cas

A descriptive catalogue of wet preparations, casts, drawings, models, books, etc., contained in the Museum of the Birmingham and Midland Counties Lying-in Hospital and Dispensary for the Diseases of Women and Children / arranged and edited in compliance w

Birmingham : printed by M. Billing, 1847.




cas

Die Castration in rechtlicher, socialer und vitaler Hinsicht / von Conrad Rieger.

Jena : Fischer, 1900.




cas

Die diagnostische Bedeutung des Katheterismus der Ureteren / von Leopold Casper.

Berlin : Coblentz, 1896.




cas

Difficultes du diagnostic dans quelques cas de vomiques et de fausses gangrènes du poumon / par Georges Dieudonne.

Paris : G. Steinheil, 1888.




cas

Directions for drinking the Cheltenham waters : with a selection of cases, illustrating their effects in a great variety of diseases / by James M'Cabe.

Cheltenham : printed for G.A. Williams, librarian, [1823]




cas

Dispensatorium homoeopathicum / auctore Dr. Caspario.

Lipsiae : Sumtibus Baumgaertneri, 1829.




cas

Dissertatio inauguralis medica sistens casum singularem carcinomatis uteri cum graviditate conjuncti ... / auctor Bertramus Zeppenfeld.

Berolini : Typis Augusti Petschii, 1828.




cas

Dissertatio medica, exhibens cogitationes physiologicas de vita, et vivificatione materiae humanum corpus constituentis / Joanni Theodoro vander Kemp.

Edinburgi : Excudebant Balfour et Smellie, 1782.




cas

Du choix de l'intervention dans les affections des annexes de l'uterus / par Pierre Camescasse.

Paris : G. Steinheil, 1893.




cas

The effect of the cold weather in the early part of 1895 on the admission of medical cases into the Royal Edinburgh Infirmary. With a note on some earlier periods of severe weather / by A. Lockhart Gillespie.

London : Kenny & Co, [1895?]




cas

Elements of medical jurisprudence; or, A succinct and compendious description of such tokens in the human body as are requisite to determine the judgment of a coroner, and courts of law, in cases of divorce, rape, murder, &c : To which are added, Dire

London : printed for J. Callow, 1814.




cas

Les oeuures du R. P. Gabriel de Castaigne, tant medicinales que chymiques, : diuisées en quatre principaux traitez. I. Le paradis terrestre. II. Le grand miracle de la nature metallique. III. L'or potable. IV. Le thresor philosophique de la medec

A Paris : Chez Iean Dhourry, au bout du Pont-Neuf, près les Augustins, à l'Image S. Iean, M. DC. LXI. [1661]




cas

An Irish family outside their cottage on a Sunday morning prepares to go to church. Engraving by R.C. Bell after W. Brocas.

[Dublin] : National Art Union for Ireland, [between 1847 and 1851?]




cas

Ivan Stepanovych Mazeppa tied naked to a horse and pursued by wolves. Mezzotint by J.G.S. Lucas, 1831, after H. Vernet.

London (24, Cornhill) : Published by F.G. Harding ; [London] (147, Strand) : & J. McCormick, October 1831 ([London] : Printed by Lahee)




cas

A castle (the Castello Odescalchi di Bracciano?), with a flock of sheep attended by a shepherd. Etching and mezzotint by L. Marvy after Claude Lorraine.

[Paris] : Calcographie du Louvre, Musées Imperiaux, [1849?]




cas

Poseidippus of Cassandreia, writer of comedies. Steel engraving by J.B.H. Bourgois after J.A.D. Ingres, 1808.




cas

Cast out.

[1990-1999?]




cas

King Edward I, at the birth of his son Edward Prince of Wales, while the baby's mother Eleanor of Castile lies in bed. Mezzotint by V. Green, 1788, after J.G. Huck.

London (No. 29 Newman Street, Oxford Street) : Published ... by V. & R. Green, January 18th 1788




cas

The birth of Henri IV at the castle of Pau. Etching by E.J. Ramus after Eugène-François-Marie-Joseph Devéria.




cas

Illinois high court rules against teacher in sick leave case




cas

Biman Mullick and Roy Castle at the Royal College of Physicians, London 5 January 1993.

[London?], [1993?]




cas

Media broadcasts and broadcasts ANSR's message / ANSR.

Edinburgh, Scotland : ANSR, 1993.




cas

Media broadcasts and broadcasts ANSR's message / ANSR.

Edinburgh, Scotland : ANSR, 1993.




cas

The case for revenge : a pretty hopeless zine about the neoliberal university.

[United Kingdom] : [Darcy Leigh], 2019.




cas

Estimation of a Low-rank Topic-Based Model for Information Cascades

We consider the problem of estimating the latent structure of a social network based on the observed information diffusion events, or cascades, where the observations for a given cascade consist of only the timestamps of infection for infected nodes but not the source of the infection. Most of the existing work on this problem has focused on estimating a diffusion matrix without any structural assumptions on it. In this paper, we propose a novel model based on the intuition that an information is more likely to propagate among two nodes if they are interested in similar topics which are also prominent in the information content. In particular, our model endows each node with an influence vector (which measures how authoritative the node is on each topic) and a receptivity vector (which measures how susceptible the node is for each topic). We show how this node-topic structure can be estimated from the observed cascades, and prove the consistency of the estimator. Experiments on synthetic and real data demonstrate the improved performance and better interpretability of our model compared to existing state-of-the-art methods.




cas

Multi-Player Bandits: The Adversarial Case

We consider a setting where multiple players sequentially choose among a common set of actions (arms). Motivated by an application to cognitive radio networks, we assume that players incur a loss upon colliding, and that communication between players is not possible. Existing approaches assume that the system is stationary. Yet this assumption is often violated in practice, e.g., due to signal strength fluctuations. In this work, we design the first multi-player Bandit algorithm that provably works in arbitrarily changing environments, where the losses of the arms may even be chosen by an adversary. This resolves an open problem posed by Rosenski et al. (2016).




cas

Effects of gene–environment and gene–gene interactions in case-control studies: A novel Bayesian semiparametric approach

Durba Bhattacharya, Sourabh Bhattacharya.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 71--89.

Abstract:
Present day bio-medical research is pointing towards the fact that cognizance of gene–environment interactions along with genetic interactions may help prevent or detain the onset of many complex diseases like cardiovascular disease, cancer, type2 diabetes, autism or asthma by adjustments to lifestyle. In this regard, we propose a Bayesian semiparametric model to detect not only the roles of genes and their interactions, but also the possible influence of environmental variables on the genes in case-control studies. Our model also accounts for the unknown number of genetic sub-populations via finite mixtures composed of Dirichlet processes. An effective parallel computing methodology, developed by us harnesses the power of parallel processing technology to increase the efficiencies of our conditionally independent Gibbs sampling and Transformation based MCMC (TMCMC) methods. Applications of our model and methods to simulation studies with biologically realistic genotype datasets and a real, case-control based genotype dataset on early onset of myocardial infarction (MI) have yielded quite interesting results beside providing some insights into the differential effect of gender on MI.




cas

A brief review of optimal scaling of the main MCMC approaches and optimal scaling of additive TMCMC under non-regular cases

Kushal K. Dey, Sourabh Bhattacharya.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 222--266.

Abstract:
Transformation based Markov Chain Monte Carlo (TMCMC) was proposed by Dutta and Bhattacharya ( Statistical Methodology 16 (2014) 100–116) as an efficient alternative to the Metropolis–Hastings algorithm, especially in high dimensions. The main advantage of this algorithm is that it simultaneously updates all components of a high dimensional parameter using appropriate move types defined by deterministic transformation of a single random variable. This results in reduction in time complexity at each step of the chain and enhances the acceptance rate. In this paper, we first provide a brief review of the optimal scaling theory for various existing MCMC approaches, comparing and contrasting them with the corresponding TMCMC approaches.The optimal scaling of the simplest form of TMCMC, namely additive TMCMC , has been studied extensively for the Gaussian proposal density in Dey and Bhattacharya (2017a). Here, we discuss diffusion-based optimal scaling behavior of additive TMCMC for non-Gaussian proposal densities—in particular, uniform, Student’s $t$ and Cauchy proposals. Although we could not formally prove our diffusion result for the Cauchy proposal, simulation based results lead us to conjecture that at least the recipe for obtaining general optimal scaling and optimal acceptance rate holds for the Cauchy case as well. We also consider diffusion based optimal scaling of TMCMC when the target density is discontinuous. Such non-regular situations have been studied in the case of Random Walk Metropolis Hastings (RWMH) algorithm by Neal and Roberts ( Methodology and Computing in Applied Probability 13 (2011) 583–601) using expected squared jumping distance (ESJD), but the diffusion theory based scaling has not been considered. We compare our diffusion based optimally scaled TMCMC approach with the ESJD based optimally scaled RWM with simulation studies involving several target distributions and proposal distributions including the challenging Cauchy proposal case, showing that additive TMCMC outperforms RWMH in almost all cases considered.




cas

Short-term forecasts of COVID-19 spread across Indian states until 1 May 2020. (arXiv:2004.13538v2 [q-bio.PE] UPDATED)

The very first case of corona-virus illness was recorded on 30 January 2020, in India and the number of infected cases, including the death toll, continues to rise. In this paper, we present short-term forecasts of COVID-19 for 28 Indian states and five union territories using real-time data from 30 January to 21 April 2020. Applying Holt's second-order exponential smoothing method and autoregressive integrated moving average (ARIMA) model, we generate 10-day ahead forecasts of the likely number of infected cases and deaths in India for 22 April to 1 May 2020. Our results show that the number of cumulative cases in India will rise to 36335.63 [PI 95% (30884.56, 42918.87)], concurrently the number of deaths may increase to 1099.38 [PI 95% (959.77, 1553.76)] by 1 May 2020. Further, we have divided the country into severity zones based on the cumulative cases. According to this analysis, Maharashtra is likely to be the most affected states with around 9787.24 [PI 95% (6949.81, 13757.06)] cumulative cases by 1 May 2020. However, Kerala and Karnataka are likely to shift from the red zone (i.e. highly affected) to the lesser affected region. On the other hand, Gujarat and Madhya Pradesh will move to the red zone. These results mark the states where lockdown by 3 May 2020, can be loosened.




cas

A Critical Overview of Privacy-Preserving Approaches for Collaborative Forecasting. (arXiv:2004.09612v3 [cs.LG] UPDATED)

Cooperation between different data owners may lead to an improvement in forecast quality - for instance by benefiting from spatial-temporal dependencies in geographically distributed time series. Due to business competitive factors and personal data protection questions, said data owners might be unwilling to share their data, which increases the interest in collaborative privacy-preserving forecasting. This paper analyses the state-of-the-art and unveils several shortcomings of existing methods in guaranteeing data privacy when employing Vector Autoregressive (VAR) models. The paper also provides mathematical proofs and numerical analysis to evaluate existing privacy-preserving methods, dividing them into three groups: data transformation, secure multi-party computations, and decomposition methods. The analysis shows that state-of-the-art techniques have limitations in preserving data privacy, such as a trade-off between privacy and forecasting accuracy, while the original data in iterative model fitting processes, in which intermediate results are shared, can be inferred after some iterations.




cas

On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an experimental high-energy physics use case. (arXiv:2002.01427v3 [physics.data-an] UPDATED)

Beginning from a basic neural-network architecture, we test the potential benefits offered by a range of advanced techniques for machine learning, in particular deep learning, in the context of a typical classification problem encountered in the domain of high-energy physics, using a well-studied dataset: the 2014 Higgs ML Kaggle dataset. The advantages are evaluated in terms of both performance metrics and the time required to train and apply the resulting models. Techniques examined include domain-specific data-augmentation, learning rate and momentum scheduling, (advanced) ensembling in both model-space and weight-space, and alternative architectures and connection methods.

Following the investigation, we arrive at a model which achieves equal performance to the winning solution of the original Kaggle challenge, whilst being significantly quicker to train and apply, and being suitable for use with both GPU and CPU hardware setups. These reductions in timing and hardware requirements potentially allow the use of more powerful algorithms in HEP analyses, where models must be retrained frequently, sometimes at short notice, by small groups of researchers with limited hardware resources. Additionally, a new wrapper library for PyTorch called LUMINis presented, which incorporates all of the techniques studied.




cas

Local Cascade Ensemble for Multivariate Data Classification. (arXiv:2005.03645v1 [cs.LG])

We present LCE, a Local Cascade Ensemble for traditional (tabular) multivariate data classification, and its extension LCEM for Multivariate Time Series (MTS) classification. LCE is a new hybrid ensemble method that combines an explicit boosting-bagging approach to handle the usual bias-variance tradeoff faced by machine learning models and an implicit divide-and-conquer approach to individualize classifier errors on different parts of the training data. Our evaluation firstly shows that the hybrid ensemble method LCE outperforms the state-of-the-art classifiers on the UCI datasets and that LCEM outperforms the state-of-the-art MTS classifiers on the UEA datasets. Furthermore, LCEM provides explainability by design and manifests robust performance when faced with challenges arising from continuous data collection (different MTS length, missing data and noise).




cas

Sequential Aggregation of Probabilistic Forecasts -- Applicaton to Wind Speed Ensemble Forecasts. (arXiv:2005.03540v1 [stat.AP])

In the field of numerical weather prediction (NWP), the probabilistic distribution of the future state of the atmosphere is sampled with Monte-Carlo-like simulations, called ensembles. These ensembles have deficiencies (such as conditional biases) that can be corrected thanks to statistical post-processing methods. Several ensembles exist and may be corrected with different statistiscal methods. A further step is to combine these raw or post-processed ensembles. The theory of prediction with expert advice allows us to build combination algorithms with theoretical guarantees on the forecast performance. This article adapts this theory to the case of probabilistic forecasts issued as step-wise cumulative distribution functions (CDF). The theory is applied to wind speed forecasting, by combining several raw or post-processed ensembles, considered as CDFs. The second goal of this study is to explore the use of two forecast performance criteria: the Continous ranked probability score (CRPS) and the Jolliffe-Primo test. Comparing the results obtained with both criteria leads to reconsidering the usual way to build skillful probabilistic forecasts, based on the minimization of the CRPS. Minimizing the CRPS does not necessarily produce reliable forecasts according to the Jolliffe-Primo test. The Jolliffe-Primo test generally selects reliable forecasts, but could lead to issuing suboptimal forecasts in terms of CRPS. It is proposed to use both criterion to achieve reliable and skillful probabilistic forecasts.




cas

A stochastic user-operator assignment game for microtransit service evaluation: A case study of Kussbus in Luxembourg. (arXiv:2005.03465v1 [physics.soc-ph])

This paper proposes a stochastic variant of the stable matching model from Rasulkhani and Chow [1] which allows microtransit operators to evaluate their operation policy and resource allocations. The proposed model takes into account the stochastic nature of users' travel utility perception, resulting in a probabilistic stable operation cost allocation outcome to design ticket price and ridership forecasting. We applied the model for the operation policy evaluation of a microtransit service in Luxembourg and its border area. The methodology for the model parameters estimation and calibration is developed. The results provide useful insights for the operator and the government to improve the ridership of the service.




cas

Broadcasting Health and Disease conference

Broadcasting Health and Disease: Bodies, markets and television, 1950s–1980s An ERC BodyCapital international conference to be held at the Wellcome Trust, 19–21 February 2018 In the television age, health and the body have been broadcasted in many ways: in short… Continue reading




cas

Sowing legume seeds, reaping cash : a renaissance within communities in Sub-Saharan Africa

Akpo, Essegbemon, author.
9789811508455 (electronic bk.)




cas

Pediatric allergy : a case-based collection with MCQs.

9783030182823 (electronic bk.)




cas

Early onset scoliosis : a clinical casebook

9783319715803 (electronic bk.)




cas

Corrosion atlas case studies

9780128187616 electronic publication




cas

Common problems in the newborn nursery : an evidence and case-based guide

9783319956725 (electronic bk.)




cas

Clinical Cases in Disorders of Melanocytes

9783030227579




cas

Children’s Palliative Care: An International Case-Based Manual

9783030273750 978-3-030-27375-0




cas

Challenging cases in dermatology.

El-Darouti, Mohammad Ali.
9783030218553 (electronic bk.)




cas

100 cases in clinical pharmacology, therapeutics and prescribing

Layne, Kerry, author.
9780429624537 electronic book





cas

Estimating and forecasting the smoking-attributable mortality fraction for both genders jointly in over 60 countries

Yicheng Li, Adrian E. Raftery.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 381--408.

Abstract:
Smoking is one of the leading preventable threats to human health and a major risk factor for lung cancer, upper aerodigestive cancer and chronic obstructive pulmonary disease. Estimating and forecasting the smoking attributable fraction (SAF) of mortality can yield insights into smoking epidemics and also provide a basis for more accurate mortality and life expectancy projection. Peto et al. ( Lancet 339 (1992) 1268–1278) proposed a method to estimate the SAF using the lung cancer mortality rate as an indicator of exposure to smoking in the population of interest. Here, we use the same method to estimate the all-age SAF (ASAF) for both genders for over 60 countries. We document a strong and cross-nationally consistent pattern of the evolution of the SAF over time. We use this as the basis for a new Bayesian hierarchical model to project future male and female ASAF from over 60 countries simultaneously. This gives forecasts as well as predictive distributions that can be used to find uncertainty intervals for any quantity of interest. We assess the model using out-of-sample predictive validation and find that it provides good forecasts and well-calibrated forecast intervals, comparing favorably with other methods.




cas

Scalable high-resolution forecasting of sparse spatiotemporal events with kernel methods: A winning solution to the NIJ “Real-Time Crime Forecasting Challenge”

Seth Flaxman, Michael Chirico, Pau Pereira, Charles Loeffler.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2564--2585.

Abstract:
We propose a generic spatiotemporal event forecasting method which we developed for the National Institute of Justice’s (NIJ) Real-Time Crime Forecasting Challenge (National Institute of Justice (2017)). Our method is a spatiotemporal forecasting model combining scalable randomized Reproducing Kernel Hilbert Space (RKHS) methods for approximating Gaussian processes with autoregressive smoothing kernels in a regularized supervised learning framework. While the smoothing kernels capture the two main approaches in current use in the field of crime forecasting, kernel density estimation (KDE) and self-exciting point process (SEPP) models, the RKHS component of the model can be understood as an approximation to the popular log-Gaussian Cox Process model. For inference, we discretize the spatiotemporal point pattern and learn a log-intensity function using the Poisson likelihood and highly efficient gradient-based optimization methods. Model hyperparameters including quality of RKHS approximation, spatial and temporal kernel lengthscales, number of autoregressive lags and bandwidths for smoothing kernels as well as cell shape, size and rotation, were learned using cross validation. Resulting predictions significantly exceeded baseline KDE estimates and SEPP models for sparse events.




cas

Distributional regression forests for probabilistic precipitation forecasting in complex terrain

Lisa Schlosser, Torsten Hothorn, Reto Stauffer, Achim Zeileis.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1564--1589.

Abstract:
To obtain a probabilistic model for a dependent variable based on some set of explanatory variables, a distributional approach is often adopted where the parameters of the distribution are linked to regressors. In many classical models this only captures the location of the distribution but over the last decade there has been increasing interest in distributional regression approaches modeling all parameters including location, scale and shape. Notably, so-called nonhomogeneous Gaussian regression (NGR) models both mean and variance of a Gaussian response and is particularly popular in weather forecasting. Moreover, generalized additive models for location, scale and shape (GAMLSS) provide a framework where each distribution parameter is modeled separately capturing smooth linear or nonlinear effects. However, when variable selection is required and/or there are nonsmooth dependencies or interactions (especially unknown or of high-order), it is challenging to establish a good GAMLSS. A natural alternative in these situations would be the application of regression trees or random forests but, so far, no general distributional framework is available for these. Therefore, a framework for distributional regression trees and forests is proposed that blends regression trees and random forests with classical distributions from the GAMLSS framework as well as their censored or truncated counterparts. To illustrate these novel approaches in practice, they are employed to obtain probabilistic precipitation forecasts at numerous sites in a mountainous region (Tyrol, Austria) based on a large number of numerical weather prediction quantities. It is shown that the novel distributional regression forests automatically select variables and interactions, performing on par or often even better than GAMLSS specified either through prior meteorological knowledge or a computationally more demanding boosting approach.




cas

Spatio-temporal short-term wind forecast: A calibrated regime-switching method

Ahmed Aziz Ezzat, Mikyoung Jun, Yu Ding.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1484--1510.

Abstract:
Accurate short-term forecasts are indispensable for the integration of wind energy in power grids. On a wind farm, local wind conditions exhibit sizeable variations at a fine temporal resolution. Existing statistical models may capture the in-sample variations in wind behavior, but are often shortsighted to those occurring in the near future, that is, in the forecast horizon. The calibrated regime-switching method proposed in this paper introduces an action of regime dependent calibration on the predictand (here the wind speed variable), which helps correct the bias resulting from out-of-sample variations in wind behavior. This is achieved by modeling the calibration as a function of two elements: the wind regime at the time of the forecast (and the calibration is therefore regime dependent), and the runlength, which is the time elapsed since the last observed regime change. In addition to regime-switching dynamics, the proposed model also accounts for other features of wind fields: spatio-temporal dependencies, transport effect of wind and nonstationarity. Using one year of turbine-specific wind data, we show that the calibrated regime-switching method can offer a wide margin of improvement over existing forecasting methods in terms of both wind speed and power.




cas

A new McKean–Vlasov stochastic interpretation of the parabolic–parabolic Keller–Segel model: The one-dimensional case

Denis Talay, Milica Tomašević.

Source: Bernoulli, Volume 26, Number 2, 1323--1353.

Abstract:
In this paper, we analyze a stochastic interpretation of the one-dimensional parabolic–parabolic Keller–Segel system without cut-off. It involves an original type of McKean–Vlasov interaction kernel. At the particle level, each particle interacts with all the past of each other particle by means of a time integrated functional involving a singular kernel. At the mean-field level studied here, the McKean–Vlasov limit process interacts with all the past time marginals of its probability distribution in a similarly singular way. We prove that the parabolic–parabolic Keller–Segel system in the whole Euclidean space and the corresponding McKean–Vlasov stochastic differential equation are well-posed for any values of the parameters of the model.