ea

DeepMind founder Mustafa Suleyman leaves indefinitely

DeepMind's cofounder and head of applied artificial intelligence, Mustafa Suleyman, has abruptly left the company for an indefinite period




ea

Technologists lead crowdsourced Coronavirus Tech Handbook response

A group of technologists has led crowdsourcing efforts to create a single repository of information for specialists fighting the Coronavirus outbreak. Techworld speaks with founder Edward Saperia to hear more about how collaboration tools can help the efforts




ea

How Onfido raised $100 million at the peak of a pandemic

The UK-based digital identity specialist managed to raise a bumper round during the peak of the COVID-19 pandemic, and is looking at ways to apply its technology to help combat the global crisis




ea

Expa launches UK office for European startups

The US-based 'startup studio' will launched a London office to welcome European startups




ea

HKEx chief not to seek reappointment

Hong Kong Exchanges & Clearing Limited (HKEx) today announced that Charles Li will not seek reappointment as Chief Executive at the end of his current contract in October 2021.

     

The Government said it respected Mr Li's decision and expressed deep appreciation for his exemplary contribution to the development of the financial market during his tenure as HKEx Chief Executive in the past decade.

 

Since taking the helm in January 2010, he has led HKEx and Hong Kong’s capital market in achieving important breakthroughs one after another.

 

The vibrancy and growth that Mr Li has brought to Hong Kong in the capital market helps reinforce the status of Hong Kong as a leading international financial centre.

 

Financial Secretary Paul Chan said: "Thanks to his vision and leadership, Mr Li has laid a solid and strong foundation for our stock market, rendering Hong Kong the largest IPO market in the world for seven times in the past 11 years.

 

"He has been instrumental in the successful launch of mutual market access programmes between Hong Kong and the Mainland, notably the Shanghai-Hong Kong Stock Connect in 2014, which was expanded to include Shenzhen-Hong Kong Stock Connect in 2016 and Bond Connect in 2017.

 

"He also played a pivotal role in the launch of new listing regime in Hong Kong, the enhanced internationalisation of HKEx and its international visibility. These are all important achievements of HKEx in the past few years under Mr Li’s able leadership."

Mr Chan added that the Government is confident the HKEx board will continue to ensure the success of HKEx in the years to come.




ea

"Mathematics and the Family Tree of Sars-Cov-2," the May Feature Column by Bill Casselman




ea

Math in the Media - May 2020:John Conway, "magical mathematician", Topological analysis of zebrafish, teaching online...




ea

Probleme de Plateau, Equations Fuchsiennes et Probleme de Riemann-Hilbert

Laura Desideri, Universite de Lille 1 - A publication of the Societe Mathematique de France, 2013, 116 pp., Softcover, ISBN-13: 978-2-85629-766-7, List: US$48, All AMS Members: US$38.40, SMFMEM/133

A note to readers: This book is in French. This dissertation is devoted to the resolution of the Plateau problem in the case of a...




ea

Microlocalization of Subanalytic Sheaves

Luca Prelli, Universita degli Studi di Padova - A publication of the Societe Mathematique de France, 2013, 101 pp., Softcover, ISBN-13: 978-2-85629-768-1, List: US$45, All AMS Members: US$36, SMFMEM/135

The author defines the specialization and microlocalization functors for subanalytic sheaves. Applying these tools to the sheaves of tempered and...




ea

European Congress of Mathematics: Krakow, July 2-7, 2012

Rafal Latala, University of Warsaw, Andrzei Rucinski, Adam Mickiewicz University, Pawel Strzelecki, University of Warsaw, Jacek Swiatkowski, University of Wroclaw, and Dariusz Wrzosek and Piotr Zakrzewski, University of Warsaw, Editors - A publication of the European Mathematical Society, 2013, 824 pp., Hardcover, ISBN-13: 978-3-03719-120-0, List: US$128, All AMS Members: US$102.40, EMSEMC/2012

The European Congress of Mathematics, held every four years, has become a well-established major international mathematical event. Following those in...




ea

Near Soliton Evolution for Equivariant Schrodinger Maps in Two Spatial Dimensions

Ioan Bejenaru, University of California, San Diego, and Daniel Tataru, University of California, Berkeley - AMS, 2014, 108 pp., Softcover, ISBN-13: 978-0-8218-9215-2, List: US$76, All AMS Members: US$60.80, MEMO/228/1069

The authors consider the Schrödinger Map equation in (2+1) dimensions, with values into (mathbb{S}^2). This admits a lowest energy steady...




ea

Nonlinear Stability of Ekman Boundary Layers in Rotating Stratified Fluids

Hajime Koba, Waseda University - AMS, 2014, 127 pp., Softcover, ISBN-13: 978-0-8218-9133-9, List: US$79, All AMS Members: US$63.20, MEMO/228/1073

A stationary solution of the rotating Navier-Stokes equations with a boundary condition is called an Ekman boundary layer. This book constructs...




ea

The Joys of Haar Measure

Joe Diestel, Kent State University, and Angela Spalsbury, Youngstown State University - AMS, 2013, 320 pp., Hardcover, ISBN-13: 978-1-4704-0935-7, List: US$65, All AMS Members: US$52, GSM/150

From the earliest days of measure theory, invariant measures have held the interests of geometers and analysts alike, with the Haar measure playing an...




ea

Pearls from a Lost City: The Lvov School of Mathematics

Roman Duda, University of Wroclaw - Translated by Daniel Davies - AMS, 2014, approx. 216 pp., Hardcover, ISBN-13: 978-1-4704-1076-6, List: US$39, All AMS Members: US$31.20, HMATH/40

The fame of the Polish school at Lvov rests with the diverse and fundamental contributions of Polish mathematicians working there during the interwar...




ea

Really Big Numbers

Richard Evan Schwartz, Brown University - AMS, 2014, 192 pp., Softcover, ISBN-13: 978-1-4704-1425-2, List: US$25, All AMS Members: US$20, MBK/84

A superb, beautifully illustrated book for kids -- and those of us still children at heart -- that takes you up (and up, and up,and up, and up, and...




ea

Operator-Valued Measures, Dilations, and the Theory of Frames

Deguang Han, University of Central Florida, David R. Larson, Texas A&M University, Bei Liu, Tianjin University of Technology, and Rui Liu, Nankai University - AMS, 2013, 84 pp., Softcover, ISBN-13: 978-0-8218-9172-8, List: US$65, All AMS Members: US$52, MEMO/229/1075

The authors develop elements of a general dilation theory for operator-valued measures. Hilbert space operator-valued measures are closely related to...




ea

Semiclassical Standing Waves with Clustering Peaks for Nonlinear Schrodinger Equations

Jaeyoung Byeon, KAIST, and Kazunaga Tanaka, Waseda University - AMS, 2013, 89 pp., Softcover, ISBN-13: 978-0-8218-9163-6, List: US$71, All AMS Members: US$56.80, MEMO/229/1076

The authors study the following singularly perturbed problem: (-epsilon^2Delta u+V(x)u = f(u)) in (mathbf{R}^N). Their main result is the...




ea

HKSAR Air Quality Health Index at : Sun, 10 May 2020 01:30:00 +0800 Current Condition :

General Stations: 1 to 2 (Health Risk: Low)

Roadside Stations: 2 (Health Risk: Low)




ea

Extreme ultraviolet imaging displays potential to enhance study of Alzheimer's disease

(University of Southampton) Scientists have published highly detailed images of lab-grown neurons using Extreme Ultraviolet radiation that could aid the analysis of neurodegenerative diseases.




ea

Dartmouth's Katherine Mirica wins National Teacher-Scholar Honor

(Dartmouth College) Annual award supports the research and teaching careers of talented young faculty in the chemical sciences.




ea

Inhibiting thrombin protects against dangerous infant digestive disease

(University of South Florida (USF Health)) A new preclinical study by researchers at the University of South Florida Health (USF Health) Morsani College of Medicine and Johns Hopkins University School of Medicine offers promise of a specific treatment for NEC, a rare inflammatory bowel disease that is a leading cause of death in premature infants. The team found that inhibiting the inflammatory and blood-clotting molecule thrombin with targeted nanotherapy can protect against NEC-like injury in newborn mice.




ea

Real-time visualization of solid-phase ion migration

(University of Science and Technology of China) Researchers from University of science and technology of China has shed new lights on the topic of solid-phase ion migration. Researchers demonstrated a unique in-situ strategy for visualizing the dynamic solid-phase ion migration between nanostructures with nanogap at the atomic scale. The research article entitled "Real-Time Visualization of Solid-Phase Ion Migration Kinetics on Nanowire Monolayer" was published in Journal of the American Chemical Society on April 29th.




ea

Research found a new way to make functional materials based on polymers of metal clusters

(University of Jyväskylä - Jyväskylän yliopisto) Researchers at the universities of Jyvaskyla and Xiamen discovered a novel way to make functional macroscopic crystalline materials out of nanometer-size 34-atom silver-gold intermetallic clusters. The cluster material has a highly anisotropic electrical conductivity, being a semiconductor in one direction and an electrical insulator in other directions. The research was published in Nature Communications on May 6, 2020.




ea

Surfaces that grip like gecko feet could be easily mass-produced

(Georgia Institute of Technology) The science behind sticky gecko's feet lets gecko adhesion materials pick up about anything. But cost-effective mass production of the materials was out of reach until now. A new method of making them could usher the spread of gecko-inspired grabbers to assembly lines and homes.




ea

New simple method for measuring the state of lithium-ion batteries

(Johannes Gutenberg Universitaet Mainz) Scientists at Johannes Gutenberg University Mainz (JGU) and the Helmholtz Institute Mainz (HIM) in Germany have presented a non-contact method for detecting the state of charge and any defects in lithium-ion batteries.




ea

Some anti-epidemic measures eased

(To watch the full press conference with sign language interpretation, click here.)

 

Chief Executive Carrie Lam today said because Hong Kong has not reported a local COVID-19 case for over two weeks and imported cases are low, some anti-epidemic measures can be lifted.

 

During a press conference, Mrs Lam outlined that unlike some European countries, Hong Kong did not need to go into lockdown to contain the spread of the disease.

 

“Hong Kong has never gone into a stage of a complete city lockdown. In some of the European countries where they practise a city lockdown, residents are simply not allowed to leave their homes, except for some very essential purposes. But we have never adopted that practice.

 

“And in fact, many renowned experts are now trying to study our situation - why does Hong Kong succeed in keeping the confirmed cases at a low level without drastic measures like a complete city lockdown. And I do think that is a very interesting topic for further research.”

 

Mrs Lam noted that the Government had adopted the “suppress and lift” strategy under which restrictions are implemented and lifted in accordance with the infection situation.

 

“The strategy that Hong Kong has been adopting - and advocated by some of our experts - is what we call a ‘suppress and lift strategy’.

 

“So in light of the number of confirmed cases and likelihood of the spread of the disease in the community, we will have to suppress in order to make sure that there will be no surge in the number of confirmed cases as we have seen in some neighbouring regions.

 

“When the situation of the infection stabilises, that is the time for lifting, that is, loosening a bit so that society can operate more normally, especially for the businesses and for individuals’ behaviour.”

 

The Chief Executive said the Government still needed to monitor the COVID-19 situation closely, even though it was in the stage of lifting restrictions.

 

“We are now right in the stage of lifting because we have not had a local case for 16 days already and the number of imported cases is very, very low.

 

“We are now quite confident that the system of testing and holding that we have put in place for all arrivals from overseas would enable us to control the number of imported cases. So this is a time for lifting and this afternoon we have announced a number of lifting measures.

 

“If the situation continues to stay at the current level - no local cases, very few imported cases - then at the end of the 14-day period, that is May 22, of course that would be the time for more relaxation.”

 

Mrs Lam added that if a local case suddenly surfaced, Hong Kong may have to go back to some suppression measures, which was why the Government had to monitor the situation closely so it could take the necessary and pertinent response measures.




ea

CE explains relaxation of measures

(To watch the full press conference with sign language interpretation, click here.)

 

The relaxation of anti-epidemic measures is a step in the right direction, Chief Executive Carrie Lam said today.

 

Mrs Lam made the statement at a press conference this afternoon.

 

She said the Government will relax the requirement limiting group gatherings in public places to a maximum of four people. Starting from Friday, up to eight people can gather in public places.

 

"So raising the number from four to eight for the catering business and also for the prohibition against group gatherings under Cap 599G is not an exact science, but this is a step in the right direction of relaxation.

 

"Maybe in another 14 days’ time we will raise the number of eight to 10, to 12, to 15 and so on."

 

Regarding bars and pubs, Mrs Lam said these venues will be able to reopen but the Government will put in place requirements to prevent physical interactions.

 

"We have decided that perhaps to strike a pragmatic balance is to allow them to reopen for business but to put in far more stringent requirements."

 

Such requirements include no live music, band performances or dancing in bar premises.

 

"That would be another way to keep the social distance and prevent as much as possible physical interactions."

 

Click here for the latest measures.




ea

Hannah Fry to show strengths and weaknesses of algorithms

"Driverless cars, robot butlers and reusable rockets--if the big inventions of the past decade and the artificial intelligence developed to create them have taught us anything, it's that maths is undeniably cool. And if you’re still not convinced, chances are you’ve never had it explained to you via a live experiment with a pigeon before. Temporary pigeon handler and queen of making numbers fun is Dr Hannah Fry, the host of this year's annual Royal Institution Christmas Lectures." Learn more in "Christmas Lectures presenter Dr Hannah Fry on pigeons, AI and the awesome power of maths," by Rachael Pells, inews, December 23, 2019.




ea

Mathematician Emily Riehl earns President's Frontier Award

Emily Riehl, Johns Hopkins University, received the university's $250,000 President's Frontier Award, whose purpose is to nurture individuals at Johns Hopkins University who are breaking new ground and poised to become leaders in their field. Riehl studies category theory and says that "I just thought the proofs were the most beautiful of any of the other areas I've encountered. ... It was sort of love at first sight and I am lucky to be able to do what I love." The award is considered a "$250,000 investment in doing more of what she loves."

Also see and hear this coverage: "Johns Hopkins Mathematician from B-N [Bloomington-Normal, IL] Breaks Barriers and Wins Research Grant, by Jolie Sherman, WGLT, February 27, 2020.




ea

Correction: Mitochondrial and nuclear genomic responses to loss of LRPPRC expression. [Additions and Corrections]

VOLUME 285 (2010) PAGES 13742–13747In Fig. 1E, passage 10, the splicing of a non-adjacent lane from the same immunoblot was not marked. This error has now been corrected and does not affect the results or conclusions of this work.jbc;295/16/5533/F1F1F1Figure 1E.




ea

Repression of sphingosine kinase (SK)-interacting protein (SKIP) in acute myeloid leukemia diminishes SK activity and its re-expression restores SK function [Molecular Bases of Disease]

Previous studies have shown that sphingosine kinase interacting protein (SKIP) inhibits sphingosine kinase (SK) function in fibroblasts. SK phosphorylates sphingosine producing the potent signaling molecule sphingosine-1-phosphate (S1P). SKIP gene (SPHKAP) expression is silenced by hypermethylation of its promoter in acute myeloid leukemia (AML). However, why SKIP activity is silenced in primary AML cells is unclear. Here, we investigated the consequences of SKIP down-regulation in AML primary cells and the effects of SKIP re-expression in leukemic cell lines. Using targeted ultra-HPLC-tandem MS (UPLC-MS/MS), we measured sphingolipids (including S1P and ceramides) in AML and control cells. Primary AML cells had significantly lower SK activity and intracellular S1P concentrations than control cells, and SKIP-transfected leukemia cell lines exhibited increased SK activity. These findings show that SKIP re-expression enhances SK activity in leukemia cells. Furthermore, other bioactive sphingolipids such as ceramide were also down-regulated in primary AML cells. Of note, SKIP re-expression in leukemia cells increased ceramide levels 2-fold, inactivated the key signaling protein extracellular signal-regulated kinase, and increased apoptosis following serum deprivation or chemotherapy. These results indicate that SKIP down-regulation in AML reduces SK activity and ceramide levels, an effect that ultimately inhibits apoptosis in leukemia cells. The findings of our study contrast with previous results indicating that SKIP inhibits SK function in fibroblasts and therefore challenge the notion that SKIP always inhibits SK activity.




ea

The FKH domain in FOXP3 mRNA frequently contains mutations in hepatocellular carcinoma that influence the subcellular localization and functions of FOXP3 [Molecular Bases of Disease]

The transcription factor forkhead box P3 (FOXP3) is a biomarker for regulatory T cells and can also be expressed in cancer cells, but its function in cancer appears to be divergent. The role of hepatocyte-expressed FOXP3 in hepatocellular carcinoma (HCC) is unknown. Here, we collected tumor samples and clinical information from 115 HCC patients and used five human cancer cell lines. We examined FOXP3 mRNA sequences for mutations, used a luciferase assay to assess promoter activities of FOXP3's target genes, and employed mouse tumor models to confirm in vitro results. We detected mutations in the FKH domain of FOXP3 mRNAs in 33% of the HCC tumor tissues, but in none of the adjacent nontumor tissues. None of the mutations occurred at high frequency, indicating that they occurred randomly. Notably, the mutations were not detected in the corresponding regions of FOXP3 genomic DNA, and many of them resulted in amino acid substitutions in the FKH region, altering FOXP3's subcellular localization. FOXP3 delocalization from the nucleus to the cytoplasm caused loss of transcriptional regulation of its target genes, inactivated its tumor-inhibitory capability, and changed cellular responses to histone deacetylase (HDAC) inhibitors. More complex FKH mutations appeared to be associated with worse prognosis in HCC patients. We conclude that mutations in the FKH domain of FOXP3 mRNA frequently occur in HCC and that these mutations are caused by errors in transcription and are not derived from genomic DNA mutations. Our results suggest that transcriptional mutagenesis of FOXP3 plays a role in HCC.




ea

Inhibition of the erythropoietin-producing receptor EPHB4 antagonizes androgen receptor overexpression and reduces enzalutamide resistance [Molecular Bases of Disease]

Prostate cancer (PCa) cells heavily rely on an active androgen receptor (AR) pathway for their survival. Enzalutamide (MDV3100) is a second-generation antiandrogenic drug that was approved by the Food and Drug Administration in 2012 to treat patients with castration-resistant prostate cancer (CRPC). However, emergence of resistance against this drug is inevitable, and it has been a major challenge to develop interventions that help manage enzalutamide-resistant CRPC. Erythropoietin-producing human hepatocellular (Eph) receptors are targeted by ephrin protein ligands and have a broad range of functions. Increasing evidence indicates that this signaling pathway plays an important role in tumorigenesis. Overexpression of EPH receptor B4 (EPHB4) has been observed in multiple types of cancer, being closely associated with proliferation, invasion, and metastasis of tumors. Here, using RNA-Seq analyses of clinical and preclinical samples, along with several biochemical and molecular methods, we report that enzalutamide-resistant PCa requires an active EPHB4 pathway that supports drug resistance of this tumor type. Using a small kinase inhibitor and RNAi-based gene silencing to disrupt EPHB4 activity, we found that these disruptions re-sensitize enzalutamide-resistant PCa to the drug both in vitro and in vivo. Mechanistically, we found that EPHB4 stimulates the AR by inducing proto-oncogene c-Myc (c-Myc) expression. Taken together, these results provide critical insight into the mechanism of enzalutamide resistance in PCa, potentially offering a therapeutic avenue for enhancing the efficacy of enzalutamide to better manage this common malignancy.




ea

A comprehensive evaluation of a typical plant telomeric G-quadruplex (G4) DNA reveals the dynamics of G4 formation, rearrangement, and unfolding [Plant Biology]

Telomeres are specific nucleoprotein structures that are located at the ends of linear eukaryotic chromosomes and play crucial roles in genomic stability. Telomere DNA consists of simple repeats of a short G-rich sequence: TTAGGG in mammals and TTTAGGG in most plants. In recent years, the mammalian telomeric G-rich repeats have been shown to form G-quadruplex (G4) structures, which are crucial for modulating telomere functions. Surprisingly, even though plant telomeres are essential for plant growth, development, and environmental adaptions, only few reports exist on plant telomeric G4 DNA (pTG4). Here, using bulk and single-molecule assays, including CD spectroscopy, and single-molecule FRET approaches, we comprehensively characterized the structure and dynamics of a typical plant telomeric sequence, d[GGG(TTTAGGG)3]. We found that this sequence can fold into mixed G4s in potassium, including parallel and antiparallel structures. We also directly detected intermediate dynamic transitions, including G-hairpin, parallel G-triplex, and antiparallel G-triplex structures. Moreover, we observed that pTG4 is unfolded by the AtRecQ2 helicase but not by AtRecQ3. The results of our work shed light on our understanding about the existence, topological structures, stability, intermediates, unwinding, and functions of pTG4.




ea

Inter-{alpha}-inhibitor heavy chain-1 has an integrin-like 3D structure mediating immune regulatory activities and matrix stabilization during ovulation [Glycobiology and Extracellular Matrices]

Inter-α-inhibitor is a proteoglycan essential for mammalian reproduction and also plays a less well-characterized role in inflammation. It comprises two homologous “heavy chains” (HC1 and HC2) covalently attached to chondroitin sulfate on the bikunin core protein. Before ovulation, HCs are transferred onto the polysaccharide hyaluronan (HA) to form covalent HC·HA complexes, thereby stabilizing an extracellular matrix around the oocyte required for fertilization. Additionally, such complexes form during inflammatory processes and mediate leukocyte adhesion in the synovial fluids of arthritis patients and protect against sepsis. Here using X-ray crystallography, we show that human HC1 has a structure similar to integrin β-chains, with a von Willebrand factor A domain containing a functional metal ion-dependent adhesion site (MIDAS) and an associated hybrid domain. A comparison of the WT protein and a variant with an impaired MIDAS (but otherwise structurally identical) by small-angle X-ray scattering and analytical ultracentrifugation revealed that HC1 self-associates in a cation-dependent manner, providing a mechanism for HC·HA cross-linking and matrix stabilization. Surprisingly, unlike integrins, HC1 interacted with RGD-containing ligands, such as fibronectin, vitronectin, and the latency-associated peptides of transforming growth factor β, in a MIDAS/cation-independent manner. However, HC1 utilizes its MIDAS motif to bind to and inhibit the cleavage of complement C3, and small-angle X-ray scattering–based modeling indicates that this occurs through the inhibition of the alternative pathway C3 convertase. These findings provide detailed structural and functional insights into HC1 as a regulator of innate immunity and further elucidate the role of HC·HA complexes in inflammation and ovulation.




ea

Glucocerebrosidases catalyze a transgalactosylation reaction that yields a newly-identified brain sterol metabolite, galactosylated cholesterol [Glycobiology and Extracellular Matrices]

β-Glucocerebrosidase (GBA) hydrolyzes glucosylceramide (GlcCer) to generate ceramide. Previously, we demonstrated that lysosomal GBA1 and nonlysosomal GBA2 possess not only GlcCer hydrolase activity, but also transglucosylation activity to transfer the glucose residue from GlcCer to cholesterol to form β-cholesterylglucoside (β-GlcChol) in vitro. β-GlcChol is a member of sterylglycosides present in diverse species. How GBA1 and GBA2 mediate β-GlcChol metabolism in the brain is unknown. Here, we purified and characterized sterylglycosides from rodent and fish brains. Although glucose is thought to be the sole carbohydrate component of sterylglycosides in vertebrates, structural analysis of rat brain sterylglycosides revealed the presence of galactosylated cholesterol (β-GalChol), in addition to β-GlcChol. Analyses of brain tissues from GBA2-deficient mice and GBA1- and/or GBA2-deficient Japanese rice fish (Oryzias latipes) revealed that GBA1 and GBA2 are responsible for β-GlcChol degradation and formation, respectively, and that both GBA1 and GBA2 are responsible for β-GalChol formation. Liquid chromatography–tandem MS revealed that β-GlcChol and β-GalChol are present throughout development from embryo to adult in the mouse brain. We found that β-GalChol expression depends on galactosylceramide (GalCer), and developmental onset of β-GalChol biosynthesis appeared to be during myelination. We also found that β-GlcChol and β-GalChol are secreted from neurons and glial cells in association with exosomes. In vitro enzyme assays confirmed that GBA1 and GBA2 have transgalactosylation activity to transfer the galactose residue from GalCer to cholesterol to form β-GalChol. This is the first report of the existence of β-GalChol in vertebrates and how β-GlcChol and β-GalChol are formed in the brain.




ea

Cross-regulation between LUBAC and caspase-1 modulates cell death and inflammation [Signal Transduction]

The linear ubiquitin assembly complex (LUBAC) is an essential component of the innate and adaptive immune system. Modification of cellular substrates with linear polyubiquitin chains is a key regulatory step in signal transduction that impacts cell death and inflammatory signaling downstream of various innate immunity receptors. Loss-of-function mutations in the LUBAC components HOIP and HOIL-1 yield a systemic autoinflammatory disease in humans, whereas their genetic ablation is embryonically lethal in mice. Deficiency of the LUBAC adaptor protein Sharpin results in a multi-organ inflammatory disease in mice characterized by chronic proliferative dermatitis (cpdm), which is propagated by TNFR1-induced and RIPK1-mediated keratinocyte cell death. We have previously shown that caspase-1 and -11 promoted the dermatitis pathology of cpdm mice and mediated cell death in the skin. Here, we describe a reciprocal regulation of caspase-1 and LUBAC activities in keratinocytes. We show that LUBAC interacted with caspase-1 via HOIP and modified its CARD domain with linear polyubiquitin and that depletion of HOIP or Sharpin resulted in heightened caspase-1 activation and cell death in response to inflammasome activation, unlike what is observed in macrophages. Reciprocally, caspase-1, as well as caspase-8, regulated LUBAC activity by proteolytically processing HOIP at Asp-348 and Asp-387 during the execution of cell death. HOIP processing impeded substrate ubiquitination in the NF-κB pathway and resulted in enhanced apoptosis. These results highlight a regulatory mechanism underlying efficient apoptosis in keratinocytes and provide further evidence of a cross-talk between inflammatory and cell death pathways.




ea

Heterotrimeric Gq proteins as therapeutic targets? [Molecular Bases of Disease]

Heterotrimeric G proteins are the core upstream elements that transduce and amplify the cellular signals from G protein–coupled receptors (GPCRs) to intracellular effectors. GPCRs are the largest family of membrane proteins encoded in the human genome and are the targets of about one-third of prescription medicines. However, to date, no single therapeutic agent exerts its effects via perturbing heterotrimeric G protein function, despite a plethora of evidence linking G protein malfunction to human disease. Several recent studies have brought to light that the Gq family–specific inhibitor FR900359 (FR) is unexpectedly efficacious in silencing the signaling of Gq oncoproteins, mutant Gq variants that mostly exist in the active state. These data not only raise the hope that researchers working in drug discovery may be able to potentially strike Gq oncoproteins from the list of undruggable targets, but also raise questions as to how FR achieves its therapeutic effect. Here, we place emphasis on these recent studies and explain why they expand our pharmacological armamentarium for targeting Gq protein oncogenes as well as broaden our mechanistic understanding of Gq protein oncogene function. We also highlight how this novel insight impacts the significance and utility of using G(q) proteins as targets in drug discovery efforts.




ea

Learning the ABCs of ATP release [Signal Transduction]

ATP plays important roles outside the cell, but the mechanism by which it is arrives in the extracellular environment is not clear. Dunn et al. now show that decreases in cellular cholesterol levels mediated by the ABCG1 transporter increase ATP release by volume-regulated anion channels under hypotonic conditions. Importantly, these results may imply that cells that handle cholesterol differently might experience differential extracellular ATP release during hypotonicity.




ea

ABC transporters control ATP release through cholesterol-dependent volume-regulated anion channel activity [Signal Transduction]

Purinergic signaling by extracellular ATP regulates a variety of cellular events and is implicated in both normal physiology and pathophysiology. Several molecules have been associated with the release of ATP and other small molecules, but their precise contributions have been difficult to assess because of their complexity and heterogeneity. Here, we report on the results of a gain-of-function screen for modulators of hypotonicity-induced ATP release using HEK-293 cells and murine cerebellar granule neurons, along with bioluminescence, calcium FLIPR, and short hairpin RNA–based gene-silencing assays. This screen utilized the most extensive genome-wide ORF collection to date, covering 90% of human, nonredundant, protein-encoding genes. We identified two ABCG1 (ABC subfamily G member 1) variants, which regulate cellular cholesterol, as modulators of hypotonicity-induced ATP release. We found that cholesterol levels control volume-regulated anion channel–dependent ATP release. These findings reveal novel mechanisms for the regulation of ATP release and volume-regulated anion channel activity and provide critical links among cellular status, cholesterol, and purinergic signaling.




ea

N{alpha}-Acetylation of the virulence factor EsxA is required for mycobacterial cytosolic translocation and virulence [Molecular Bases of Disease]

The Mycobacterium tuberculosis virulence factor EsxA and its chaperone EsxB are secreted as a heterodimer (EsxA:B) and are crucial for mycobacterial escape from phagosomes and cytosolic translocation. Current findings support the idea that for EsxA to interact with host membranes, EsxA must dissociate from EsxB at low pH. However, the molecular mechanism by which the EsxA:B heterodimer separates is not clear. In the present study, using liposome-leakage and cytotoxicity assays, LC-MS/MS–based proteomics, and CCF-4 FRET analysis, we obtained evidence that the Nα-acetylation of the Thr-2 residue on EsxA, a post-translational modification that is present in mycobacteria but absent in Escherichia coli, is required for the EsxA:B separation. Substitutions at Thr-2 that precluded Nα-acetylation inhibited the heterodimer separation and hence prevented EsxA from interacting with the host membrane, resulting in attenuated mycobacterial cytosolic translocation and virulence. Molecular dynamics simulations revealed that at low pH, the Nα-acetylated Thr-2 makes direct and frequent “bind-and-release” contacts with EsxB, which generates a force that pulls EsxB away from EsxA. In summary, our findings provide evidence that the Nα-acetylation at Thr-2 of EsxA facilitates dissociation of the EsxA:B heterodimer required for EsxA membrane permeabilization and mycobacterial cytosolic translocation and virulence.




ea

Structural and mutational analyses of the bifunctional arginine dihydrolase and ornithine cyclodeaminase AgrE from the cyanobacterium Anabaena [Enzymology]

In cyanobacteria, metabolic pathways that use the nitrogen-rich amino acid arginine play a pivotal role in nitrogen storage and mobilization. The N-terminal domains of two recently identified bacterial enzymes: ArgZ from Synechocystis and AgrE from Anabaena, have been found to contain an arginine dihydrolase. This enzyme provides catabolic activity that converts arginine to ornithine, resulting in concomitant release of CO2 and ammonia. In Synechocystis, the ArgZ-mediated ornithine–ammonia cycle plays a central role in nitrogen storage and remobilization. The C-terminal domain of AgrE contains an ornithine cyclodeaminase responsible for the formation of proline from ornithine and ammonia production, indicating that AgrE is a bifunctional enzyme catalyzing two sequential reactions in arginine catabolism. Here, the crystal structures of AgrE in three different ligation states revealed that it has a tetrameric conformation, possesses a binding site for the arginine dihydrolase substrate l-arginine and product l-ornithine, and contains a binding site for the coenzyme NAD(H) required for ornithine cyclodeaminase activity. Structure–function analyses indicated that the structure and catalytic mechanism of arginine dihydrolase in AgrE are highly homologous with those of a known bacterial arginine hydrolase. We found that in addition to other active-site residues, Asn-71 is essential for AgrE's dihydrolase activity. Further analysis suggested the presence of a passage for substrate channeling between the two distinct AgrE active sites, which are situated ∼45 Å apart. These results provide structural and functional insights into the bifunctional arginine dihydrolase–ornithine cyclodeaminase enzyme AgrE required for arginine catabolism in Anabaena.




ea

Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPAR{alpha}-regulated genes [Lipids]

Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2−/−) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2−/− mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2−/− mice and a total of 91 in female Fatp2−/− mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator–activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2−/− liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities.




ea

ER stress increases store-operated Ca2+ entry (SOCE) and augments basal insulin secretion in pancreatic beta cells [Molecular Bases of Disease]

Type 2 diabetes mellitus (T2DM) is characterized by impaired glucose-stimulated insulin secretion and increased peripheral insulin resistance. Unremitting endoplasmic reticulum (ER) stress can lead to beta-cell apoptosis and has been linked to type 2 diabetes. Although many studies have attempted to link ER stress and T2DM, the specific effects of ER stress on beta-cell function remain incompletely understood. To determine the interrelationship between ER stress and beta-cell function, here we treated insulin-secreting INS-1(832/13) cells or isolated mouse islets with the ER stress–inducer tunicamycin (TM). TM induced ER stress as expected, as evidenced by activation of the unfolded protein response. Beta cells treated with TM also exhibited concomitant alterations in their electrical activity and cytosolic free Ca2+ oscillations. As ER stress is known to reduce ER Ca2+ levels, we tested the hypothesis that the observed increase in Ca2+ oscillations occurred because of reduced ER Ca2+ levels and, in turn, increased store-operated Ca2+ entry. TM-induced cytosolic Ca2+ and membrane electrical oscillations were acutely inhibited by YM58483, which blocks store-operated Ca2+ channels. Significantly, TM-treated cells secreted increased insulin under conditions normally associated with only minimal release, e.g. 5 mm glucose, and YM58483 blocked this secretion. Taken together, these results support a critical role for ER Ca2+ depletion–activated Ca2+ current in mediating Ca2+-induced insulin secretion in response to ER stress.




ea

Reduction of protein phosphatase 2A (PP2A) complexity reveals cellular functions and dephosphorylation motifs of the PP2A/B'{delta} holoenzyme [Enzymology]

Protein phosphatase 2A (PP2A) is a large enzyme family responsible for most cellular Ser/Thr dephosphorylation events. PP2A substrate specificity, localization, and regulation by second messengers rely on more than a dozen regulatory subunits (including B/R2, B'/R5, and B″/R3), which form the PP2A heterotrimeric holoenzyme by associating with a dimer comprising scaffolding (A) and catalytic (C) subunits. Because of partial redundancy and high endogenous expression of PP2A holoenzymes, traditional approaches of overexpressing, knocking down, or knocking out PP2A regulatory subunits have yielded only limited insights into their biological roles and substrates. To this end, here we sought to reduce the complexity of cellular PP2A holoenzymes. We used tetracycline-inducible expression of pairs of scaffolding and regulatory subunits with complementary charge-reversal substitutions in their interaction interfaces. For each of the three regulatory subunit families, we engineered A/B charge–swap variants that could bind to one another, but not to endogenous A and B subunits. Because endogenous Aα was targeted by a co-induced shRNA, endogenous B subunits were rapidly degraded, resulting in expression of predominantly a single PP2A heterotrimer composed of the A/B charge–swap pair and the endogenous catalytic subunit. Using B'δ/PPP2R5D, we show that PP2A complexity reduction, but not PP2A overexpression, reveals a role of this holoenzyme in suppression of extracellular signal–regulated kinase signaling and protein kinase A substrate dephosphorylation. When combined with global phosphoproteomics, the PP2A/B'δ reduction approach identified consensus dephosphorylation motifs in its substrates and suggested that residues surrounding the phosphorylation site play roles in PP2A substrate specificity.




ea

Structure of an ancestral mammalian family 1B1 cytochrome P450 with increased thermostability [Enzymology]

Mammalian cytochrome P450 enzymes often metabolize many pharmaceuticals and other xenobiotics, a feature that is valuable in a biotechnology setting. However, extant P450 enzymes are typically relatively unstable, with T50 values of ∼30–40 °C. Reconstructed ancestral cytochrome P450 enzymes tend to have variable substrate selectivity compared with related extant forms, but they also have higher thermostability and therefore may be excellent tools for commercial biosynthesis of important intermediates, final drug molecules, or drug metabolites. The mammalian ancestor of the cytochrome P450 1B subfamily was herein characterized structurally and functionally, revealing differences from the extant human CYP1B1 in ligand binding, metabolism, and potential molecular contributors to its thermostability. Whereas extant human CYP1B1 has one molecule of α-naphthoflavone in a closed active site, we observed that subtle amino acid substitutions outside the active site in the ancestor CYP1B enzyme yielded an open active site with four ligand copies. A structure of the ancestor with 17β-estradiol revealed only one molecule in the active site, which still had the same open conformation. Detailed comparisons between the extant and ancestor forms revealed increases in electrostatic and aromatic interactions between distinct secondary structure elements in the ancestral forms that may contribute to their thermostability. To the best of our knowledge, this represents the first structural evaluation of a reconstructed ancestral cytochrome P450, revealing key features that appear to contribute to its thermostability.




ea

Determination of globotriaosylceramide analogs in the organs of a mouse model of Fabry disease [Lipids]

Fabry disease is a heritable lipid disorder caused by the low activity of α-galactosidase A and characterized by the systemic accumulation of globotriaosylceramide (Gb3). Recent studies have reported a structural heterogeneity of Gb3 in Fabry disease, including Gb3 isoforms with different fatty acids and Gb3 analogs with modifications on the sphingosine moiety. However, Gb3 assays are often performed only on the selected Gb3 isoforms. To precisely determine the total Gb3 concentration, here we established two methods for determining both Gb3 isoforms and analogs. One was the deacylation method, involving Gb3 treatment with sphingolipid ceramide N-deacylase, followed by an assay of the deacylated products, globotriaosylsphingosine (lyso-Gb3) and its analogs, by ultra-performance LC coupled to tandem MS (UPLC-MS/MS). The other method was a direct assay established in the present study for 37 Gb3 isoforms and analogs/isoforms by UPLC-MS/MS. Gb3s from the organs of symptomatic animals of a Fabry disease mouse model were mainly Gb3 isoforms and two Gb3 analogs, such as Gb3(+18) containing the lyso-Gb3(+18) moiety and Gb3(−2) containing the lyso-Gb3(−2) moiety. The total concentrations and Gb3 analog distributions determined by the two methods were comparable. Gb3(+18) levels were high in the kidneys (24% of total Gb3) and the liver (13%), and we observed Gb3(−2) in the heart (10%) and the kidneys (5%). These results indicate organ-specific expression of Gb3 analogs, insights that may lead to a deeper understanding of the pathophysiology of Fabry disease.




ea

CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects [DNA and Chromosomes]

Cas12a (Cpf1) is an RNA-guided endonuclease in the bacterial type V-A CRISPR-Cas anti-phage immune system that can be repurposed for genome editing. Cas12a can bind and cut dsDNA targets with high specificity in vivo, making it an ideal candidate for expanding the arsenal of enzymes used in precise genome editing. However, this reported high specificity contradicts Cas12a's natural role as an immune effector against rapidly evolving phages. Here, we employed high-throughput in vitro cleavage assays to determine and compare the native cleavage specificities and activities of three different natural Cas12a orthologs (FnCas12a, LbCas12a, and AsCas12a). Surprisingly, we observed pervasive sequence-specific nicking of randomized target libraries, with strong nicking of DNA sequences containing up to four mismatches in the Cas12a-targeted DNA-RNA hybrid sequences. We also found that these nicking and cleavage activities depend on mismatch type and position and vary with Cas12a ortholog and CRISPR RNA sequence. Our analysis further revealed robust nonspecific nicking of dsDNA when Cas12a is activated by binding to a target DNA. Together, our findings reveal that Cas12a has multiple nicking activities against dsDNA substrates and that these activities vary among different Cas12a orthologs.




ea

Withdrawal: miR-21-mediated radioresistance occurs via promoting repair of DNA double strand breaks. [Withdrawals/Retractions]

VOLUME 292 (2017) PAGES 3531–3540This article has been withdrawn by Shuofeng Hu, Xiaomin Ying, Xiangming Zhang, and Ya Wang. Baocheng Hu, Xiang Wang, Ping Wang, Jian Wang, and Hongyan Wang could not be reached. In Fig. 1C, the DAPI and merged images for the no IR control were switched. The DNA-PKcs and actin immunoblots on the left appear to have been spliced. In Fig. 4C, the DNA-PKcs immunoblot appears to have been spliced. In Fig. 4D, lanes 1 and 5; lanes 2, 6, and 8; and lanes 3 and 7 of the DNA-PKcs immunoblot are the same. In the p-DNA-PKcs immunoblot, lanes 1 and 8, lanes 2 and 6, and lanes 3 and 7 are the same. In the CRY2 immunoblot, lanes 5 and 7 are the same. In the CDC25A immunoblot, lanes 3 and 8 are the same. In the GSK3B immunoblot, lanes 1 and 5 and lanes 3 and 7 are the same. Also in the GSK3B immunoblot, the upper GSK3B bands in lanes 6 and 8 are the same. Lanes 4 and 8 of the cyclin D1 immunoblot are the same. In Fig. 5A, the CDC25A immunoblot appears to have been spliced. Also in Fig. 5A, lanes 2–4 and lanes 6–8 of the CDC25A immunoblot are the same. Lanes 4–6 and 7–9 of the actin immunoblot are the same. In Fig. 5C, lane 1 of the CDC25A immunoblot was reused in lane 5, and lanes 3 and 4 were reused in lanes 7 and 8. In the...




ea

Withdrawal: Distinct roles of Ape1 protein, an enzyme involved in DNA repair, in high or low linear energy transfer ionizing radiation-induced cell killing. [Withdrawals/Retractions]

VOLUME 289 (2014) PAGES 30635–30644This article has been withdrawn by Guangnan Chen, Dongkyoo Park, Francis A. Cucinotta, David S. Yu, Xingming Deng, William S. Dynan, Paul W. Doetsch, and Ya Wang. Hongyan Wang, Xiang Wang, Xiangming Zhang, and Xiaobing Tang could not be reached. The last two lanes of the actin immunoblot in Fig. 1A were reused in the last two lanes of the actin immunoblot in Fig. 1C. In Fig. 2A, the γ-H2AX and the merge with DAPI images for no IR treatment do not match. In Fig. 3A, lanes 3 and 4 of the γ-H2AX immunoblot were reused in lanes 7 and 8, and lanes 5 and 6 of the H2A immunoblot were reused in lanes 7 and 8. In Fig. 3B, lanes 5 and 6 of the H2A immunoblot were reused in lanes 7 and 8. In Fig. 3C, lanes 5 and 6 of the γ-H2AX immunoblot were reused in lanes 7 and 8. Additionally, lanes 1 and 2 of the H2A immunoblot were reused in lanes 3 and 4. In Fig. 3D, lanes 1 and 2 of the Mre11 immunoblot from lysates were reused in lanes 4 and 5. In the γ-H2AX immunoblot, lane 3 was reused in lane 7, and lane 4 was reused in lanes 6 and 8. Also in the H2A immunoblot, lanes 1 and 2 were reused in lanes 3 and 4. In Fig. 4B, lanes 2 and 6 of the Mre11 immunoblot from Ogg1−/− cells are the same. In the Ape1...