gin

Paul brings herbs to refresh Virginie after she has performed a long walk barefoot. Stipple engraving by J.P. Simon after C.P. Landon.

A Paris (rue St Denis No. 214) : chez Bance aîné, [1810?]




gin

A shipwrecked sailor stands on the shore looking up at the sun's rays emerging from the clouds. Stipple engraving by J. Whessell, 1802, after J. Barney.

London (Gt. Newport Street) : Published by John P. Thompson, Jan.y 1 1802.




gin

Tashkent: two mendicant Dervish men in conversation. Process print after G.S. Sedoff after V.V. Vereshchagin.




gin

How 3 States Are Digging In on Civics Education

As growing numbers of states jump on the civics-learning bandwagon, a coalition of 90 national groups warns that some strategies are better than others. Here's a look at three states working toward a comprehensive approach to the topic.




gin

One More Teacher Wins State Seat, Bringing Count to 43

One more teacher was elected to state legislature in a closely contested race.




gin

Capitals cut ties with Leipsic after disparaging comments

The Washington Capitals on Friday placed Brendan Leipsic on unconditional waivers to terminate his contract after he made disparaging comments about women and teammates in a private social media chat. In a conversation involving his brother and Florida Panthers minor leaguer Jack Rodewald, Leipsic commented on the physical appearances of Vancouver forward Tanner Pearson's wife and Edmonton captain Connor McDavid's girlfriend. The NHL called it ''inexcusable conduct'' and said it would address the matter with the Capitals and Panthers.




gin

Administrative scheme for the County of London made by the London County Council on 18th December, 1934, for discharging the functions transferred to the Council by Part I of the Local Government Act, 1929, and orders made bu the Minister of Health under

England : London County Council, Public Assistance Department, 1935.




gin

Strategies for research on the interactions of drugs of abuse / editors, Monique C. Braude, Harold M. Ginzburg.

Rockville, Maryland : National Institute on Drug Abuse, 1986.




gin

Opioids in the hippocampus / editors, Jacqueline F. McGinty, David P. Friedman.

Rockville, Maryland : National Institute on Drug Abuse, 1988.




gin

Suicide and depression among drug abusers / Margaret Allison, Robert L. Hubbard, Harold M. Ginzburg.

Rockville, Maryland : National Institute on Drug Abuse, 1985.




gin

The aging process and psychoactive drug use.

Rockville, Maryland : National Institute on Drug Abuse, 1979.




gin

A fast MCMC algorithm for the uniform sampling of binary matrices with fixed margins

Guanyang Wang.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1690--1706.

Abstract:
Uniform sampling of binary matrix with fixed margins is an important and difficult problem in statistics, computer science, ecology and so on. The well-known swap algorithm would be inefficient when the size of the matrix becomes large or when the matrix is too sparse/dense. Here we propose the Rectangle Loop algorithm, a Markov chain Monte Carlo algorithm to sample binary matrices with fixed margins uniformly. Theoretically the Rectangle Loop algorithm is better than the swap algorithm in Peskun’s order. Empirically studies also demonstrates the Rectangle Loop algorithm is remarkablely more efficient than the swap algorithm.




gin

Connecting Spectral Clustering to Maximum Margins and Level Sets

We study the connections between spectral clustering and the problems of maximum margin clustering, and estimation of the components of level sets of a density function. Specifically, we obtain bounds on the eigenvectors of graph Laplacian matrices in terms of the between cluster separation, and within cluster connectivity. These bounds ensure that the spectral clustering solution converges to the maximum margin clustering solution as the scaling parameter is reduced towards zero. The sensitivity of maximum margin clustering solutions to outlying points is well known, but can be mitigated by first removing such outliers, and applying maximum margin clustering to the remaining points. If outliers are identified using an estimate of the underlying probability density, then the remaining points may be seen as an estimate of a level set of this density function. We show that such an approach can be used to consistently estimate the components of the level sets of a density function under very mild assumptions.




gin

Random environment binomial thinning integer-valued autoregressive process with Poisson or geometric marginal

Zhengwei Liu, Qi Li, Fukang Zhu.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 251--272.

Abstract:
To predict time series of counts with small values and remarkable fluctuations, an available model is the $r$ states random environment process based on the negative binomial thinning operator and the geometric marginal. However, we argue that the aforementioned model may suffer from the following two drawbacks. First, under the condition of no prior information, the overdispersed property of the geometric distribution may cause the predictions fluctuate greatly. Second, because of the constraints on the model parameters, some estimated parameters are close to zero in real-data examples, which may not objectively reveal the correlation relationship. For the first drawback, an $r$ states random environment process based on the binomial thinning operator and the Poisson marginal is introduced. For the second drawback, we propose a generalized $r$ states random environment integer-valued autoregressive model based on the binomial thinning operator to model fluctuations of data. Yule–Walker and conditional maximum likelihood estimates are considered and their performances are assessed via simulation studies. Two real-data sets are conducted to illustrate the better performances of the proposed models compared with some existing models.




gin

Keeping the balance—Bridge sampling for marginal likelihood estimation in finite mixture, mixture of experts and Markov mixture models

Sylvia Frühwirth-Schnatter.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 706--733.

Abstract:
Finite mixture models and their extensions to Markov mixture and mixture of experts models are very popular in analysing data of various kind. A challenge for these models is choosing the number of components based on marginal likelihoods. The present paper suggests two innovative, generic bridge sampling estimators of the marginal likelihood that are based on constructing balanced importance densities from the conditional densities arising during Gibbs sampling. The full permutation bridge sampling estimator is derived from considering all possible permutations of the mixture labels for a subset of these densities. For the double random permutation bridge sampling estimator, two levels of random permutations are applied, first to permute the labels of the MCMC draws and second to randomly permute the labels of the conditional densities arising during Gibbs sampling. Various applications show very good performance of these estimators in comparison to importance and to reciprocal importance sampling estimators derived from the same importance densities.




gin

A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging. (arXiv:2004.12314v3 [cs.CV] UPDATED)

Segmentation of cardiac images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) widely used for visualizing diseased cardiac structures, is a crucial first step for clinical diagnosis and treatment. However, direct segmentation of LGE-MRIs is challenging due to its attenuated contrast. Since most clinical studies have relied on manual and labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the "2018 Left Atrium Segmentation Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double, sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved far superior results than traditional methods and pipelines containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for cardiac LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field.




gin

Margin-Based Generalization Lower Bounds for Boosted Classifiers. (arXiv:1909.12518v4 [cs.LG] UPDATED)

Boosting is one of the most successful ideas in machine learning. The most well-accepted explanations for the low generalization error of boosting algorithms such as AdaBoost stem from margin theory. The study of margins in the context of boosting algorithms was initiated by Schapire, Freund, Bartlett and Lee (1998) and has inspired numerous boosting algorithms and generalization bounds. To date, the strongest known generalization (upper bound) is the $k$th margin bound of Gao and Zhou (2013). Despite the numerous generalization upper bounds that have been proved over the last two decades, nothing is known about the tightness of these bounds. In this paper, we give the first margin-based lower bounds on the generalization error of boosted classifiers. Our lower bounds nearly match the $k$th margin bound and thus almost settle the generalization performance of boosted classifiers in terms of margins.




gin

State Library creates a new space for Aboriginal communities to connect with their cultural heritage

Thursday 20 February 2020
In an Australian first, the State Library of NSW launched a new digital space for Aboriginal communities to connect with their histories and cultures.




gin

Transgender and gender nonconforming health and aging

9783319950310 (electronic bk.)




gin

Tissue engineering : principles, protocols, and practical exercises

9783030396985




gin

The public policy primer : managing the policy process

Wu, Xun, author.
9781315624754 (electronic bk.)




gin

The evolution of feathers : from their origin to the present

9783030272234 electronic book




gin

Requirements engineering : 26th International Working Conference, REFSQ 2020, Pisa, Italy, March 24-27, 2020, Proceedings

REFSQ (Conference) (26th : 2020 : Pisa, Italy)
9783030444297




gin

Neuroradiological imaging of skin diseases and related conditions

9783319909318 (electronic bk.)




gin

Nanobiomaterial engineering : concepts and their applications in biomedicine and diagnostics

9789813298408 (electronic bk.)




gin

Imaging of the temporomandibular joint

9783319994680 (electronic book)




gin

Genetic and metabolic engineering for improved biofuel production from lignocellulosic biomass

9780128179543 (electronic bk.)




gin

Emerging eco-friendly green technologies for wastewater treatment

9789811513909 (electronic bk.)




gin

Emerging and transboundary animal viruses

9789811504020 (electronic bk.)




gin

Diabetes and Aging-related Complications

9789811043765 978-981-10-4376-5




gin

DICTIONARY OF CONSTRUCTION, SURVEYING, AND CIVIL ENGINEERING

9780192568632 (electronic bk.)




gin

Current developments in biotechnology and bioengineering : resource recovery from wastes

0444643222




gin

Clinical approaches in endodontic regeneration : current and emerging therapeutic perspectives

9783319968483 (electronic bk.)




gin

Challenging cases in dermatology.

El-Darouti, Mohammad Ali.
9783030218553 (electronic bk.)




gin

Bioeconomy for beginners

Bioökonomie für Einsteiger. English
9783662603901 (electronic bk.)




gin

Berquist's musculoskeletal imaging companion

Peterson, Jeffrey J., author.
9781496314994




gin

Jamboree Begins Construction on Capstone Development to Change...

In a public-private partnership to develop housing, resident services and hope for 102 working families in Haster Orangewood community, Jamboree Housing Corporation and the City of Anaheim announce...

(PRWeb April 27, 2020)

Read the full story at https://www.prweb.com/releases/jamboree_begins_construction_on_capstone_development_to_change_trajectory_of_neighborhood_in_anaheim_ca/prweb17073166.htm




gin

Penalized generalized empirical likelihood with a diverging number of general estimating equations for censored data

Niansheng Tang, Xiaodong Yan, Xingqiu Zhao.

Source: The Annals of Statistics, Volume 48, Number 1, 607--627.

Abstract:
This article considers simultaneous variable selection and parameter estimation as well as hypothesis testing in censored survival models where a parametric likelihood is not available. For the problem, we utilize certain growing dimensional general estimating equations and propose a penalized generalized empirical likelihood, where the general estimating equations are constructed based on the semiparametric efficiency bound of estimation with given moment conditions. The proposed penalized generalized empirical likelihood estimators enjoy the oracle properties, and the estimator of any fixed dimensional vector of nonzero parameters achieves the semiparametric efficiency bound asymptotically. Furthermore, we show that the penalized generalized empirical likelihood ratio test statistic has an asymptotic central chi-square distribution. The conditions of local and restricted global optimality of weighted penalized generalized empirical likelihood estimators are also discussed. We present a two-layer iterative algorithm for efficient implementation, and investigate its convergence property. The performance of the proposed methods is demonstrated by extensive simulation studies, and a real data example is provided for illustration.




gin

Markov equivalence of marginalized local independence graphs

Søren Wengel Mogensen, Niels Richard Hansen.

Source: The Annals of Statistics, Volume 48, Number 1, 539--559.

Abstract:
Symmetric independence relations are often studied using graphical representations. Ancestral graphs or acyclic directed mixed graphs with $m$-separation provide classes of symmetric graphical independence models that are closed under marginalization. Asymmetric independence relations appear naturally for multivariate stochastic processes, for instance, in terms of local independence. However, no class of graphs representing such asymmetric independence relations, which is also closed under marginalization, has been developed. We develop the theory of directed mixed graphs with $mu $-separation and show that this provides a graphical independence model class which is closed under marginalization and which generalizes previously considered graphical representations of local independence. Several graphs may encode the same set of independence relations and this means that in many cases only an equivalence class of graphs can be identified from observational data. For statistical applications, it is therefore pivotal to characterize graphs that induce the same independence relations. Our main result is that for directed mixed graphs with $mu $-separation each equivalence class contains a maximal element which can be constructed from the independence relations alone. Moreover, we introduce the directed mixed equivalence graph as the maximal graph with dashed and solid edges. This graph encodes all information about the edges that is identifiable from the independence relations, and furthermore it can be computed efficiently from the maximal graph.




gin

Modeling wildfire ignition origins in southern California using linear network point processes

Medha Uppala, Mark S. Handcock.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 339--356.

Abstract:
This paper focuses on spatial and temporal modeling of point processes on linear networks. Point processes on linear networks can simply be defined as point events occurring on or near line segment network structures embedded in a certain space. A separable modeling framework is introduced that posits separate formation and dissolution models of point processes on linear networks over time. While the model was inspired by spider web building activity in brick mortar lines, the focus is on modeling wildfire ignition origins near road networks over a span of 14 years. As most wildfires in California have human-related origins, modeling the origin locations with respect to the road network provides insight into how human, vehicular and structural densities affect ignition occurrence. Model results show that roads that traverse different types of regions such as residential, interface and wildland regions have higher ignition intensities compared to roads that only exist in each of the mentioned region types.




gin

Efficient real-time monitoring of an emerging influenza pandemic: How feasible?

Paul J. Birrell, Lorenz Wernisch, Brian D. M. Tom, Leonhard Held, Gareth O. Roberts, Richard G. Pebody, Daniela De Angelis.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 74--93.

Abstract:
A prompt public health response to a new epidemic relies on the ability to monitor and predict its evolution in real time as data accumulate. The 2009 A/H1N1 outbreak in the UK revealed pandemic data as noisy, contaminated, potentially biased and originating from multiple sources. This seriously challenges the capacity for real-time monitoring. Here, we assess the feasibility of real-time inference based on such data by constructing an analytic tool combining an age-stratified SEIR transmission model with various observation models describing the data generation mechanisms. As batches of data become available, a sequential Monte Carlo (SMC) algorithm is developed to synthesise multiple imperfect data streams, iterate epidemic inferences and assess model adequacy amidst a rapidly evolving epidemic environment, substantially reducing computation time in comparison to standard MCMC, to ensure timely delivery of real-time epidemic assessments. In application to simulated data designed to mimic the 2009 A/H1N1 epidemic, SMC is shown to have additional benefits in terms of assessing predictive performance and coping with parameter nonidentifiability.




gin

Volume 24 Item 04: William Thomas Manners and customs of Aborigines - Miscellaneous scraps, ca. 1858




gin

Item 01: Notebooks (2) containing hand written copies of 123 letters from Major William Alan Audsley to his parents, ca. 1916-ca. 1919, transcribed by his father. Also includes original letters (2) written by Major Audsley.




gin

Item 01: Scorebook of the Aboriginal Cricket Tour of England being a copy in Charles Lawrence's hand, 1868




gin

Probability Based Independence Sampler for Bayesian Quantitative Learning in Graphical Log-Linear Marginal Models

Ioannis Ntzoufras, Claudia Tarantola, Monia Lupparelli.

Source: Bayesian Analysis, Volume 14, Number 3, 797--823.

Abstract:
We introduce a novel Bayesian approach for quantitative learning for graphical log-linear marginal models. These models belong to curved exponential families that are difficult to handle from a Bayesian perspective. The likelihood cannot be analytically expressed as a function of the marginal log-linear interactions, but only in terms of cell counts or probabilities. Posterior distributions cannot be directly obtained, and Markov Chain Monte Carlo (MCMC) methods are needed. Finally, a well-defined model requires parameter values that lead to compatible marginal probabilities. Hence, any MCMC should account for this important restriction. We construct a fully automatic and efficient MCMC strategy for quantitative learning for such models that handles these problems. While the prior is expressed in terms of the marginal log-linear interactions, we build an MCMC algorithm that employs a proposal on the probability parameter space. The corresponding proposal on the marginal log-linear interactions is obtained via parameter transformation. We exploit a conditional conjugate setup to build an efficient proposal on probability parameters. The proposed methodology is illustrated by a simulation study and a real dataset.




gin

Taylor Swift, Hailey Bieber, and Tons of Other Celebs’ Favorite Leggings Are on Sale Ahead of Black Friday

Here’s where you can snag their Alo Yoga Moto leggings for less.




gin

Kourtney Kardashian's Favorite Leggings Are So Good, Everyone Should Own A Pair

And they're on sale for Black Friday. 




gin

Jennifer Lopez Just Stepped Out in These Glittery Leggings (Again)—and We Found Them on Sale

They’re already going out of stock.




gin

Shoppers Swear These $30 Colorfulkoala Leggings Are the Ultimate Lululemon Dupes

And they’re available in 19 fun prints.




gin

Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging

Jasper Akerboom
Oct 3, 2012; 32:13819-13840
Cellular