ca

Muscleblind-like 2 controls the hypoxia response of cancer cells [ARTICLE]

Hypoxia is a hallmark of solid cancers, supporting proliferation, angiogenesis, and escape from apoptosis. There is still limited understanding of how cancer cells adapt to hypoxic conditions and survive. We analyzed transcriptome changes of human lung and breast cancer cells under chronic hypoxia. Hypoxia induced highly concordant changes in transcript abundance, but divergent splicing responses, underlining the cell type-specificity of alternative splicing programs. While RNA-binding proteins were predominantly reduced, hypoxia specifically induced muscleblind-like protein 2 (MBNL2). Strikingly, MBNL2 induction was critical for hypoxia adaptation by controlling the transcript abundance of hypoxia response genes, such as vascular endothelial growth factor A (VEGFA). MBNL2 depletion reduced the proliferation and migration of cancer cells, demonstrating an important role of MBNL2 as cancer driver. Hypoxia control is specific for MBNL2 and not shared by its paralog MBNL1. Thus, our study revealed MBNL2 as central mediator of cancer cell responses to hypoxia, regulating the expression and alternative splicing of hypoxia-induced genes.




ca

Will the Addition of Oscillations in Mechanical Insufflation-Exsufflation Ever Be Beneficial?




ca

Post-Breast Cancer Radiotherapy Bronchiolitis Obliterans Organizing Pneumonia

BACKGROUND:Radiotherapy for breast cancer has been implicated in the development of bronchiolitis obliterans organizing pneumonia (BOOP). Patients may be asymptomatic or may have pulmonary and constitutional symptoms that are moderate or severe. Postradiotherapy BOOP usually develops during the 12 months after completion of radiotherapy and is characterized by ground-glass opacities in the radiation-exposed lung and frequently in the non-irradiated lung.METHODS:An updated literature search and review was performed to update the systematic review we conducted in 2014. Ten new publications were identified: 2 Japanese epidemiological studies, 1 Japanese case series study, 6 case reports, and 1 review article.RESULTS:The incidence of postradiotherapy BOOP was 1.4% in both Japanese epidemiological studies. Risk factors included increasing age, cigarette smoking, and increasing central lung distance. The case reports included 7 women who had breast cancer postradiation BOOP and 1 woman who had an ataxia telangiectasia mutated (ATM) gene mutation, which may increase radiation sensitivity.CONCLUSION:Postradiotherapy BOOP in women with breast cancer occurs at a rate of 1.0–3.0% and may occur in women with immune system dysfunction and genetic mutations.




ca

Determinants of Exercise Capacity Assessed With the Modified Shuttle Test in Individuals With Cystic Fibrosis

BACKGROUND:Patients with cystic fibrosis develop decreased exercise capacity. However, the main factors responsible for this decline are still unclear. Thus, the objective of this study was to evaluate the factors influencing exercise capacity assessed with the modified shuttle test (MST) in individuals with cystic fibrosis.METHODS:A cross-sectional study was carried out in subjects with a diagnosis of cystic fibrosis who were 6–26 y old and were regularly monitored at 2 cystic fibrosis reference centers in Brazil. Individuals who were unable to perform the tests or who exhibited hemodynamic instability and exacerbation of respiratory symptoms were excluded. Anthropometric, clinical, and genotype data were collected. In addition, lung function and exercise capacity were evaluated with the MST.RESULTS:73 subjects (mean age 12.2 ± 4.9 y and FEV1 76.8 ± 23.3%) were included. The mean distance achieved in the MST was 765 ± 258 m (71.6% of predicted). The distance achieved on the MST correlated significantly with age (r = 0.49, P < .001), body mass index (r = 0.41, P < .001), resting heart rate (r = −0.51, P < .001), and FEV1 (r = 0.24, P = .042). Subjects with FEV1 > 67% of predicted (P = .02) and those with resting heart rate < 100 beats/min (P = .01) had a greater exercise capacity. Resting heart rate, age, and FEV1 (%) were found as significant variables to explain the distance achieved on the MST (R2 = 0.48, standard error = 191.0 m).CONCLUSIONS:The main determinants of exercise capacity assessed with the MST in individuals with cystic fibrosis were resting heart rate, age, and lung function.




ca

Physiological Responses During Field Walking Tests in Adults with Bronchiectasis

BACKGROUND:Field walking tests are commonly used in patients with chronic pulmonary diseases for assessment of functional capacity. However, the physiological demands and magnitude of desaturation on 6-min walk test (6MWT), incremental shuttle walk test (ISWT), and endurance shuttle walk test (ESWT) have not been investigated in patients with bronchiectasis. The objective of this study was to compare the physiological responses and the magnitude of desaturation of subjects with bronchiectasis when performing the 6MWT, ISWT, and ESWT.METHODS:Thirty-two subjects underwent the 6MWT, ISWT, and ESWT on 3 different days. Pulmonary gas exchange, heart rate, and SpO2 were measured in all tests.RESULTS:There were no differences in the peak rate of oxygen uptake, ventilation, dyspnea, and leg fatigue between the tests. Equivalent cardiac demand (ie, heart rate at peak) was observed with the 6MWT (137 ± 21 beats/min) and the ESWT (142 ± 21 beats/min), but this was lower in the ISWT (135 ± 19 beats/min) compared to ESWT (P < .05). Most subjects achieved a vigorous exercise intensity (heart rate of 70–90% of predicted) in all tests. There was no difference in desaturation among the tests (6MWT: −6.8 ± 6.6%, ISWT: −6.1 ± 6.0%, and ESWT: −7.0 ± 5.4%).CONCLUSIONS:The 6MWT, ISWT, and ESWT induced similar physiological responses at the peak of exercise, eliciting a vigorous exercise intensity. The magnitude of desaturation was similar across tests. This means these tests can be used interchangeably for evaluation of exercise-induced desaturation.




ca

High-Flow Nasal Cannula May Not Reduce the Re-Intubation Rate Compared With a Large-Volume Nebulization-Based Humidifier

BACKGROUND:High-flow nasal cannula (HFNC) therapy may reduce the re-intubation rate compared with conventional oxygen therapy. However, HFNC has not been sufficiently compared with conventional oxygen therapy with a heated humidifier, even though heated humidification is beneficial for facilitating airway clearance.METHODS:This study was a single-center, open-label, randomized controlled trial. We randomized subjects with respiratory failure after extubation to either HFNC group or to a large-volume humidified nebulization-based nebulizer. The primary end point was the re-intubation rate within 7 d after extubation.RESULTS:We could not recruit enough subjects for the sample size we designed, therefore, we analyzed 69 subjects (HFNC group, 30 subjects; nebulizer group, 39 subjects). The re-intubation rate within 7 d was not significantly different between the HFNC and nebulizer groups (5/30 subjects [17%] and 6/39 subjects [15%], respectively; P > .99). PaO2/set FIO2 at 24 h after extubation was also not significantly different between the respective groups (264 ± 105 mm Hg in the HFNC group vs 224 ± 53 mm Hg in the nebulizer group; P = .07).CONCLUSIONS:Compared with a large-volume nebulization-based humidifier, HFNC may not reduce the re-intubation rate within 7 d. However, because of insufficient statistical power, further studies are needed to reach a conclusion.




ca

Usefulness of Oscillations Added to Mechanical In-Exsufflation in Amyotrophic Lateral Sclerosis

BACKGROUND:Assisted coughing via mechanical in-exsufflation (MI-E) is a first-line treatment for secretion management in patients with amyotrophic lateral sclerosis (ALS) with unassisted CPF < 4.25 L/s. Some devices enable oscillations to be added to MI-E (MI-E+O). We sought to determine whether adding oscillations to MI-E enables a reduction in the use of invasive secretion management procedures (ie, bronchoscopy or tracheostomy) in subjects with ALS.METHODS:We conducted a 12-month, prospective, randomized follow-up study of subjects with ALS for whom assisted coughing techniques were indicated. One group was treated with oscillations in addition to MI-E (MI-E+O), and the other group was treated with conventional MI-E.RESULTS:29 subjects were included in the MI-E group and 27 subjects were included in the MI-E+O group. Five subjects (8.9%) required invasive techniques for secretion management (3 in the MI-E group and 2 in the MI-E+O group, P = .70). Treatment with MI-E+O did not alter the risk of invasive procedures (odds ratio 0.69, 95% CI 0.10–4.50, P = .70). The mean number of respiratory infections was 0.58 ± 0.16 in the MI-E group and 0.025 ± 0.08 in the MI-E+O group (P = .10). Survival was 8.96 ± 0.18 months in the MI-E group and 7.70 ± 0.70 months in the MI-E+O group (P = .10).CONCLUSION:Adding oscillations to MI-E did not enable a reduction in the need to perform invasive procedures for secretion management in subjects with ALS.




ca

Distribution of Ventilation Measured by Electrical Impedance Tomography in Critically Ill Children

BACKGROUND:Electrical impedance tomography (EIT) is a noninvasive, portable lung imaging technique that provides functional distribution of ventilation. We aimed to describe the relationship between the distribution of ventilation by mode of ventilation and level of oxygenation impairment in children who are critically ill. We also aimed to describe the safety of EIT application.METHODS:A prospective observational study of EIT images obtained from subjects in the pediatric ICU. Images were categorized by whether the subjects were on intermittent mandatory ventilation (IMV), continuous spontaneous ventilation, or no positive-pressure ventilation. Images were categorized by the level of oxygenation impairment when using SpO2/FIO2. Distribution of ventilation is described by the center of ventilation.RESULTS:Sixty-four images were obtained from 25 subjects. Forty-two images obtained during IMV with a mean ± SD center of ventilation of 55 ± 6%, 14 images during continuous spontaneous ventilation with a mean ± SD center of ventilation of 48.1 ± 11%, and 8 images during no positive-pressure ventilation with a mean ± SD center of ventilation of 47.5 ± 10%. Seventeen images obtained from subjects with moderate oxygenation impairment with a mean ± SD center of ventilation of 59.3 ± 1.9%, 12 with mild oxygenation impairment with a mean ± SD center of ventilation of 52.6 ± 2.3%, and 4 without oxygenation impairment with a mean ± SD center of ventilation of 48.3 ± 4%. There was more ventral distribution of ventilation with IMV versus continuous spontaneous ventilation (P = .009), with IMV versus no positive-pressure ventilation (P = .01) cohorts, and with moderate oxygenation impairment versus cohorts without oxygenation impairment (P = .009). There were no adverse events related to the placement and use of EIT in our study.CONCLUSIONS:Children who had worse oxygen impairment or who received controlled modes of ventilation had more ventral distribution of ventilation than those without oxygen impairment or the subjects who were spontaneously breathing. The ability of EIT to detect changes in the distribution of ventilation in real time may allow for distribution-targeted mechanical ventilation strategies to be deployed proactively; however, future studies are needed to determine the effectiveness of such a strategy.




ca

PEEP Titration to Minimize Driving Pressure in Subjects With ARDS: A Prospective Physiological Study

BACKGROUND:Observational studies report that lower driving pressure (ie, the difference between plateau pressure and PEEP) is associated with improved survival in patients with ARDS and may be a key mediator of lung-protective ventilation strategies. The primary objective of this study was to characterize reductions in driving pressure that could be achieved through changes in PEEP.METHODS:In this prospective physiological pilot study, 10 subjects with ARDS were placed on PEEP according to the ARDS Network Lower PEEP/FIO2 Table. PEEP was adjusted in small increments and decrements above and below this initial PEEP, and driving pressure was measured at each PEEP level. Subsequently, PEEP was set at the level resulting in the lowest driving pressure, and driving pressure was measured after 1, 5, 15, and 30 min to assess stability over time at constant PEEP.RESULTS:All subjects had ARDS with a median (interquartile range [IQR]) PaO2/FIO2 of 116 (98–132) at enrollment. Median (IQR) driving pressure at baseline was 14 (13–17) cm H2O. After PEEP titration, median driving pressure decreased to 13 (12–14) cm H2O. The largest reduction in driving pressure was 4 cm H2O. Two subjects had no change in driving pressure at multiple PEEP levels. To achieve the lowest driving pressure, final PEEP was increased in 6 subjects and decreased in 4 subjects from the baseline PEEP prescribed by the ARDS Network Lower PEEP/FIO2 Table. Driving pressure reached equilibrium within 1–5 min and remained stable for 30 min following PEEP titration.CONCLUSIONS:PEEP titration had a variable effect in changing driving pressure across this small sample of ARDS subjects. In some subjects, PEEP was decreased from values given in the ARDS Network Lower PEEP/FIO2 Table to minimize driving pressure. Changes in driving pressure stabilized within a few minutes of PEEP titration.




ca

Respiratory Care




ca

Correction to "Quantitative Proteomics of Clinically Relevant Drug-Metabolizing Enzymes and Drug Transporters and Their Intercorrelations in the Human Small Intestine" [Errata]




ca

Circadian Clock-Controlled Drug Metabolism: Implications for Chronotherapeutics [Minireview]

Dependence of drug metabolism on dosing time has long been recognized. However, only recently are the underlying mechanisms for circadian drug metabolism being clarified. Diurnal rhythmicity in expression of drug-metabolizing enzymes is believed to be a key factor determining circadian metabolism. Supporting the notion that biological rhythms are generated and maintained by the circadian clock, a number of diurnal enzymes are under the control of the circadian clock. In general, circadian clock genes generate and regulate diurnal rhythmicity in drug-metabolizing enzymes via transcriptional actions on one or two of three cis-elements (i.e., E-box, D-box, and Rev-erb response element or RAR-related orphan receptor response element). Additionally, cycling or clock-controlled nuclear receptors such as hepatocyte nuclear factor 4α and peroxisome proliferator–activated receptor are contributors to diurnal enzyme expression. These newly discovered mechanisms for each of the rhythmic enzymes are reviewed in this article. We also discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics. Our discussion is also extended to two diurnal transporters (P-glycoprotein and multidrug resistance-associated protein 2) that have an important role in drug absorption. Although the experimental evidence is lacking in metabolism-based chronoefficacy, circadian genes (e.g., Rev-erbα) as drug targets are shown to account for diurnal variability in drug efficacy.

SIGNIFICANCE STATEMENT

Significant progress has been made in understanding the molecular mechanisms for generation of diurnal rhythmicity in drug-metabolizing enzymes. In this article, we review the newly discovered mechanisms for each of the rhythmic enzymes and discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics.




ca

Alteration in the Plasma Concentrations of Endogenous Organic Anion-Transporting Polypeptide 1B Biomarkers in Patients with Non-Small Cell Lung Cancer Treated with Paclitaxel [Articles]

Paclitaxel has been considered to cause OATP1B-mediated drug-drug interactions at therapeutic doses; however, its clinical relevance has not been demonstrated. This study aimed to elucidate in vivo inhibition potency of paclitaxel against OATP1B1 and OATP1B3 using endogenous OATP1B biomarkers. Paclitaxel is an inhibitor of OATP1B1 and OATP1B3, with Ki of 0.579 ± 0.107 and 5.29 ± 3.87 μM, respectively. Preincubation potentiated its inhibitory effect on both OATP1B1 and OATP1B3, with Ki of 0.154 ± 0.031 and 0.624 ± 0.183 μM, respectively. Ten patients with non–small cell lung cancer who received 200 mg/m2 of paclitaxel by a 3-hour infusion were recruited. Plasma concentrations of 10 endogenous OATP1B biomarkers—namely, coproporphyrin I, coproporphyrin III, glycochenodeoxycholate-3-sulfate, glycochenodeoxycholate-3-glucuronide, glycodeoxycholate-3-sulfate, glycodeoxycholate-3-glucuronide, lithocholate-3-sulfate, glycolithocholate-3-sulfate, taurolithocholate-3-sulfate, and chenodeoxycholate-24-glucuronide—were determined in the patients with non–small cell lung cancer on the day before paclitaxel administration and after the end of paclitaxel infusion for 7 hours. Paclitaxel increased the area under the plasma concentration-time curve (AUC) of the endogenous biomarkers 2- to 4-fold, although a few patients did not show any increment in the AUC ratios of lithocholate-3-sulfate, glycolithocholate-3-sulfate, and taurolithocholate-3-sulfate. Therapeutic doses of paclitaxel for the treatment of non–small cell lung cancer (200 mg/m2) will cause significant OATP1B1 inhibition during and at the end of the infusion. This is the first demonstration that endogenous OATP1B biomarkers could serve as surrogate biomarkers in patients.

SIGNIFICANCE STATEMENT

Endogenous biomarkers can address practical and ethical issues in elucidating transporter-mediated drug-drug interaction (DDI) risks of anticancer drugs clinically. We could elucidate a significant increment of the plasma concentrations of endogenous OATP1B biomarkers after a 3-hour infusion (200 mg/m2) of paclitaxel, a time-dependent inhibitor of OATP1B, in patients with non–small cell lung cancer. The endogenous OATP1B biomarkers are useful to assess the possibility of OATP1B-mediated DDIs in patients and help in appropriately designing a dosing schedule to avoid the DDIs.




ca

Flavin-Containing Monooxygenase 1 Catalyzes the Production of Taurine from Hypotaurine [Articles]

Taurine is one of the most abundant amino acids in mammalian tissues. It is obtained from the diet and by de novo synthesis from cysteic acid or hypotaurine. Despite the discovery in 1954 that the oxygenation of hypotaurine produces taurine, the identification of an enzyme catalyzing this reaction has remained elusive. In large part, this is due to the incorrect assignment, in 1962, of the enzyme as an NAD-dependent hypotaurine dehydrogenase. For more than 55 years, the literature has continued to refer to this enzyme as such. Here we show, both in vivo and in vitro, that the enzyme that oxygenates hypotaurine to produce taurine is flavin-containing monooxygenase (FMO) 1. Metabolite analysis of the urine of Fmo1-null mice by 1H NMR spectroscopy revealed a buildup of hypotaurine and a deficit of taurine in comparison with the concentrations of these compounds in the urine of wild-type mice. In vitro assays confirmed that human FMO1 catalyzes the conversion of hypotaurine to taurine, utilizing either NADPH or NADH as cofactor. FMO1 has a wide substrate range and is best known as a xenobiotic- or drug-metabolizing enzyme. The identification that the endogenous molecule hypotaurine is a substrate for the FMO1-catalyzed production of taurine resolves a long-standing mystery. This finding should help establish the role FMO1 plays in a range of biologic processes in which taurine or its deficiency is implicated, including conjugation of bile acids, neurotransmitter, antioxidant and anti-inflammatory functions, and the pathogenesis of obesity and skeletal muscle disorders.

SIGNIFICANCE STATEMENT

The identity of the enzyme that catalyzes the biosynthesis of taurine from hypotaurine has remained elusive. Here we show, both in vivo and in vitro, that flavin-containing monooxygenase 1 catalyzes the oxygenation of hypotaurine to produce taurine.




ca

Evaluation of Quantitative Relationship Between Target Expression and Antibody-Drug Conjugate Exposure Inside Cancer Cells [Articles]

Antibody-drug conjugates (ADCs) employ overexpressed cell surface antigens to deliver cytotoxic payloads inside cancer cells. However, the relationship between target expression and ADC efficacy remains ambiguous. In this manuscript, we have addressed a part of this ambiguity by quantitatively investigating the effect of antigen expression levels on ADC exposure within cancer cells. Trastuzumab-valine-citrulline-monomethyl auristatin E was used as a model ADC, and four different cell lines with diverse levels of human epidermal growth factor receptor 2 (HER2) expression were used as model cells. The pharmacokinetics (PK) of total trastuzumab, released monomethyl auristatin E (MMAE), and total MMAE were measured inside the cells and in the cell culture media following incubation with two different concentrations of ADC. In addition, target expression levels, target internalization rate, and cathepsin B and MDR1 protein concentrations were determined for each cell line. All the PK data were mathematically characterized using a cell-level systems PK model for ADC. It was found that SKBR-3, MDA-MB-453, MCF-7, and MDA-MB-468 cells had ~800,000, ~250,000, ~50,000, and ~10,000 HER2 receptors per cell, respectively. A strong linear relationship (R2 > 0.9) was observed between HER2 receptor count and released MMAE exposure inside the cancer cells. There was an inverse relationship found between HER2 expression level and internalization rate, and cathepsin B and multidrug resistance protein 1 (MDR1) expression level varied slightly among the cell lines. The PK model was able to simultaneously capture all the PK profiles reasonably well while estimating only two parameters. Our results demonstrate a strong quantitative relationship between antigen expression level and intracellular exposure of ADCs in cancer cells.

SIGNIFICANCE STATEMENT

In this manuscript, we have demonstrated a strong linear relationship between target expression level and antibody-drug conjugate (ADC) exposure inside cancer cells. We have also shown that this relationship can be accurately captured using the cell-level systems pharmacokinetics model developed for ADCs. Our results indirectly suggest that the lack of relationship between target expression and efficacy of ADC may stem from differences in the pharmacodynamic properties of cancer cells.




ca

Spectral and photochemical diversity of tandem cysteine cyanobacterial phytochromes [Plant Biology]

The atypical trichromatic cyanobacterial phytochrome NpTP1 from Nostoc punctiforme ATCC 29133 is a linear tetrapyrrole (bilin)-binding photoreceptor protein that possesses tandem-cysteine residues responsible for shifting its light-sensing maximum to the violet spectral region. Using bioinformatics and phylogenetic analyses, here we established that tandem-cysteine cyanobacterial phytochromes (TCCPs) compose a well-supported monophyletic phytochrome lineage distinct from prototypical red/far-red cyanobacterial phytochromes. To investigate the light-sensing diversity of this family, we compared the spectroscopic properties of NpTP1 (here renamed NpTCCP) with those of three phylogenetically diverged TCCPs identified in the draft genomes of Tolypothrix sp. PCC7910, Scytonema sp. PCC10023, and Gloeocapsa sp. PCC7513. Recombinant photosensory core modules of ToTCCP, ScTCCP, and GlTCCP exhibited violet-blue–absorbing dark-states consistent with dual thioether-linked phycocyanobilin (PCB) chromophores. Photoexcitation generated singly-linked photoproduct mixtures with variable ratios of yellow-orange and red-absorbing species. The photoproduct ratio was strongly influenced by pH and by mutagenesis of TCCP- and phytochrome-specific signature residues. Our experiments support the conclusion that both photoproduct species possess protonated 15E bilin chromophores, but differ in the ionization state of the noncanonical “second” cysteine sulfhydryl group. We found that the ionization state of this and other residues influences subsequent conformational change and downstream signal transmission. We also show that tandem-cysteine phytochromes present in eukaryotes possess similar amino acid substitutions within their chromophore-binding pocket, which tune their spectral properties in an analogous fashion. Taken together, our findings provide a roadmap for tailoring the wavelength specificity of plant phytochromes to optimize plant performance in diverse natural and artificial light environments.




ca

A flexible network of vimentin intermediate filaments promotes migration of amoeboid cancer cells through confined environments [Cell Biology]

Tumor cells can spread to distant sites through their ability to switch between mesenchymal and amoeboid (bleb-based) migration. Because of this difference, inhibitors of metastasis must account for each migration mode. However, the role of vimentin in amoeboid migration has not been determined. Because amoeboid leader bleb–based migration (LBBM) occurs in confined spaces and vimentin is known to strongly influence cell-mechanical properties, we hypothesized that a flexible vimentin network is required for fast amoeboid migration. To this end, here we determined the precise role of the vimentin intermediate filament system in regulating the migration of amoeboid human cancer cells. Vimentin is a classic marker of epithelial-to-mesenchymal transition and is therefore an ideal target for a metastasis inhibitor. Using a previously developed polydimethylsiloxane slab–based approach to confine cells, RNAi-based vimentin silencing, vimentin overexpression, pharmacological treatments, and measurements of cell stiffness, we found that RNAi-mediated depletion of vimentin increases LBBM by ∼50% compared with control cells and that vimentin overexpression and simvastatin-induced vimentin bundling inhibit fast amoeboid migration and proliferation. Importantly, these effects were independent of changes in actomyosin contractility. Our results indicate that a flexible vimentin intermediate filament network promotes LBBM of amoeboid cancer cells in confined environments and that vimentin bundling perturbs cell-mechanical properties and inhibits the invasive properties of cancer cells.




ca

The streptococcal multidomain fibrillar adhesin CshA has an elongated polymeric architecture [Microbiology]

The cell surfaces of many bacteria carry filamentous polypeptides termed adhesins that enable binding to both biotic and abiotic surfaces. Surface adherence is facilitated by the exquisite selectivity of the adhesins for their cognate ligands or receptors and is a key step in niche or host colonization and pathogenicity. Streptococcus gordonii is a primary colonizer of the human oral cavity and an opportunistic pathogen, as well as a leading cause of infective endocarditis in humans. The fibrillar adhesin CshA is an important determinant of S. gordonii adherence, forming peritrichous fibrils on its surface that bind host cells and other microorganisms. CshA possesses a distinctive multidomain architecture comprising an N-terminal target-binding region fused to 17 repeat domains (RDs) that are each ∼100 amino acids long. Here, using structural and biophysical methods, we demonstrate that the intact CshA repeat region (CshA_RD1–17, domains 1–17) forms an extended polymeric monomer in solution. We recombinantly produced a subset of CshA RDs and found that they differ in stability and unfolding behavior. The NMR structure of CshA_RD13 revealed a hitherto unreported all β-fold, flanked by disordered interdomain linkers. These findings, in tandem with complementary hydrodynamic studies of CshA_RD1–17, indicate that this polypeptide possesses a highly unusual dynamic transitory structure characterized by alternating regions of order and disorder. This architecture provides flexibility for the adhesive tip of the CshA fibril to maintain bacterial attachment that withstands shear forces within the human host. It may also help mitigate deleterious folding events between neighboring RDs that share significant structural identity without compromising mechanical stability.




ca

Structural basis of substrate recognition and catalysis by fucosyltransferase 8 [Protein Structure and Folding]

Fucosylation of the innermost GlcNAc of N-glycans by fucosyltransferase 8 (FUT8) is an important step in the maturation of complex and hybrid N-glycans. This simple modification can dramatically affect the activities and half-lives of glycoproteins, effects that are relevant to understanding the invasiveness of some cancers, development of mAb therapeutics, and the etiology of a congenital glycosylation disorder. The acceptor substrate preferences of FUT8 are well-characterized and provide a framework for understanding N-glycan maturation in the Golgi; however, the structural basis of these substrate preferences and the mechanism through which catalysis is achieved remain unknown. Here we describe several structures of mouse and human FUT8 in the apo state and in complex with GDP, a mimic of the donor substrate, and with a glycopeptide acceptor substrate at 1.80–2.50 Å resolution. These structures provide insights into a unique conformational change associated with donor substrate binding, common strategies employed by fucosyltransferases to coordinate GDP, features that define acceptor substrate preferences, and a likely mechanism for enzyme catalysis. Together with molecular dynamics simulations, the structures also revealed how FUT8 dimerization plays an important role in defining the acceptor substrate-binding site. Collectively, this information significantly builds on our understanding of the core fucosylation process.




ca

Tracking isotopically labeled oxidants using boronate-based redox probes [Methods and Resources]

Reactive oxygen and nitrogen species have been implicated in many biological processes and diseases, including immune responses, cardiovascular dysfunction, neurodegeneration, and cancer. These chemical species are short-lived in biological settings, and detecting them in these conditions and diseases requires the use of molecular probes that form stable, easily detectable, products. The chemical mechanisms and limitations of many of the currently used probes are not well-understood, hampering their effective applications. Boronates have emerged as a class of probes for the detection of nucleophilic two-electron oxidants. Here, we report the results of an oxygen-18–labeling MS study to identify the origin of oxygen atoms in the oxidation products of phenylboronate targeted to mitochondria. We demonstrate that boronate oxidation by hydrogen peroxide, peroxymonocarbonate, hypochlorite, or peroxynitrite involves the incorporation of oxygen atoms from these oxidants. We therefore conclude that boronates can be used as probes to track isotopically labeled oxidants. This suggests that the detection of specific products formed from these redox probes could enable precise identification of oxidants formed in biological systems. We discuss the implications of these results for understanding the mechanism of conversion of the boronate-based redox probes to oxidant-specific products.




ca

The tethering function of mitofusin2 controls osteoclast differentiation by modulating the Ca2+-NFATc1 axis [A2;A22]

Dynamic regulation of the mitochondrial network by mitofusins (MFNs) modulates energy production, cell survival, and many intracellular signaling events, including calcium handling. However, the relative importance of specific mitochondrial functions and their dependence on MFNs vary greatly among cell types. Osteoclasts have many mitochondria, and increased mitochondrial biogenesis and oxidative phosphorylation enhance bone resorption, but little is known about the mitochondrial network or MFNs in osteoclasts. Because expression of each MFN isoform increases with osteoclastogenesis, we conditionally deleted MFN1 and MFN2 (double conditional KO (dcKO)) in murine osteoclast precursors, finding that this increased bone mass in young female mice and abolished osteoclast precursor differentiation into mature osteoclasts in vitro. Defective osteoclastogenesis was reversed by overexpression of MFN2 but not MFN1; therefore, we generated mice lacking only MFN2 in osteoclasts. MFN2-deficient female mice had increased bone mass at 1 year and resistance to Receptor Activator of NF-κB Ligand (RANKL)-induced osteolysis at 8 weeks. To explore whether MFN-mediated tethering or mitophagy is important for osteoclastogenesis, we overexpressed MFN2 variants defective in either function in dcKO precursors and found that, although mitophagy was dispensable for differentiation, tethering was required. Because the master osteoclastogenic transcriptional regulator nuclear factor of activated T cells 1 (NFATc1) is calcium-regulated, we assessed calcium release from the endoplasmic reticulum and store-operated calcium entry and found that the latter was blunted in dcKO cells. Restored osteoclast differentiation by expression of intact MFN2 or the mitophagy-defective variant was associated with normalization of store-operated calcium entry and NFATc1 levels, indicating that MFN2 controls mitochondrion–endoplasmic reticulum tethering in osteoclasts.




ca

A kinesin adapter directly mediates dendritic mRNA localization during neural development in mice [Neurobiology]

Motor protein-based active transport is essential for mRNA localization and local translation in animal cells, yet how mRNA granules interact with motor proteins remains poorly understood. Using an unbiased yeast two–hybrid screen for interactions between murine RNA-binding proteins (RBPs) and motor proteins, here we identified protein interaction with APP tail-1 (PAT1) as a potential direct adapter between zipcode-binding protein 1 (ZBP1, a β-actin RBP) and the kinesin-I motor complex. The amino acid sequence of mouse PAT1 is similar to that of the kinesin light chain (KLC), and we found that PAT1 binds to KLC directly. Studying PAT1 in mouse primary hippocampal neuronal cultures from both sexes and using structured illumination microscopic imaging of these neurons, we observed that brain-derived neurotrophic factor (BDNF) enhances co-localization of dendritic ZBP1 and PAT1 within granules that also contain kinesin-I. PAT1 is essential for BDNF-stimulated neuronal growth cone development and dendritic protrusion formation, and we noted that ZBP1 and PAT1 co-locate along with β-actin mRNA in actively transported granules in living neurons. Acute disruption of the PAT1–ZBP1 interaction in neurons with PAT1 siRNA or a dominant-negative ZBP1 construct diminished localization of β-actin mRNA but not of Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) mRNA in dendrites. The aberrant β-actin mRNA localization resulted in abnormal dendritic protrusions and growth cone dynamics. These results suggest a critical role for PAT1 in BDNF-induced β-actin mRNA transport during postnatal development and reveal a new molecular mechanism for mRNA localization in vertebrates.




ca

Templated folding of intrinsically disordered proteins [Molecular Biophysics]

Much of our current knowledge of biological chemistry is founded in the structure-function relationship, whereby sequence determines structure that determines function. Thus, the discovery that a large fraction of the proteome is intrinsically disordered, while being functional, has revolutionized our understanding of proteins and raised new and interesting questions. Many intrinsically disordered proteins (IDPs) have been determined to undergo a disorder-to-order transition when recognizing their physiological partners, suggesting that their mechanisms of folding are intrinsically different from those observed in globular proteins. However, IDPs also follow some of the classic paradigms established for globular proteins, pointing to important similarities in their behavior. In this review, we compare and contrast the folding mechanisms of globular proteins with the emerging features of binding-induced folding of intrinsically disordered proteins. Specifically, whereas disorder-to-order transitions of intrinsically disordered proteins appear to follow rules of globular protein folding, such as the cooperative nature of the reaction, their folding pathways are remarkably more malleable, due to the heterogeneous nature of their folding nuclei, as probed by analysis of linear free-energy relationship plots. These insights have led to a new model for the disorder-to-order transition in IDPs termed “templated folding,” whereby the binding partner dictates distinct structural transitions en route to product, while ensuring a cooperative folding.




ca

Crystallographic and kinetic analyses of the FdsBG subcomplex of the cytosolic formate dehydrogenase FdsABG from Cupriavidus necator [Molecular Biophysics]

Formate oxidation to carbon dioxide is a key reaction in one-carbon compound metabolism, and its reverse reaction represents the first step in carbon assimilation in the acetogenic and methanogenic branches of many anaerobic organisms. The molybdenum-containing dehydrogenase FdsABG is a soluble NAD+-dependent formate dehydrogenase and a member of the NADH dehydrogenase superfamily. Here, we present the first structure of the FdsBG subcomplex of the cytosolic FdsABG formate dehydrogenase from the hydrogen-oxidizing bacterium Cupriavidus necator H16 both with and without bound NADH. The structures revealed that the two iron-sulfur clusters, Fe4S4 in FdsB and Fe2S2 in FdsG, are closer to the FMN than they are in other NADH dehydrogenases. Rapid kinetic studies and EPR measurements of rapid freeze-quenched samples of the NADH reduction of FdsBG identified a neutral flavin semiquinone, FMNH•, not previously observed to participate in NADH-mediated reduction of the FdsABG holoenzyme. We found that this semiquinone forms through the transfer of one electron from the fully reduced FMNH−, initially formed via NADH-mediated reduction, to the Fe2S2 cluster. This Fe2S2 cluster is not part of the on-path chain of iron-sulfur clusters connecting the FMN of FdsB with the active-site molybdenum center of FdsA. According to the NADH-bound structure, the nicotinamide ring stacks onto the re-face of the FMN. However, NADH binding significantly reduced the electron density for the isoalloxazine ring of FMN and induced a conformational change in residues of the FMN-binding pocket that display peptide-bond flipping upon NAD+ binding in proper NADH dehydrogenases.




ca

Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer ad&#x0237;acent motif (PAM) sequences [Molecular Biophysics]

The CRISPR/Cas9 nucleases have been widely applied for genome editing in various organisms. Cas9 nucleases complexed with a guide RNA (Cas9–gRNA) find their targets by scanning and interrogating the genomic DNA for sequences complementary to the gRNA. Recognition of the DNA target sequence requires a short protospacer adjacent motif (PAM) located outside this sequence. Given that the efficiency of target location may depend on the strength of interactions that promote target recognition, here we sought to compare affinities of different Cas9 nucleases for their cognate PAM sequences. To this end, we measured affinities of Cas9 nucleases from Streptococcus pyogenes, Staphylococcus aureus, and Francisella novicida complexed with guide RNAs (gRNAs) (SpCas9–gRNA, SaCas9–gRNA, and FnCas9–gRNA, respectively) and of three engineered SpCas9–gRNA variants with altered PAM specificities for short, PAM-containing DNA probes. We used a “beacon” assay that measures the relative affinities of DNA probes by determining their ability to competitively affect the rate of Cas9–gRNA binding to fluorescently labeled target DNA derivatives called “Cas9 beacons.” We observed significant differences in the affinities for cognate PAM sequences among the studied Cas9 enzymes. The relative affinities of SpCas9–gRNA and its engineered variants for canonical and suboptimal PAMs correlated with previous findings on the efficiency of these PAM sequences in genome editing. These findings suggest that high affinity of a Cas9 nuclease for its cognate PAM promotes higher genome-editing efficiency.




ca

Roles of active-site residues in catalysis, substrate binding, cooperativity, and the reaction mechanism of the quinoprotein glycine oxidase [Enzymology]

The quinoprotein glycine oxidase from the marine bacterium Pseudoalteromonas luteoviolacea (PlGoxA) uses a protein-derived cysteine tryptophylquinone (CTQ) cofactor to catalyze conversion of glycine to glyoxylate and ammonia. This homotetrameric enzyme exhibits strong cooperativity toward glycine binding. It is a good model for studying enzyme kinetics and cooperativity, specifically for being able to separate those aspects of protein function through directed mutagenesis. Variant proteins were generated with mutations in four active-site residues, Phe-316, His-583, Tyr-766, and His-767. Structures for glycine-soaked crystals were obtained for each. Different mutations had differential effects on kcat and K0.5 for catalysis, K0.5 for substrate binding, and the Hill coefficients describing the steady-state kinetics or substrate binding. Phe-316 and Tyr-766 variants retained catalytic activity, albeit with altered kinetics and cooperativity. Substitutions of His-583 revealed that it is essential for glycine binding, and the structure of H583C PlGoxA had no active-site glycine present in glycine-soaked crystals. The structure of H767A PlGoxA revealed a previously undetected reaction intermediate, a carbinolamine product-reduced CTQ adduct, and exhibited only negligible activity. The results of these experiments, as well as those with the native enzyme and previous variants, enabled construction of a detailed mechanism for the reductive half-reaction of glycine oxidation. This proposed mechanism includes three discrete reaction intermediates that are covalently bound to CTQ during the reaction, two of which have now been structurally characterized by X-ray crystallography.




ca

Pro-515 of the dynamin-like GTPase MxB contributes to HIV-1 inhibition by regulating MxB oligomerization and binding to HIV-1 capsid [Microbiology]

Interferon-regulated myxovirus resistance protein B (MxB) is an interferon-induced GTPase belonging to the dynamin superfamily. It inhibits infection with a wide range of different viruses, including HIV-1, by impairing viral DNA entry into the nucleus. Unlike the related antiviral GTPase MxA, MxB possesses an N-terminal region that contains a nuclear localization signal and is crucial for inhibiting HIV-1. Because MxB previously has been shown to reside in both the nuclear envelope and the cytoplasm, here we used bioinformatics and biochemical approaches to identify a nuclear export signal (NES) responsible for MxB's cytoplasmic location. Using the online computational tool LocNES (Locating Nuclear Export Signals or NESs), we identified five putative NES candidates in MxB and investigated whether their deletion caused nuclear localization of MxB. Our results revealed that none of the five deletion variants relocates to the nucleus, suggesting that these five predicted NES sequences do not confer NES activity. Interestingly, deletion of one sequence, encompassing amino acids 505–527, abrogated the anti-HIV-1 activity of MxB. Further mutation experiments disclosed that amino acids 515–519, and Pro-515 in particular, regulate MxB oligomerization and its binding to HIV-1 capsid, thereby playing an important role in MxB-mediated restriction of HIV-1 infection. In summary, our results indicate that none of the five predicted NES sequences in MxB appears to be required for its nuclear export. Our findings also reveal several residues in MxB, including Pro-515, critical for its oligomerization and anti-HIV-1 function.




ca

Perturbation of phosphoglycerate kinase 1 (PGK1) only marginally affects glycolysis in cancer cells [Metabolism]

Phosphoglycerate kinase 1 (PGK1) plays important roles in glycolysis, yet its forward reaction kinetics are unknown, and its role especially in regulating cancer cell glycolysis is unclear. Here, we developed an enzyme assay to measure the kinetic parameters of the PGK1-catalyzed forward reaction. The Km values for 1,3-bisphosphoglyceric acid (1,3-BPG, the forward reaction substrate) were 4.36 μm (yeast PGK1) and 6.86 μm (human PKG1). The Km values for 3-phosphoglycerate (3-PG, the reverse reaction substrate and a serine precursor) were 146 μm (yeast PGK1) and 186 μm (human PGK1). The Vmax of the forward reaction was about 3.5- and 5.8-fold higher than that of the reverse reaction for the human and yeast enzymes, respectively. Consistently, the intracellular steady-state concentrations of 3-PG were between 180 and 550 μm in cancer cells, providing a basis for glycolysis to shuttle 3-PG to the serine synthesis pathway. Using siRNA-mediated PGK1-specific knockdown in five cancer cell lines derived from different tissues, along with titration of PGK1 in a cell-free glycolysis system, we found that the perturbation of PGK1 had no effect or only marginal effects on the glucose consumption and lactate generation. The PGK1 knockdown increased the concentrations of fructose 1,6-bisphosphate, dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, and 1,3-BPG in nearly equal proportions, controlled by the kinetic and thermodynamic states of glycolysis. We conclude that perturbation of PGK1 in cancer cells insignificantly affects the conversion of glucose to lactate in glycolysis.




ca

Chemical roadblocking of DNA transcription for nascent RNA display [RNA]

Site-specific arrest of RNA polymerases (RNAPs) is fundamental to several technologies that assess RNA structure and function. Current in vitro transcription “roadblocking” approaches inhibit transcription elongation by blocking RNAP with a protein bound to the DNA template. One limitation of protein-mediated transcription roadblocking is that it requires inclusion of a protein factor extrinsic to the minimal in vitro transcription reaction. In this work, we developed a chemical approach for halting transcription by Escherichia coli RNAP. We first established a sequence-independent method for site-specific incorporation of chemical lesions into dsDNA templates by sequential PCR and translesion synthesis. We then show that interrupting the transcribed DNA strand with an internal desthiobiotin-triethylene glycol modification or 1,N6-etheno-2'-deoxyadenosine base efficiently and stably halts Escherichia coli RNAP transcription. By encoding an intrinsic stall site within the template DNA, our chemical transcription roadblocking approach enables display of nascent RNA molecules from RNAP in a minimal in vitro transcription reaction.




ca

RNA helicase-regulated processing of the Synechocystis rimO-crhR operon results in differential cistron expression and accumulation of two sRNAs [Gene Regulation]

The arrangement of functionally-related genes in operons is a fundamental element of how genetic information is organized in prokaryotes. This organization ensures coordinated gene expression by co-transcription. Often, however, alternative genetic responses to specific stress conditions demand the discoordination of operon expression. During cold temperature stress, accumulation of the gene encoding the sole Asp–Glu–Ala–Asp (DEAD)-box RNA helicase in Synechocystis sp. PCC 6803, crhR (slr0083), increases 15-fold. Here, we show that crhR is expressed from a dicistronic operon with the methylthiotransferase rimO/miaB (slr0082) gene, followed by rapid processing of the operon transcript into two monocistronic mRNAs. This cleavage event is required for and results in destabilization of the rimO transcript. Results from secondary structure modeling and analysis of RNase E cleavage of the rimO–crhR transcript in vitro suggested that CrhR plays a role in enhancing the rate of the processing in an auto-regulatory manner. Moreover, two putative small RNAs are generated from additional processing, degradation, or both of the rimO transcript. These results suggest a role for the bacterial RNA helicase CrhR in RNase E-dependent mRNA processing in Synechocystis and expand the known range of organisms possessing small RNAs derived from processing of mRNA transcripts.




ca

A neuroglobin-based high-affinity ligand trap reverses carbon monoxide-induced mitochondrial poisoning [Molecular Biophysics]

Carbon monoxide (CO) remains the most common cause of human poisoning. The consequences of CO poisoning include cardiac dysfunction, brain injury, and death. CO causes toxicity by binding to hemoglobin and by inhibiting mitochondrial cytochrome c oxidase (CcO), thereby decreasing oxygen delivery and inhibiting oxidative phosphorylation. We have recently developed a CO antidote based on human neuroglobin (Ngb-H64Q-CCC). This molecule enhances clearance of CO from red blood cells in vitro and in vivo. Herein, we tested whether Ngb-H64Q-CCC can also scavenge CO from CcO and attenuate CO-induced inhibition of mitochondrial respiration. Heart tissue from mice exposed to 3% CO exhibited a 42 ± 19% reduction in tissue respiration rate and a 33 ± 38% reduction in CcO activity compared with unexposed mice. Intravenous infusion of Ngb-H64Q-CCC restored respiration rates to that of control mice correlating with higher electron transport chain CcO activity in Ngb-H64Q-CCC–treated compared with PBS-treated, CO-poisoned mice. Further, using a Clark-type oxygen electrode, we measured isolated rat liver mitochondrial respiration in the presence and absence of saturating solutions of CO (160 μm) and nitric oxide (100 μm). Both CO and NO inhibited respiration, and treatment with Ngb-H64Q-CCC (100 and 50 μm, respectively) significantly reversed this inhibition. These results suggest that Ngb-H64Q-CCC mitigates CO toxicity by scavenging CO from carboxyhemoglobin, improving systemic oxygen delivery and reversing the inhibitory effects of CO on mitochondria. We conclude that Ngb-H64Q-CCC or other CO scavengers demonstrate potential as antidotes that reverse the clinical and molecular effects of CO poisoning.




ca

Endorepellin evokes an angiostatic stress signaling cascade in endothelial cells [Glycobiology and Extracellular Matrices]

Endorepellin, the C-terminal fragment of the heparan sulfate proteoglycan perlecan, influences various signaling pathways in endothelial cells by binding to VEGFR2. In this study, we discovered that soluble endorepellin activates the canonical stress signaling pathway consisting of PERK, eIF2α, ATF4, and GADD45α. Specifically, endorepellin evoked transient activation of VEGFR2, which, in turn, phosphorylated PERK at Thr980. Subsequently, PERK phosphorylated eIF2α at Ser51, upregulating its downstream effector proteins ATF4 and GADD45α. RNAi-mediated knockdown of PERK or eIF2α abrogated the endorepellin-mediated up-regulation of GADD45α, the ultimate effector protein of this stress signaling cascade. To functionally validate these findings, we utilized an ex vivo model of angiogenesis. Exposure of the aortic rings embedded in 3D fibrillar collagen to recombinant endorepellin for 2–4 h activated PERK and induced GADD45α vis à vis vehicle-treated counterparts. Similar effects were obtained with the established cellular stress inducer tunicamycin. Notably, chronic exposure of aortic rings to endorepellin for 7–9 days markedly suppressed vessel sprouting, an angiostatic effect that was rescued by blocking PERK kinase activity. Our findings unravel a mechanism by which an extracellular matrix protein evokes stress signaling in endothelial cells, which leads to angiostasis.




ca

Reactive dicarbonyl compounds cause Calcitonin Gene-Related Peptide release and synergize with inflammatory conditions in mouse skin and peritoneum [Molecular Bases of Disease]

The plasmas of diabetic or uremic patients and of those receiving peritoneal dialysis treatment have increased levels of the glucose-derived dicarbonyl metabolites like methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG). The elevated dicarbonyl levels can contribute to the development of painful neuropathies. Here, we used stimulated immunoreactive Calcitonin Gene–Related Peptide (iCGRP) release as a measure of nociceptor activation, and we found that each dicarbonyl metabolite induces a concentration-, TRPA1-, and Ca2+-dependent iCGRP release. MGO, GO, and 3-DG were about equally potent in the millimolar range. We hypothesized that another dicarbonyl, 3,4-dideoxyglucosone-3-ene (3,4-DGE), which is present in peritoneal dialysis (PD) solutions after heat sterilization, activates nociceptors. We also showed that at body temperatures 3,4-DGE is formed from 3-DG and that concentrations of 3,4-DGE in the micromolar range effectively induced iCGRP release from isolated murine skin. In a novel preparation of the isolated parietal peritoneum PD fluid or 3,4-DGE alone, at concentrations found in PD solutions, stimulated iCGRP release. We also tested whether inflammatory tissue conditions synergize with dicarbonyls to induce iCGRP release from isolated skin. Application of MGO together with bradykinin or prostaglandin E2 resulted in an overadditive effect on iCGRP release, whereas MGO applied at a pH of 5.2 resulted in reduced release, probably due to an MGO-mediated inhibition of transient receptor potential (TRP) V1 receptors. These results indicate that several reactive dicarbonyls activate nociceptors and potentiate inflammatory mediators. Our findings underline the roles of dicarbonyls and TRPA1 receptors in causing pain during diabetes or renal disease.




ca

Thioredoxin regulates human mercaptopyruvate sulfurtransferase at physiologically-relevant concentrations [Enzymology]

3-Mercaptopyruvate sulfur transferase (MPST) catalyzes the desulfuration of 3-mercaptopyruvate (3-MP) and transfers sulfane sulfur from an enzyme-bound persulfide intermediate to thiophilic acceptors such as thioredoxin and cysteine. Hydrogen sulfide (H2S), a signaling molecule implicated in many physiological processes, can be released from the persulfide product of the MPST reaction. Two splice variants of MPST, differing by 20 amino acids at the N terminus, give rise to the cytosolic MPST1 and mitochondrial MPST2 isoforms. Here, we characterized the poorly-studied MPST1 variant and demonstrated that substitutions in its Ser–His–Asp triad, proposed to serve a general acid–base role, minimally affect catalytic activity. We estimated the 3-MP concentration in murine liver, kidney, and brain tissues, finding that it ranges from 0.4 μmol·kg−1 in brain to 1.4 μmol·kg−1 in kidney. We also show that N-acetylcysteine, a widely-used antioxidant, is a poor substrate for MPST and is unlikely to function as a thiophilic acceptor. Thioredoxin exhibits substrate inhibition, increasing the KM for 3-MP ∼15-fold compared with other sulfur acceptors. Kinetic simulations at physiologically-relevant substrate concentrations predicted that the proportion of sulfur transfer to thioredoxin increases ∼3.5-fold as its concentration decreases from 10 to 1 μm, whereas the total MPST reaction rate increases ∼7-fold. The simulations also predicted that cysteine is a quantitatively-significant sulfane sulfur acceptor, revealing MPST's potential to generate low-molecular-weight persulfides. We conclude that the MPST1 and MPST2 isoforms are kinetically indistinguishable and that thioredoxin modulates the MPST-catalyzed reaction in a physiologically-relevant concentration range.




ca

Targeting the polyamine pathway&#x2014;&#x201C;a means&#x201D; to overcome chemoresistance in triple-negative breast cancer [Cell Biology]

Triple-negative breast cancer (TNBC) is characterized by its aggressive biology, early metastatic spread, and poor survival outcomes. TNBC lacks expression of the targetable receptors found in other breast cancer subtypes, mandating use of cytotoxic chemotherapy. However, resistance to chemotherapy is a significant problem, encountered in about two-thirds of TNBC patients, and new strategies are needed to mitigate resistance. In this issue of the Journal of Biological Chemistry, Geck et al. report that TNBC cells are highly sensitive to inhibition of the de novo polyamine synthesis pathway and that inhibition of this pathway sensitizes cells to TNBC-relevant chemotherapy, uncovering new opportunities for addressing chemoresistance.




ca

Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy [Molecular Bases of Disease]

Treatment of patients with triple-negative breast cancer (TNBC) is limited by a lack of effective molecular therapies targeting this disease. Recent studies have identified metabolic alterations in cancer cells that can be targeted to improve responses to standard-of-care chemotherapy regimens. Using MDA-MB-468 and SUM-159PT TNBC cells, along with LC-MS/MS and HPLC metabolomics profiling, we found here that exposure of TNBC cells to the cytotoxic chemotherapy drugs cisplatin and doxorubicin alter arginine and polyamine metabolites. This alteration was because of a reduction in the levels and activity of a rate-limiting polyamine biosynthetic enzyme, ornithine decarboxylase (ODC). Using gene silencing and inhibitor treatments, we determined that the reduction in ODC was mediated by its negative regulator antizyme, targeting ODC to the proteasome for degradation. Treatment with the ODC inhibitor difluoromethylornithine (DFMO) sensitized TNBC cells to chemotherapy, but this was not observed in receptor-positive breast cancer cells. Moreover, TNBC cell lines had greater sensitivity to single-agent DFMO, and ODC levels were elevated in TNBC patient samples. The alterations in polyamine metabolism in response to chemotherapy, as well as DFMO-induced preferential sensitization of TNBC cells to chemotherapy, reported here suggest that ODC may be a targetable metabolic vulnerability in TNBC.




ca

A single amino acid substitution uncouples catalysis and allostery in an essential biosynthetic enzyme in Mycobacterium tuberculosis [Enzymology]

Allostery exploits the conformational dynamics of enzymes by triggering a shift in population ensembles toward functionally distinct conformational or dynamic states. Allostery extensively regulates the activities of key enzymes within biosynthetic pathways to meet metabolic demand for their end products. Here, we have examined a critical enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS), at the gateway to aromatic amino acid biosynthesis in Mycobacterium tuberculosis, which shows extremely complex dynamic allostery: three distinct aromatic amino acids jointly communicate occupancy to the active site via subtle changes in dynamics, enabling exquisite fine-tuning of delivery of these essential metabolites. Furthermore, this allosteric mechanism is co-opted by pathway branchpoint enzyme chorismate mutase upon complex formation. In this study, using statistical coupling analysis, site-directed mutagenesis, isothermal calorimetry, small-angle X-ray scattering, and X-ray crystallography analyses, we have pinpointed a critical node within the complex dynamic communication network responsible for this sophisticated allosteric machinery. Through a facile Gly to Pro substitution, we have altered backbone dynamics, completely severing the allosteric signal yet remarkably, generating a nonallosteric enzyme that retains full catalytic activity. We also identified a second residue of prime importance to the inter-enzyme communication with chorismate mutase. Our results reveal that highly complex dynamic allostery is surprisingly vulnerable and provide further insights into the intimate link between catalysis and allostery.




ca

Journal of Biological Chemistry




ca

Abnormal Fetal Echocardiogram at 33 Weeks Gestation




ca

Case 3: Term Infant With Severe Respiratory Failure




ca

Case 2: Mysterious Hyperkalemia in a Premature Infant of 25 Weeks Gestation




ca

Case 1: Neonatal Trauma Following Motor Vehicle Collision in Pregnancy




ca

Tracheostomy in Infants in the Neonatal Intensive Care Unit

Approximately half of all pediatric tracheostomies are performed in infants younger than 1 year. Most tracheostomies in patients in the NICU are performed in cases of chronic respiratory failure requiring prolonged mechanical ventilation or upper airway obstruction. With improvements in ventilation and management of long-term intubation, indications for tracheostomy and perioperative management in this population continue to evolve. Evidence-based protocols to guide routine postoperative care, prevent and manage tracheostomy emergencies including accidental decannulation and tube obstruction, and attempt elective decannulation are sparse. Clinician awareness of safe tracheostomy practices and larger, prospective studies in infants are needed to improve clinical care of this vulnerable population.




ca

Neonatal Vocal Fold Paralysis

Vocal fold paralysis (VFP) is an important cause of respiratory and feeding compromise in infants. The causes of neonatal VFP are varied and include central nervous system disorders, birth-related trauma, mediastinal masses, iatrogenic injuries, and idiopathic cases. Bilateral VFP often presents with stridor or respiratory distress and can require rapid intervention to stabilize an adequate airway. Unilateral VFP presents more subtly with a weak cry, swallowing dysfunction, and less frequently respiratory distress. The etiology and type of VFP is important for management. Evaluation involves direct visualization of the vocal folds, with additional imaging and testing in select cases. Swallowing dysfunction, also known as dysphagia, is very common in infants with VFP. A clinical assessment of swallowing function is necessary in all cases of VFP, with some patients also requiring an instrumental swallow assessment. Modification of feeding techniques and enteral access for feedings may be necessary. Airway management can vary from close monitoring to noninvasive ventilation, tracheostomy, and laryngeal surgery. Long-term follow-up with otolaryngology and speech-language pathology service is necessary for all children with VFP to ensure adequate breathing, swallowing, and phonation. The short- and long-term health and quality-of-life consequences of VFP can be substantial, especially if not managed early.




ca

Lithological and chemostratigraphic discrimination of facies within the Bowland Shale Formation within the Craven and Edale basins, UK

The Carboniferous Bowland Shale Formation of the UK is a proven hydrocarbon source rock and currently a target for shale gas exploration. Most existing analysis details lithofacies and geochemical assessment of a small number of boreholes. Given a paucity of relevant borehole cores, surface samples provide a valuable contribution to the assessment of this unconventional gas source. This study reviews existing literature on the formation's hydrocarbon geochemistry and provides new lithological descriptions of seven lithofacies, XRD mineralogy and hydrocarbon-specific geochemical data for 32 outcrop localities within the Craven and Edale basins, respectively in the northern and southern parts of the resource area. Low oxygen indices suggest that the majority of samples are relatively unaltered (in terms of hydrocarbon geochemistry), and therefore suitable for the characterization of the shale organic character. Total organic carbon (TOC) ranges from 0.7 to 6.5 wt%, with highest values associated with maximum flooding surfaces. Mean Tmax values of 447 and 441°C for the Edale and Craven basins, respectively, suggest that nearly all the samples were too immature to have generated appreciable amounts of dry gas. The oil saturation index is consistently below the >100 mg g–1 TOC benchmark, suggesting that they are not prospective for shale oil.

Supplementary material: A table summarizing the location, geological description and age of all of the samples in this paper is available at https://doi.org/10.6084/m9.figshare.c.4444589




ca

Structural constraints on Lower Carboniferous shale gas exploration in the Craven Basin, NW England

Detailed interpretation of a 3D seismic data volume reveals the detrimental effect that post-depositional tectonic deformation has had on buried Lower Carboniferous (Dinantian–Namurian) shales and its consequences for shale gas exploration in the SW part (Fylde area) of the Craven Basin in NW England. The structural styles primarily result from Devono-Carboniferous (syn-sedimentary) extension, post-rift subsidence and Variscan inversion, a renewed phase of Permo-Triassic extension, and Cenozoic uplift and basin exhumation. In contrast to the shallow dips and bedding continuity that characterizes productive shale gas plays in other basins (e.g. in the USA and Argentina), our mapping shows that the area is affected by deformation that results in the Bowland Shale Formation targets being folded and dissected into fault-bound compartments defined by SW–NE striking (Lower Carboniferous and Variscan) reverse faults and SSW–NNE to N–S striking (Permo-Triassic) normal faults. The fault networks and the misalignment between the elongate compartments they contain and the present-day minimum horizontal stress orientation limit the length over which long lateral boreholes can remain in a productive horizon, placing an important constraint on optimal well positioning, reducing the size of the shale gas resource and affecting well productivity. Our subsurface mapping using this high-fidelity dataset provides an accurate picture of the Upper Palaeozoic structure and demonstrates that faulting is denser and more complex than apparent from geological mapping of the surface outcrop. That structural complexity has direct and significant consequences for: the location of well pads; the lateral continuity of target shale gas horizons; the evaluation of the risk of inducing seismicity on seismically resolvable (large displacement) fault planes prior to drilling; and the likelihood of faults with small throws (below seismic resolution) being present.




ca

Sedimentary and tectonic controls on Lower Carboniferous (Visean) mixed carbonate-siliciclastic deposition in NE England and the Southern North Sea: implications for reservoir architecture

Discovery of the Breagh gas field in the Southern North Sea (SNS) has demonstrated the potential that the Lower Carboniferous (Visean, 346.7–330.9 Ma) Farne Group reservoirs have to contribute to the UK's future energy mix. New biostratigraphic correlations provide a basis to compare Asbian and Brigantian sedimentary cores from the Breagh Field and age-equivalent sediments exposed on the Northumberland Coast, which has proved critical in gaining an understanding of exploration and development opportunities. Thirteen facies associations characterize the mixed carbonate–siliciclastic system, grouped into: marine, delta front, delta shoreface, lower delta plain and upper delta plain gross depositional environments. The facies associations are interpreted as depositing in a mixed carbonate and siliciclastic fluvio-deltaic environment, and are arranged into coarsening- and cleaning-upward cycles (parasequences) bounded by flooding surfaces. Most cycles are characterized by mouth bars, distributary channels, interdistributary bays and common braided rivers, interpreted as river-dominated deltaic deposits. Some cycles include rare shoreface and tidally-influenced deposits, interpreted as river-dominated and wave- or tide-influenced deltaic deposits. The depositional processes that formed each cycle have important implications for the reservoir net/gross ratio (where this ratio indicates the proportion of sandstone beds in a cycle), thickness and lateral extent. The deltaic deposits were controlled by a combination of tectonic and eustatic (allocyclic) events and delta avulsion (autocyclic) processes, and are likely to reflect a changing tectonic regime, from extension within elongate fault-bounded basins (synrift) to passive regional thermal subsidence (post-rift). Deep incision by the Base Permian Unconformity across the Breagh Field has removed the Westphalian, Namurian and upper Visean, to leave the more prospective thicker clastic reservoirs within closure.

Thematic collection: This article is part of the Under-explored plays and frontier basins of the UK continental shelf collection available at: https://www.lyellcollection.org/cc/under-explored-plays-and-frontier-basins-of-the-uk-continental-shelf




ca

Structural evolution of the Breagh area: implications for carboniferous prospectivity of the Mid North Sea High, Southern North Sea

Exploration success at Breagh demonstrates that western parts of the Mid North Sea High area are prospective despite the absence of an Upper Permian (Rotliegend Group) Leman Sandstone Formation reservoir and source rocks belonging to the Upper Carboniferous Westphalian Coal Measures Group. Detailed seismic and well interpretation shows that the Breagh trap was a long-lived footwall high, the prospectivity of which was enhanced by Variscan folding and uplift, leading to the truncation (subcrop) of Lower Carboniferous reservoirs beneath the Base Permian Unconformity. Its drape (supra-crop) by Upper Permian (Zechstein Super Group) evaporites creates the seal. The complexity of its overburden means that an accurate picture of the Breagh structure only emerges after accurate depth-conversion that takes the effects of the Mesozoic graben into account. Pronounced easterly tilting during the Cenozoic affected the area and controlled gas migration into the structure from palaeostructures lying to the east. However, evidence that Breagh is not filled to spill point (underfill) suggests that charge limitation remained an issue. The study demonstrates that a poorly-documented and under-explored Lower Carboniferous play exists in Southern North Sea, which relies upon careful structural mapping and basin modelling to be undertaken for the play to be understood and its further potential to be realized.

Thematic collection: This article is part of the Under-explored plays and frontier basins of the UK continental shelf collection available at: https://www.lyellcollection.org/cc/under-explored-plays-and-frontier-basins-of-the-uk-continental-shelf




ca

Reply to Discussion on 'Breakup continents at magma poor rifted margins: a seismic v. outcrop perspective. Journal of the Geological Society, London, 175, 875-882




ca

Discussion on 'Breaking up continents at magma-poor rifted margins: a seismic v. outcrop perspective Journal of the Geological Society, London, 175, 875-882