f A Mouse Brain-based Multi-omics Integrative Approach Reveals Potential Blood Biomarkers for Ischemic Stroke By www.mcponline.org Published On :: 2020-12-01 Alba SimatsDec 1, 2020; 19:1921-1935Research Full Article
f Multi-sample mass spectrometry-based approach for discovering injury markers in chronic kidney disease By www.mcponline.org Published On :: 2020-12-20 Ji Eun KimDec 20, 2020; 0:RA120.002159v1-mcp.RA120.002159Research Full Article
f OpenPepXL: An Open-Source Tool for Sensitive Identification of Cross-Linked Peptides in XL-MS By www.mcponline.org Published On :: 2020-12-01 Eugen NetzDec 1, 2020; 19:2157-2167Technological Innovation and Resources Full Article
f Kinome Profiling of Primary Endometrial Tumors Using Multiplexed Inhibitor Beads and Mass Spectrometry Identifies SRPK1 as Candidate Therapeutic Target By www.mcponline.org Published On :: 2020-12-01 Alison M. KurimchakDec 1, 2020; 19:2068-2089Research Full Article
f A Novel Mechanism for NF-{kappa}B-activation via I{kappa}B-aggregation: Implications for Hepatic Mallory-Denk-Body Induced Inflammation By www.mcponline.org Published On :: 2020-12-01 Yi LiuDec 1, 2020; 19:1968-1985Research Full Article
f The role of Data-Independent Acquisition for Glycoproteomics By www.mcponline.org Published On :: 2020-12-28 Zilu YeDec 28, 2020; 0:R120.002204v1-mcp.R120.002204Review Full Article
f Temporal Quantitative Proteomics of mGluR-induced Protein Translation and Phosphorylation in Neurons By www.mcponline.org Published On :: 2020-12-01 Charlotte A. G. H. van GelderDec 1, 2020; 19:1952-1967Research Full Article
f Proteome-wide Analysis Reveals Substrates of E3 Ligase RNF146 Targeted for Degradation By www.mcponline.org Published On :: 2020-12-01 Litong NieDec 1, 2020; 19:2015-2029Research Full Article
f Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS1) and in Silico Peptide Mass Libraries By www.mcponline.org Published On :: 2020-12-01 Peter LaschDec 1, 2020; 19:2125-2138Technological Innovation and Resources Full Article
f Unraveling the MAX2 Protein Network in Arabidopsis thaliana: Identification of the Protein Phosphatase PAPP5 as a Novel MAX2 Interactor By www.mcponline.org Published On :: 2020-12-28 Sylwia StrukDec 28, 2020; 0:RA119.001766v1-mcp.RA119.001766Research Full Article
f CMMB (Carboxylate Modified Magnetic Bead) -based isopropanol gradient peptide fractionation (CIF) enables rapid and robust off-line peptide mixture fractionation in bottom-up proteomics By www.mcponline.org Published On :: 2020-12-22 Weixian DengDec 22, 2020; 0:RA120.002411v1-mcp.RA120.002411Research Full Article
f Systematic identification of P. falciparum sporozoite membrane protein interactions reveals an essential role for the p24 complex in host infection By www.mcponline.org Published On :: 2020-12-22 Julia KnöckelDec 22, 2020; 0:RA120.002432v1-mcp.RA120.002432Research Full Article
f In depth characterization of the Staphylococcus aureus phosphoproteome reveals new targets of Stk1 By www.mcponline.org Published On :: 2020-12-17 Nadine PrustDec 17, 2020; 0:RA120.002232v1-mcp.RA120.002232Research Full Article
f On the robustness of graph-based clustering to random network alterations By www.mcponline.org Published On :: 2020-11-04 R. Greg StaceyNov 4, 2020; 0:RA120.002275v1-mcp.RA120.002275Research Full Article
f Thyroglobulin interactome profiling defines altered proteostasis topology associated with thyroid dyshormonogenesis By www.mcponline.org Published On :: 2020-11-18 Madison T WrightNov 18, 2020; 0:RA120.002168v1-mcp.RA120.002168Research Full Article
f Proteome analysis reveals a significant host-specific response in Rhizobium leguminosarum bv viciae endosymbiotic cells By www.mcponline.org Published On :: 2020-11-19 David DuránNov 19, 2020; 0:RA120.002276v1-mcp.RA120.002276Research Full Article
f A proteomics-based assessment of inflammation signatures in endotoxemia By www.mcponline.org Published On :: 2020-12-07 Sean A BurnapDec 7, 2020; 0:RA120.002305v1-mcp.RA120.002305Research Full Article
f A potential role for the Gsdf-eEF1{alpha} complex in inhibiting germ cell proliferation: A protein-interaction analysis in medaka (Oryzias latipes) from a proteomics perspective By www.mcponline.org Published On :: 2020-12-08 Xinting ZhangDec 8, 2020; 0:RA120.002306v1-mcp.RA120.002306Research Full Article
f Proteogenomic characterization of the pathogenic fungus Aspergillus flavus reveals novel genes involved in aflatoxin production By www.mcponline.org Published On :: 2020-11-24 Mingkun YangNov 24, 2020; 0:RA120.002144v1-mcp.RA120.002144Research Full Article
f Quantitative proteomics reveal neuron projection development genes ARF4, KIF5B and RAB8A associated with Hirschsprung disease By www.mcponline.org Published On :: 2020-11-17 Qin ZhangNov 17, 2020; 0:RA120.002325v1-mcp.RA120.002325Research Full Article
f Proteomic analyses identify differentially expressed proteins and pathways between low-risk and high-risk subtypes of early-stage lung adenocarcinoma and their prognostic impacts By www.mcponline.org Published On :: 2020-11-30 Juntuo ZhouNov 30, 2020; 0:RA120.002384v1-mcp.RA120.002384Research Full Article
f A proteomic approach to understand the clinical significance of acute myeloid leukemia-derived extracellular vesicles reflecting essential characteristics of leukemia By www.mcponline.org Published On :: 2020-11-30 Ka-Won KangNov 30, 2020; 0:RA120.002169v1-mcp.RA120.002169Research Full Article
f Prediction and validation of mouse meiosis-essential genes based on spermatogenesis proteome dynamics By www.mcponline.org Published On :: 2020-11-30 Kailun FangNov 30, 2020; 0:RA120.002081v1-mcp.RA120.002081Research Full Article
f The Mechanism of NEDD8 Activation of CUL5 Ubiquitin E3 Ligases By www.mcponline.org Published On :: 2020-12-02 Ryan J LumpkinDec 2, 2020; 0:RA120.002414v1-mcp.RA120.002414Research Full Article
f Imaging Mass Spectrometry and Lectin Analysis of N-linked Glycans in Carbohydrate Antigen Defined Pancreatic Cancer Tissues By www.mcponline.org Published On :: 2020-11-24 Colin T. McDowellNov 24, 2020; 0:RA120.002256v1-mcp.RA120.002256Research Full Article
f Spatially Resolved Activity-based Proteomic Profiles of the Murine Small Intestinal Lipases By www.mcponline.org Published On :: 2020-12-01 Matthias SchittmayerDec 1, 2020; 19:2104-2114Research Full Article
f Proteomic identification of Coxiella burnetii effector proteins targeted to the host cell mitochondria during infection By www.mcponline.org Published On :: 2020-11-11 Laura F FieldenNov 11, 2020; 0:RA120.002370v1-mcp.RA120.002370Research Full Article
f The peptide vaccine of the future By www.mcponline.org Published On :: 2020-12-07 Annika NeldeDec 7, 2020; 0:R120.002309v1-mcp.R120.002309Review Full Article
f Accelerating the field of epigenetic histone modification through mass spectrometry-based approaches By www.mcponline.org Published On :: 2020-11-17 Congcong LuNov 17, 2020; 0:R120.002257v1-mcp.R120.002257Review Full Article
f PTM-Shepherd: analysis and summarization of post-translational and chemical modifications from open search results By www.mcponline.org Published On :: 2020-12-01 Daniel J. GeiszlerDec 1, 2020; 0:TIR120.002216v1-mcp.TIR120.002216Technological Innovation and Resources Full Article
f ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis By www.mcponline.org Published On :: 2020-12-01 Johannes GrissDec 1, 2020; 19:2115-2124Technological Innovation and Resources Full Article
f Mutation-independent Proteomic Signatures of Pathological Progression in Murine Models of Duchenne Muscular Dystrophy By www.mcponline.org Published On :: 2020-12-01 Tirsa L. E. van WesteringDec 1, 2020; 19:2047-2067Research Full Article
f Protein modification characteristics of the malaria parasite Plasmodium falciparum and the infected erythrocytes By www.mcponline.org Published On :: 2020-11-04 Jianhua WangNov 4, 2020; 0:RA120.002375v1-mcp.RA120.002375Research Full Article
f ProAlanase is an Effective Alternative to Trypsin for Proteomics Applications and Disulfide Bond Mapping By www.mcponline.org Published On :: 2020-12-01 Diana SamodovaDec 1, 2020; 19:2139-2156Technological Innovation and Resources Full Article
f Plasma proteomic data can contain personally identifiable, sensitive information and incidental findings By www.mcponline.org Published On :: 2020-12-17 Philipp Emanuel GeyerDec 17, 2020; 0:RA120.002359v1-mcp.RA120.002359Research Full Article
f Pluripotency of embryonic stem cells lacking clathrin-mediated endocytosis cannot be rescued by restoring cellular stiffness [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 Mouse embryonic stem cells (mESCs) display unique mechanical properties, including low cellular stiffness in contrast to differentiated cells, which are stiffer. We have previously shown that mESCs lacking the clathrin heavy chain (Cltc), an essential component for clathrin-mediated endocytosis (CME), display a loss of pluripotency and an enhanced expression of differentiation markers. However, it is not known whether physical properties such as cellular stiffness also change upon loss of Cltc, similar to what is seen in differentiated cells, and if so, how these altered properties specifically impact pluripotency. Using atomic force microscopy (AFM), we demonstrate that mESCs lacking Cltc display higher Young's modulus, indicative of greater cellular stiffness, compared with WT mESCs. The increase in stiffness was accompanied by the presence of actin stress fibers and accumulation of the inactive, phosphorylated, actin-binding protein cofilin. Treatment of Cltc knockdown mESCs with actin polymerization inhibitors resulted in a decrease in the Young's modulus to values similar to those obtained with WT mESCs. However, a rescue in the expression profile of pluripotency factors was not obtained. Additionally, whereas WT mouse embryonic fibroblasts could be reprogrammed to a state of pluripotency, this was inhibited in the absence of Cltc. This indicates that the presence of active CME is essential for the pluripotency of embryonic stem cells. Additionally, whereas physical properties may serve as a simple readout of the cellular state, they may not always faithfully recapitulate the underlying molecular fate. Full Article
f Secretory galectin-3 induced by glucocorticoid stress triggers stemness exhaustion of hepatic progenitor cells [Signal Transduction] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 Adult progenitor cell populations typically exist in a quiescent state within a controlled niche environment. However, various stresses or forms of damage can disrupt this state, which often leads to dysfunction and aging. We built a glucocorticoid (GC)-induced liver damage model of mice, found that GC stress induced liver damage, leading to consequences for progenitor cells expansion. However, the mechanisms by which niche factors cause progenitor cells proliferation are largely unknown. We demonstrate that, within the liver progenitor cells niche, Galectin-3 (Gal-3) is responsible for driving a subset of progenitor cells to break quiescence. We show that GC stress causes aging of the niche, which induces the up-regulation of Gal-3. The increased Gal-3 population increasingly interacts with the progenitor cell marker CD133, which triggers focal adhesion kinase (FAK)/AMP-activated kinase (AMPK) signaling. This results in the loss of quiescence and leads to the eventual stemness exhaustion of progenitor cells. Conversely, blocking Gal-3 with the inhibitor TD139 prevents the loss of stemness and improves liver function. These experiments identify a stress-dependent change in progenitor cell niche that directly influence liver progenitor cell quiescence and function. Full Article
f VBP1 modulates Wnt/{beta}-catenin signaling by mediating the stability of the transcription factors TCF/LEFs [Signal Transduction] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 The Wnt/β-catenin pathway is one of the major pathways that regulates embryonic development, adult homeostasis, and stem cell self-renewal. In this pathway, transcription factors T-cell factor and lymphoid enhancer factor (TCF/LEF) serve as a key switch to repress or activate Wnt target gene transcription by recruiting repressor molecules or interacting with the β-catenin effector, respectively. It has become evident that the protein stability of the TCF/LEF family members may play a critical role in controlling the activity of the Wnt/β-catenin signaling pathway. However, factors that regulate the stability of TCF/LEFs remain largely unknown. Here, we report that pVHL binding protein 1 (VBP1) regulates the Wnt/β-catenin signaling pathway by controlling the stability of TCF/LEFs. Surprisingly, we found that either overexpression or knockdown of VBP1 decreased Wnt/β-catenin signaling activity in both cultured cells and zebrafish embryos. Mechanistically, VBP1 directly binds to all four TCF/LEF family members and von Hippel-Lindau tumor-suppressor protein (pVHL). Either overexpression or knockdown of VBP1 increases the association between TCF/LEFs and pVHL and then decreases the protein levels of TCF/LEFs via proteasomal degradation. Together, our results provide mechanistic insights into the roles of VBP1 in controlling TCF/LEFs protein stability and regulating Wnt/β-catenin signaling pathway activity. Full Article
f Functions of Gle1 are governed by two distinct modes of self-association [Gene Regulation] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 Gle1 is a conserved, essential regulator of DEAD-box RNA helicases, with critical roles defined in mRNA export, translation initiation, translation termination, and stress granule formation. Mechanisms that specify which, where, and when DDXs are targeted by Gle1 are critical to understand. In addition to roles for stress-induced phosphorylation and inositol hexakisphosphate binding in specifying Gle1 function, Gle1 oligomerizes via its N-terminal domain in a phosphorylation-dependent manner. However, a thorough analysis of the role for Gle1 self-association is lacking. Here, we find that Gle1 self-association is driven by two distinct regions: a coiled-coil domain and a novel 10-amino acid aggregation-prone region, both of which are necessary for proper Gle1 oligomerization. By exogenous expression in HeLa cells, we tested the function of a series of mutations that impact the oligomerization domains of the Gle1A and Gle1B isoforms. Gle1 oligomerization is necessary for many, but not all aspects of Gle1A and Gle1B function, and the requirements for each interaction domain differ. Whereas the coiled-coil domain and aggregation-prone region additively contribute to competent mRNA export and stress granule formation, both self-association domains are independently required for regulation of translation under cellular stress. In contrast, Gle1 self-association is dispensable for phosphorylation and nonstressed translation initiation. Collectively, we reveal self-association functions as an additional mode of Gle1 regulation to ensure proper mRNA export and translation. This work also provides further insight into the mechanisms underlying human gle1 disease mutants found in prenatally lethal forms of arthrogryposis. Full Article
f Angiostatic cues from the matrix: Endothelial cell autophagy meets hyaluronan biology [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 The extracellular matrix encompasses a reservoir of bioactive macromolecules that modulates a cornucopia of biological functions. A prominent body of work posits matrix constituents as master regulators of autophagy and angiogenesis and provides molecular insight into how these two processes are coordinated. Here, we review current understanding of the molecular mechanisms underlying hyaluronan and HAS2 regulation and the role of soluble proteoglycan in affecting autophagy and angiogenesis. Specifically, we assess the role of proteoglycan-evoked autophagy in regulating angiogenesis via the HAS2-hyaluronan axis and ATG9A, a novel HAS2 binding partner. We discuss extracellular hyaluronan biology and the post-transcriptional and post-translational modifications that regulate its main synthesizer, HAS2. We highlight the emerging group of proteoglycans that utilize outside-in signaling to modulate autophagy and angiogenesis in cancer microenvironments and thoroughly review the most up-to-date understanding of endorepellin signaling in vascular endothelia, providing insight into the temporal complexities involved. Full Article
f ERAD deficiency promotes mitochondrial dysfunction and transcriptional rewiring in human hepatic cells [Cell Biology] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Mitochondrial dysfunction is associated with a variety of human diseases including neurodegeneration, diabetes, nonalcohol fatty liver disease (NAFLD), and cancer, but its underlying causes are incompletely understood. Using the human hepatic cell line HepG2 as a model, we show here that endoplasmic reticulum-associated degradation (ERAD), an ER protein quality control process, is critically required for mitochondrial function in mammalian cells. Pharmacological inhibition or genetic ablation of key proteins involved in ERAD increased cell death under both basal conditions and in response to proinflammatory cytokines, a situation frequently found in NAFLD. Decreased viability of ERAD-deficient HepG2 cells was traced to impaired mitochondrial functions including reduced ATP production, enhanced reactive oxygen species (ROS) accumulation, and increased mitochondrial outer membrane permeability. Transcriptome profiling revealed widespread down-regulation of genes underpinning mitochondrial functions, and up-regulation of genes associated with tumor growth and aggression. These results highlight a critical role for ERAD in maintaining mitochondrial functional and structural integrity and raise the possibility of improving cellular and organismal mitochondrial function via enhancing cellular ERAD capacity. Full Article
f The amphipathic helices of Arfrp1 and Arl14 are sufficient to determine subcellular localizations [Cell Biology] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 The subcellular localization of Arf family proteins is generally thought to be determined by their corresponding guanine nucleotide exchange factors. By promoting GTP binding, guanine nucleotide exchange factors induce conformational changes of Arf proteins exposing their N-terminal amphipathic helices, which then insert into the membranes to stabilize the membrane association process. Here, we found that the N-terminal amphipathic motifs of the Golgi-localized Arf family protein, Arfrp1, and the endosome- and plasma membrane–localized Arf family protein, Arl14, play critical roles in spatial determination. Exchanging the amphipathic helix motifs between these two Arf proteins causes the switch of their localizations. Moreover, the amphipathic helices of Arfrp1 and Arl14 are sufficient for cytosolic proteins to be localized into a specific cellular compartment. The spatial determination mediated by the Arfrp1 helix requires its binding partner Sys1. In addition, the residues that are required for the acetylation of the Arfrp1 helix and the myristoylation of the Arl14 helix are important for the specific subcellular localization. Interestingly, Arfrp1 and Arl14 are recruited to their specific cellular compartments independent of GTP binding. Our results demonstrate that the amphipathic motifs of Arfrp1 and Arl14 are sufficient for determining specific subcellular localizations in a GTP-independent manner, suggesting that the membrane association and activation of some Arf proteins are uncoupled. Full Article
f Agonist-activated glucagon receptors are deubiquitinated at early endosomes by two distinct deubiquitinases to facilitate Rab4a-dependent recycling [Signal Transduction] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 The glucagon receptor (GCGR) activated by the peptide hormone glucagon is a seven-transmembrane G protein–coupled receptor (GPCR) that regulates blood glucose levels. Ubiquitination influences trafficking and signaling of many GPCRs, but its characterization for the GCGR is lacking. Using endocytic colocalization and ubiquitination assays, we have identified a correlation between the ubiquitination profile and recycling of the GCGR. Our experiments revealed that GCGRs are constitutively ubiquitinated at the cell surface. Glucagon stimulation not only promoted GCGR endocytic trafficking through Rab5a early endosomes and Rab4a recycling endosomes, but also induced rapid deubiquitination of GCGRs. Inhibiting GCGR internalization or disrupting endocytic trafficking prevented agonist-induced deubiquitination of the GCGR. Furthermore, a Rab4a dominant negative (DN) that blocks trafficking at recycling endosomes enabled GCGR deubiquitination, whereas a Rab5a DN that blocks trafficking at early endosomes eliminated agonist-induced GCGR deubiquitination. By down-regulating candidate deubiquitinases that are either linked with GPCR trafficking or localized on endosomes, we identified signal-transducing adaptor molecule–binding protein (STAMBP) and ubiquitin-specific protease 33 (USP33) as cognate deubiquitinases for the GCGR. Our data suggest that USP33 constitutively deubiquitinates the GCGR, whereas both STAMBP and USP33 deubiquitinate agonist-activated GCGRs at early endosomes. A mutant GCGR with all five intracellular lysines altered to arginines remains deubiquitinated and shows augmented trafficking to Rab4a recycling endosomes compared with the WT, thus affirming the role of deubiquitination in GCGR recycling. We conclude that the GCGRs are rapidly deubiquitinated after agonist-activation to facilitate Rab4a-dependent recycling and that USP33 and STAMBP activities are critical for the endocytic recycling of the GCGR. Full Article
f Integrin and autocrine IGF2 pathways control fasting insulin secretion in {beta}-cells [Signal Transduction] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of diabetes are needed. Here, we dissected integrin-dependent signaling pathways involved in the regulation of insulin secretion in β-cells and studied their link to the still debated autocrine regulation of insulin secretion by insulin/insulin-like growth factor (IGF) 2–AKT signaling. We observed for the first time a cooperation between different AKT isoforms and focal adhesion kinase (FAK)–dependent adhesion signaling, which either controlled GSIS or prevented insulin secretion under fasting conditions. Indeed, β-cells form integrin-containing adhesions, which provide anchorage to the pancreatic extracellular matrix and are the origin of intracellular signaling via FAK and paxillin. Under low-glucose conditions, β-cells adopt a starved adhesion phenotype consisting of actin stress fibers and large peripheral focal adhesion. In contrast, glucose stimulation induces cell spreading, actin remodeling, and point-like adhesions that contain phospho-FAK and phosphopaxillin, located in small protrusions. Rat primary β-cells and mouse insulinomas showed an adhesion remodeling during GSIS resulting from autocrine insulin/IGF2 and AKT1 signaling. However, under starving conditions, the maintenance of stress fibers and the large adhesion phenotype required autocrine IGF2-IGF1 receptor signaling mediated by AKT2 and elevated FAK-kinase activity and ROCK-RhoA levels but low levels of paxillin phosphorylation. This starved adhesion phenotype prevented excessive insulin granule release to maintain low insulin secretion during fasting. Thus, deregulation of the IGF2 and adhesion-mediated signaling may explain dysfunctions observed in diabetes. Full Article
f Site-specific contacts enable distinct modes of TRPV1 regulation by the potassium channel Kv{beta}1 subunit [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-11T00:06:21-08:00 Transient receptor potential vanilloid 1 (TRPV1) channel is a multimodal receptor that is responsible for nociceptive, thermal, and mechanical sensations. However, which biomolecular partners specifically interact with TRPV1 remains to be elucidated. Here, we used cDNA library screening of genes from mouse dorsal root ganglia combined with patch-clamp electrophysiology to identify the voltage-gated potassium channel auxiliary subunit Kvβ1 physically interacting with TRPV1 channel and regulating its function. The interaction was validated in situ using endogenous dorsal root ganglia neurons, as well as a recombinant expression model in HEK 293T cells. The presence of Kvβ1 enhanced the expression stability of TRPV1 channels on the plasma membrane and the nociceptive current density. Surprisingly, Kvβ1 interaction also shifted the temperature threshold for TRPV1 thermal activation. Using site-specific mapping, we further revealed that Kvβ1 interacted with the membrane-distal domain and membrane-proximal domain of TRPV1 to regulate its membrane expression and temperature-activation threshold, respectively. Our data therefore suggest that Kvβ1 is a key element in the TRPV1 signaling complex and exerts dual regulatory effects in a site-specific manner. Full Article
f Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese [Cell Biology] By www.jbc.org Published On :: 2020-12-11T00:06:20-08:00 Protein biosynthesis is fundamental to cellular life and requires the efficient functioning of the translational machinery. At the center of this machinery is the ribosome, a ribonucleoprotein complex that depends heavily on Mg2+ for structure. Recent work has indicated that other metal cations can substitute for Mg2+, raising questions about the role different metals may play in the maintenance of the ribosome under oxidative stress conditions. Here, we assess ribosomal integrity following oxidative stress both in vitro and in cells to elucidate details of the interactions between Fe2+ and the ribosome and identify Mn2+ as a factor capable of attenuating oxidant-induced Fe2+-mediated degradation of rRNA. We report that Fe2+ promotes degradation of all rRNA species of the yeast ribosome and that it is bound directly to RNA molecules. Furthermore, we demonstrate that Mn2+ competes with Fe2+ for rRNA-binding sites and that protection of ribosomes from Fe2+-mediated rRNA hydrolysis correlates with the restoration of cell viability. Our data, therefore, suggest a relationship between these two transition metals in controlling ribosome stability under oxidative stress. Full Article
f Dysregulation of hsa-miR-34a and hsa-miR-449a leads to overexpression of PACS-1 and loss of DNA damage response (DDR) in cervical cancer [Cell Biology] By www.jbc.org Published On :: 2020-12-11T00:06:20-08:00 We have observed overexpression of PACS-1, a cytosolic sorting protein in primary cervical tumors. Absence of exonic mutations and overexpression at the RNA level suggested a transcriptional and/or posttranscriptional regulation. University of California Santa Cruz genome browser analysis of PACS-1 micro RNAs (miR), revealed two 8-base target sequences at the 3' terminus for hsa-miR-34a and hsa-miR-449a. Quantitative RT-PCR and Northern blotting studies showed reduced or loss of expression of the two microRNAs in cervical cancer cell lines and primary tumors, indicating dysregulation of these two microRNAs in cervical cancer. Loss of PACS-1 with siRNA or exogenous expression of hsa-miR-34a or hsa-miR-449a in HeLa and SiHa cervical cancer cell lines resulted in DNA damage response, S-phase cell cycle arrest, and reduction in cell growth. Furthermore, the siRNA studies showed that loss of PACS-1 expression was accompanied by increased nuclear γH2AX expression, Lys382-p53 acetylation, and genomic instability. PACS-1 re-expression through LNA-hsa-anti-miR-34a or -449a or through PACS-1 cDNA transfection led to the reversal of DNA damage response and restoration of cell growth. Release of cells post 24-h serum starvation showed PACS-1 nuclear localization at G1-S phase of the cell cycle. Our results therefore indicate that the loss of hsa-miR-34a and hsa-miR-449a expression in cervical cancer leads to overexpression of PACS-1 and suppression of DNA damage response, resulting in the development of chemo-resistant tumors. Full Article
f A Gs-RhoGEF interaction: An old G protein finds a new job [Cell Biology] By www.jbc.org Published On :: 2020-12-11T00:06:20-08:00 The heterotrimeric G proteins are known to have a variety of downstream effectors, but Gs was long thought to be specifically coupled to adenylyl cyclases. A new study indicates that activated Gs can also directly interact with a guanine nucleotide exchange factor for Rho family small GTPases, PDZ-RhoGEF. This novel interaction mediates activation of the small G protein Cdc42 by Gs-coupled GPCRs, inducing cytoskeletal rearrangements and formation of filopodia-like structures. Furthermore, overexpression of a minimal PDZ-RhoGEF fragment can down-regulate cAMP signaling, suggesting that this effector competes with canonical signaling. This first demonstration that the Gαs subfamily regulates activity of Rho GTPases extends our understanding of Gαs activity and establishes RhoGEF coupling as a universal Gα function. Full Article
f G{alpha}s directly drives PDZ-RhoGEF signaling to Cdc42 [Cell Biology] By www.jbc.org Published On :: 2020-12-11T00:06:20-08:00 Gα proteins promote dynamic adjustments of cell shape directed by actin-cytoskeleton reorganization via their respective RhoGEF effectors. For example, Gα13 binding to the RGS-homology (RH) domains of several RH-RhoGEFs allosterically activates these proteins, causing them to expose their catalytic Dbl-homology (DH)/pleckstrin-homology (PH) regions, which triggers downstream signals. However, whether additional Gα proteins might directly regulate the RH-RhoGEFs was not known. To explore this question, we first examined the morphological effects of expressing shortened RH-RhoGEF DH/PH constructs of p115RhoGEF/ARHGEF1, PDZ-RhoGEF (PRG)/ARHGEF11, and LARG/ARHGEF12. As expected, the three constructs promoted cell contraction and activated RhoA, known to be downstream of Gα13. Intriguingly, PRG DH/PH also induced filopodia-like cell protrusions and activated Cdc42. This pathway was stimulated by constitutively active Gαs (GαsQ227L), which enabled endogenous PRG to gain affinity for Cdc42. A chemogenetic approach revealed that signaling by Gs-coupled receptors, but not by those coupled to Gi or Gq, enabled PRG to bind Cdc42. This receptor-dependent effect, as well as CREB phosphorylation, was blocked by a construct derived from the PRG:Gαs-binding region, PRG-linker. Active Gαs interacted with isolated PRG DH and PH domains and their linker. In addition, this construct interfered with GαsQ227L's ability to guide PRG's interaction with Cdc42. Endogenous Gs-coupled prostaglandin receptors stimulated PRG binding to membrane fractions and activated signaling to PKA, and this canonical endogenous pathway was attenuated by PRG-linker. Altogether, our results demonstrate that active Gαs can recognize PRG as a novel effector directing its DH/PH catalytic module to gain affinity for Cdc42. Full Article
f Interrogation of kinase genetic interactions provides a global view of PAK1-mediated signal transduction pathways [Gene Regulation] By www.jbc.org Published On :: 2020-12-11T00:06:20-08:00 Kinases are critical components of intracellular signaling pathways and have been extensively investigated with regard to their roles in cancer. p21-activated kinase-1 (PAK1) is a serine/threonine kinase that has been previously implicated in numerous biological processes, such as cell migration, cell cycle progression, cell motility, invasion, and angiogenesis, in glioma and other cancers. However, the signaling network linked to PAK1 is not fully defined. We previously reported a large-scale yeast genetic interaction screen using toxicity as a readout to identify candidate PAK1 genetic interactions. En masse transformation of the PAK1 gene into 4,653 homozygous diploid Saccharomyces cerevisiae yeast deletion mutants identified ∼400 candidates that suppressed yeast toxicity. Here we selected 19 candidate PAK1 genetic interactions that had human orthologs and were expressed in glioma for further examination in mammalian cells, brain slice cultures, and orthotopic glioma models. RNAi and pharmacological inhibition of potential PAK1 interactors confirmed that DPP4, KIF11, mTOR, PKM2, SGPP1, TTK, and YWHAE regulate PAK1-induced cell migration and revealed the importance of genes related to the mitotic spindle, proteolysis, autophagy, and metabolism in PAK1-mediated glioma cell migration, drug resistance, and proliferation. AKT1 was further identified as a downstream mediator of the PAK1-TTK genetic interaction. Taken together, these data provide a global view of PAK1-mediated signal transduction pathways and point to potential new drug targets for glioma therapy. Full Article