated BDE metabolite similarly impaired phosphorylation of MEK/ERK1/2 and activity-induced transcription of a neuronal immediate early gene; and 3) in vivo in Drosophila melanogaster, where developmental exposures to 6-OH–BDE-47 and a MAPK inhibitor resulted in offspring displaying similarly increased frequency of mushroom-body β–lobe midline crossing, a metric of axonal guidance. Taken together, our results support that certain ortho-hydroxylated PBDE metabolites are promiscuous kinase inhibitors and can cause disruptions of critical neurodevelopmental processes, including neuronal electrical activity, pre-synaptic functions, MEK–ERK signaling, and axonal guidance.