ed

Russia probe transcripts released by House Intelligence Committee

Reaction and analysis from Fox News contributor Byron York and former Florida Attorney General Pam Bondi.





ed

Pence aimed to project normalcy during his trip to Iowa, but coronavirus got in the way

Vice President Pence’s trip to Iowa shows how the Trump administration’s aims to move past coronavirus are sometimes complicated by the virus itself.





ed

Federal watchdog finds 'reasonable grounds to believe' vaccine doctor's ouster was retaliation, lawyers say

The Office of Special Counsel is recommending that ousted vaccine official Dr. Rick Bright be reinstated while it investigates his case, his lawyers announced Friday.Bright while leading coronavirus vaccine development was recently removed from his position as the director of the Department of Health and Human Services' Biomedical Advanced Research and Development Authority, and he alleges it was because he insisted congressional funding not go toward "drugs, vaccines, and other technologies that lack scientific merit" and limited the "broad use" of hydroxychloroquine after it was touted by President Trump. In a whistleblower complaint, he alleged "cronyism" at HHS. He has also alleged he was "pressured to ignore or dismiss expert scientific recommendations and instead to award lucrative contracts based on political connections."On Friday, Bright's lawyers said that the Office of Special Counsel has determined there are "reasonable grounds to believe" his firing was retaliation, The New York Times reports. The federal watchdog also recommended he be reinstated for 45 days to give the office "sufficient time to complete its investigation of Bright's allegations," CNN reports. The decision on whether to do so falls on Secretary of Health and Human Services Alex Azar, and Office of Special Counsel recommendations are "not binding," the Times notes. More stories from theweek.com Outed CIA agent Valerie Plame is running for Congress, and her launch video looks like a spy movie trailer 7 scathing cartoons about America's rush to reopen Trump says he couldn't have exposed WWII vets to COVID-19 because the wind was blowing the wrong way





ed

A person was struck and killed by a Southwest plane as it landed on the runway at Austin international airport

Austin-Bergstrom International Airport said it was "aware of an individual that was struck and killed on runway 17-R by a landing aircraft."





ed

Pence staffer who tested positive for coronavirus is Stephen Miller's wife

The staffer of Vice President Mike Pence who tested positive for coronavirus is apparently his press secretary and the wife of White House senior adviser Stephen Miller.Reports emerged on Friday that a member of Pence's staff had tested positive for COVID-19, creating a delay in his flight to Iowa amid concern over who may have been exposed. Later in the day, Trump said the staffer is a "press person" named Katie.Politico reported he was referring to Katie Miller, Pence's press secretary and the wife of Stephen Miller. This report noted this raises the risk that "a large swath of the West Wing's senior aides may also have been exposed." She confirmed her positive diagnosis to NBC News, saying she does not have symptoms.Trump spilled the beans to reporters, saying Katie Miller "hasn't come into contact with me" but has "spent some time with the vice president." This news comes one day after a personal valet to Trump tested positive for COVID-19, which reportedly made the president "lava level mad." Pence and Trump are being tested for COVID-19 every day.Asked Friday if he's concerned about the potential spread of coronavirus in the White House, Trump said "I'm not worried, no," adding that "we've taken very strong precautions."More stories from theweek.com Outed CIA agent Valerie Plame is running for Congress, and her launch video looks like a spy movie trailer 7 scathing cartoons about America's rush to reopen Trump says he couldn't have exposed WWII vets to COVID-19 because the wind was blowing the wrong way





ed

‘Selfish, tribal and divided’: Barack Obama warns of changes to American way of life in leaked audio slamming Trump administration

Barack Obama said the “rule of law is at risk” following the justice department’s decision to drop charges against former Trump advisor Mike Flynn, as he issued a stark warning about the long-term impact on the American way of life by his successor.





ed

Almost 12,000 meatpacking and food plant workers have reportedly contracted COVID-19. At least 48 have died.

The infections and deaths are spread across roughly two farms and 189 meat and processed food factories.





ed

Cruz gets his hair cut at salon whose owner was jailed for defying Texas coronavirus restrictions

After his haircut, Sen. Ted Cruz said, "It was ridiculous to see somebody sentenced to seven days in jail for cutting hair."





ed

The McMichaels can't be charged with a hate crime by the state in the shooting death of Ahmaud Arbery because the law doesn't exist in Georgia

Georgia is one of four states that doesn't have a hate crime law. Arbery's killing has reignited calls for legislation.





ed

The accusation against Joe Biden has Democrats rediscovering the value of due process

Some Democrats took "Believe Women" literally until Joe Biden was accused. Now they're relearning that guilt-by-accusation doesn't serve justice.





ed

Neighbor of father and son arrested in Ahmaud Arbery killing is also under investigation

The ongoing investigation of the fatal shooting in Brunswick, Georgia, will also look at a neighbor of suspects Gregory and Travis McMichael who recorded video of the incident, authorities said.





ed

Bayesian Quantile Regression with Mixed Discrete and Nonignorable Missing Covariates

Zhi-Qiang Wang, Nian-Sheng Tang.

Source: Bayesian Analysis, Volume 15, Number 2, 579--604.

Abstract:
Bayesian inference on quantile regression (QR) model with mixed discrete and non-ignorable missing covariates is conducted by reformulating QR model as a hierarchical structure model. A probit regression model is adopted to specify missing covariate mechanism. A hybrid algorithm combining the Gibbs sampler and the Metropolis-Hastings algorithm is developed to simultaneously produce Bayesian estimates of unknown parameters and latent variables as well as their corresponding standard errors. Bayesian variable selection method is proposed to recognize significant covariates. A Bayesian local influence procedure is presented to assess the effect of minor perturbations to the data, priors and sampling distributions on posterior quantities of interest. Several simulation studies and an example are presented to illustrate the proposed methodologies.




ed

A Loss-Based Prior for Variable Selection in Linear Regression Methods

Cristiano Villa, Jeong Eun Lee.

Source: Bayesian Analysis, Volume 15, Number 2, 533--558.

Abstract:
In this work we propose a novel model prior for variable selection in linear regression. The idea is to determine the prior mass by considering the worth of each of the regression models, given the number of possible covariates under consideration. The worth of a model consists of the information loss and the loss due to model complexity. While the information loss is determined objectively, the loss expression due to model complexity is flexible and, the penalty on model size can be even customized to include some prior knowledge. Some versions of the loss-based prior are proposed and compared empirically. Through simulation studies and real data analyses, we compare the proposed prior to the Scott and Berger prior, for noninformative scenarios, and with the Beta-Binomial prior, for informative scenarios.




ed

Bayesian Design of Experiments for Intractable Likelihood Models Using Coupled Auxiliary Models and Multivariate Emulation

Antony Overstall, James McGree.

Source: Bayesian Analysis, Volume 15, Number 1, 103--131.

Abstract:
A Bayesian design is given by maximising an expected utility over a design space. The utility is chosen to represent the aim of the experiment and its expectation is taken with respect to all unknowns: responses, parameters and/or models. Although straightforward in principle, there are several challenges to finding Bayesian designs in practice. Firstly, the utility and expected utility are rarely available in closed form and require approximation. Secondly, the design space can be of high-dimensionality. In the case of intractable likelihood models, these problems are compounded by the fact that the likelihood function, whose evaluation is required to approximate the expected utility, is not available in closed form. A strategy is proposed to find Bayesian designs for intractable likelihood models. It relies on the development of an automatic, auxiliary modelling approach, using multivariate Gaussian process emulators, to approximate the likelihood function. This is then combined with a copula-based approach to approximate the marginal likelihood (a quantity commonly required to evaluate many utility functions). These approximations are demonstrated on examples of stochastic process models involving experimental aims of both parameter estimation and model comparison.




ed

Bayesian Network Marker Selection via the Thresholded Graph Laplacian Gaussian Prior

Qingpo Cai, Jian Kang, Tianwei Yu.

Source: Bayesian Analysis, Volume 15, Number 1, 79--102.

Abstract:
Selecting informative nodes over large-scale networks becomes increasingly important in many research areas. Most existing methods focus on the local network structure and incur heavy computational costs for the large-scale problem. In this work, we propose a novel prior model for Bayesian network marker selection in the generalized linear model (GLM) framework: the Thresholded Graph Laplacian Gaussian (TGLG) prior, which adopts the graph Laplacian matrix to characterize the conditional dependence between neighboring markers accounting for the global network structure. Under mild conditions, we show the proposed model enjoys the posterior consistency with a diverging number of edges and nodes in the network. We also develop a Metropolis-adjusted Langevin algorithm (MALA) for efficient posterior computation, which is scalable to large-scale networks. We illustrate the superiorities of the proposed method compared with existing alternatives via extensive simulation studies and an analysis of the breast cancer gene expression dataset in the Cancer Genome Atlas (TCGA).




ed

Bayesian Estimation Under Informative Sampling with Unattenuated Dependence

Matthew R. Williams, Terrance D. Savitsky.

Source: Bayesian Analysis, Volume 15, Number 1, 57--77.

Abstract:
An informative sampling design leads to unit inclusion probabilities that are correlated with the response variable of interest. However, multistage sampling designs may also induce higher order dependencies, which are ignored in the literature when establishing consistency of estimators for survey data under a condition requiring asymptotic independence among the unit inclusion probabilities. This paper constructs new theoretical conditions that guarantee that the pseudo-posterior, which uses sampling weights based on first order inclusion probabilities to exponentiate the likelihood, is consistent not only for survey designs which have asymptotic factorization, but also for survey designs that induce residual or unattenuated dependence among sampled units. The use of the survey-weighted pseudo-posterior, together with our relaxed requirements for the survey design, establish a wide variety of analysis models that can be applied to a broad class of survey data sets. Using the complex sampling design of the National Survey on Drug Use and Health, we demonstrate our new theoretical result on multistage designs characterized by a cluster sampling step that expresses within-cluster dependence. We explore the impact of multistage designs and order based sampling.




ed

Latent Nested Nonparametric Priors (with Discussion)

Federico Camerlenghi, David B. Dunson, Antonio Lijoi, Igor Prünster, Abel Rodríguez.

Source: Bayesian Analysis, Volume 14, Number 4, 1303--1356.

Abstract:
Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalizing to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop a Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by-product. The results and their inferential implications are showcased on synthetic and real data.




ed

Hierarchical Normalized Completely Random Measures for Robust Graphical Modeling

Andrea Cremaschi, Raffaele Argiento, Katherine Shoemaker, Christine Peterson, Marina Vannucci.

Source: Bayesian Analysis, Volume 14, Number 4, 1271--1301.

Abstract:
Gaussian graphical models are useful tools for exploring network structures in multivariate normal data. In this paper we are interested in situations where data show departures from Gaussianity, therefore requiring alternative modeling distributions. The multivariate $t$ -distribution, obtained by dividing each component of the data vector by a gamma random variable, is a straightforward generalization to accommodate deviations from normality such as heavy tails. Since different groups of variables may be contaminated to a different extent, Finegold and Drton (2014) introduced the Dirichlet $t$ -distribution, where the divisors are clustered using a Dirichlet process. In this work, we consider a more general class of nonparametric distributions as the prior on the divisor terms, namely the class of normalized completely random measures (NormCRMs). To improve the effectiveness of the clustering, we propose modeling the dependence among the divisors through a nonparametric hierarchical structure, which allows for the sharing of parameters across the samples in the data set. This desirable feature enables us to cluster together different components of multivariate data in a parsimonious way. We demonstrate through simulations that this approach provides accurate graphical model inference, and apply it to a case study examining the dependence structure in radiomics data derived from The Cancer Imaging Atlas.




ed

Calibration Procedures for Approximate Bayesian Credible Sets

Jeong Eun Lee, Geoff K. Nicholls, Robin J. Ryder.

Source: Bayesian Analysis, Volume 14, Number 4, 1245--1269.

Abstract:
We develop and apply two calibration procedures for checking the coverage of approximate Bayesian credible sets, including intervals estimated using Monte Carlo methods. The user has an ideal prior and likelihood, but generates a credible set for an approximate posterior based on some approximate prior and likelihood. We estimate the realised posterior coverage achieved by the approximate credible set. This is the coverage of the unknown “true” parameter if the data are a realisation of the user’s ideal observation model conditioned on the parameter, and the parameter is a draw from the user’s ideal prior. In one approach we estimate the posterior coverage at the data by making a semi-parametric logistic regression of binary coverage outcomes on simulated data against summary statistics evaluated on simulated data. In another we use Importance Sampling from the approximate posterior, windowing simulated data to fall close to the observed data. We illustrate our methods on four examples.




ed

Spatial Disease Mapping Using Directed Acyclic Graph Auto-Regressive (DAGAR) Models

Abhirup Datta, Sudipto Banerjee, James S. Hodges, Leiwen Gao.

Source: Bayesian Analysis, Volume 14, Number 4, 1221--1244.

Abstract:
Hierarchical models for regionally aggregated disease incidence data commonly involve region specific latent random effects that are modeled jointly as having a multivariate Gaussian distribution. The covariance or precision matrix incorporates the spatial dependence between the regions. Common choices for the precision matrix include the widely used ICAR model, which is singular, and its nonsingular extension which lacks interpretability. We propose a new parametric model for the precision matrix based on a directed acyclic graph (DAG) representation of the spatial dependence. Our model guarantees positive definiteness and, hence, in addition to being a valid prior for regional spatially correlated random effects, can also directly model the outcome from dependent data like images and networks. Theoretical results establish a link between the parameters in our model and the variance and covariances of the random effects. Simulation studies demonstrate that the improved interpretability of our model reaps benefits in terms of accurately recovering the latent spatial random effects as well as for inference on the spatial covariance parameters. Under modest spatial correlation, our model far outperforms the CAR models, while the performances are similar when the spatial correlation is strong. We also assess sensitivity to the choice of the ordering in the DAG construction using theoretical and empirical results which testify to the robustness of our model. We also present a large-scale public health application demonstrating the competitive performance of the model.




ed

Estimating the Use of Public Lands: Integrated Modeling of Open Populations with Convolution Likelihood Ecological Abundance Regression

Lutz F. Gruber, Erica F. Stuber, Lyndsie S. Wszola, Joseph J. Fontaine.

Source: Bayesian Analysis, Volume 14, Number 4, 1173--1199.

Abstract:
We present an integrated open population model where the population dynamics are defined by a differential equation, and the related statistical model utilizes a Poisson binomial convolution likelihood. Key advantages of the proposed approach over existing open population models include the flexibility to predict related, but unobserved quantities such as total immigration or emigration over a specified time period, and more computationally efficient posterior simulation by elimination of the need to explicitly simulate latent immigration and emigration. The viability of the proposed method is shown in an in-depth analysis of outdoor recreation participation on public lands, where the surveyed populations changed rapidly and demographic population closure cannot be assumed even within a single day.




ed

Implicit Copulas from Bayesian Regularized Regression Smoothers

Nadja Klein, Michael Stanley Smith.

Source: Bayesian Analysis, Volume 14, Number 4, 1143--1171.

Abstract:
We show how to extract the implicit copula of a response vector from a Bayesian regularized regression smoother with Gaussian disturbances. The copula can be used to compare smoothers that employ different shrinkage priors and function bases. We illustrate with three popular choices of shrinkage priors—a pairwise prior, the horseshoe prior and a g prior augmented with a point mass as employed for Bayesian variable selection—and both univariate and multivariate function bases. The implicit copulas are high-dimensional, have flexible dependence structures that are far from that of a Gaussian copula, and are unavailable in closed form. However, we show how they can be evaluated by first constructing a Gaussian copula conditional on the regularization parameters, and then integrating over these. Combined with non-parametric margins the regularized smoothers can be used to model the distribution of non-Gaussian univariate responses conditional on the covariates. Efficient Markov chain Monte Carlo schemes for evaluating the copula are given for this case. Using both simulated and real data, we show how such copula smoothing models can improve the quality of resulting function estimates and predictive distributions.




ed

Bayes Factors for Partially Observed Stochastic Epidemic Models

Muteb Alharthi, Theodore Kypraios, Philip D. O’Neill.

Source: Bayesian Analysis, Volume 14, Number 3, 927--956.

Abstract:
We consider the problem of model choice for stochastic epidemic models given partial observation of a disease outbreak through time. Our main focus is on the use of Bayes factors. Although Bayes factors have appeared in the epidemic modelling literature before, they can be hard to compute and little attention has been given to fundamental questions concerning their utility. In this paper we derive analytic expressions for Bayes factors given complete observation through time, which suggest practical guidelines for model choice problems. We adapt the power posterior method for computing Bayes factors so as to account for missing data and apply this approach to partially observed epidemics. For comparison, we also explore the use of a deviance information criterion for missing data scenarios. The methods are illustrated via examples involving both simulated and real data.




ed

Bayesian Zero-Inflated Negative Binomial Regression Based on Pólya-Gamma Mixtures

Brian Neelon.

Source: Bayesian Analysis, Volume 14, Number 3, 849--875.

Abstract:
Motivated by a study examining spatiotemporal patterns in inpatient hospitalizations, we propose an efficient Bayesian approach for fitting zero-inflated negative binomial models. To facilitate posterior sampling, we introduce a set of latent variables that are represented as scale mixtures of normals, where the precision terms follow independent Pólya-Gamma distributions. Conditional on the latent variables, inference proceeds via straightforward Gibbs sampling. For fixed-effects models, our approach is comparable to existing methods. However, our model can accommodate more complex data structures, including multivariate and spatiotemporal data, settings in which current approaches often fail due to computational challenges. Using simulation studies, we highlight key features of the method and compare its performance to other estimation procedures. We apply the approach to a spatiotemporal analysis examining the number of annual inpatient admissions among United States veterans with type 2 diabetes.




ed

Probability Based Independence Sampler for Bayesian Quantitative Learning in Graphical Log-Linear Marginal Models

Ioannis Ntzoufras, Claudia Tarantola, Monia Lupparelli.

Source: Bayesian Analysis, Volume 14, Number 3, 797--823.

Abstract:
We introduce a novel Bayesian approach for quantitative learning for graphical log-linear marginal models. These models belong to curved exponential families that are difficult to handle from a Bayesian perspective. The likelihood cannot be analytically expressed as a function of the marginal log-linear interactions, but only in terms of cell counts or probabilities. Posterior distributions cannot be directly obtained, and Markov Chain Monte Carlo (MCMC) methods are needed. Finally, a well-defined model requires parameter values that lead to compatible marginal probabilities. Hence, any MCMC should account for this important restriction. We construct a fully automatic and efficient MCMC strategy for quantitative learning for such models that handles these problems. While the prior is expressed in terms of the marginal log-linear interactions, we build an MCMC algorithm that employs a proposal on the probability parameter space. The corresponding proposal on the marginal log-linear interactions is obtained via parameter transformation. We exploit a conditional conjugate setup to build an efficient proposal on probability parameters. The proposed methodology is illustrated by a simulation study and a real dataset.




ed

A Bayesian Nonparametric Multiple Testing Procedure for Comparing Several Treatments Against a Control

Luis Gutiérrez, Andrés F. Barrientos, Jorge González, Daniel Taylor-Rodríguez.

Source: Bayesian Analysis, Volume 14, Number 2, 649--675.

Abstract:
We propose a Bayesian nonparametric strategy to test for differences between a control group and several treatment regimes. Most of the existing tests for this type of comparison are based on the differences between location parameters. In contrast, our approach identifies differences across the entire distribution, avoids strong modeling assumptions over the distributions for each treatment, and accounts for multiple testing through the prior distribution on the space of hypotheses. The proposal is compared to other commonly used hypothesis testing procedures under simulated scenarios. Two real applications are also analyzed with the proposed methodology.




ed

Efficient Acquisition Rules for Model-Based Approximate Bayesian Computation

Marko Järvenpää, Michael U. Gutmann, Arijus Pleska, Aki Vehtari, Pekka Marttinen.

Source: Bayesian Analysis, Volume 14, Number 2, 595--622.

Abstract:
Approximate Bayesian computation (ABC) is a method for Bayesian inference when the likelihood is unavailable but simulating from the model is possible. However, many ABC algorithms require a large number of simulations, which can be costly. To reduce the computational cost, Bayesian optimisation (BO) and surrogate models such as Gaussian processes have been proposed. Bayesian optimisation enables one to intelligently decide where to evaluate the model next but common BO strategies are not designed for the goal of estimating the posterior distribution. Our paper addresses this gap in the literature. We propose to compute the uncertainty in the ABC posterior density, which is due to a lack of simulations to estimate this quantity accurately, and define a loss function that measures this uncertainty. We then propose to select the next evaluation location to minimise the expected loss. Experiments show that the proposed method often produces the most accurate approximations as compared to common BO strategies.




ed

A Bayesian Nonparametric Spiked Process Prior for Dynamic Model Selection

Alberto Cassese, Weixuan Zhu, Michele Guindani, Marina Vannucci.

Source: Bayesian Analysis, Volume 14, Number 2, 553--572.

Abstract:
In many applications, investigators monitor processes that vary in space and time, with the goal of identifying temporally persistent and spatially localized departures from a baseline or “normal” behavior. In this manuscript, we consider the monitoring of pneumonia and influenza (P&I) mortality, to detect influenza outbreaks in the continental United States, and propose a Bayesian nonparametric model selection approach to take into account the spatio-temporal dependence of outbreaks. More specifically, we introduce a zero-inflated conditionally identically distributed species sampling prior which allows borrowing information across time and to assign data to clusters associated to either a null or an alternate process. Spatial dependences are accounted for by means of a Markov random field prior, which allows to inform the selection based on inferences conducted at nearby locations. We show how the proposed modeling framework performs in an application to the P&I mortality data and in a simulation study, and compare with common threshold methods for detecting outbreaks over time, with more recent Markov switching based models, and with spike-and-slab Bayesian nonparametric priors that do not take into account spatio-temporal dependence.




ed

Constrained Bayesian Optimization with Noisy Experiments

Benjamin Letham, Brian Karrer, Guilherme Ottoni, Eytan Bakshy.

Source: Bayesian Analysis, Volume 14, Number 2, 495--519.

Abstract:
Randomized experiments are the gold standard for evaluating the effects of changes to real-world systems. Data in these tests may be difficult to collect and outcomes may have high variance, resulting in potentially large measurement error. Bayesian optimization is a promising technique for efficiently optimizing multiple continuous parameters, but existing approaches degrade in performance when the noise level is high, limiting its applicability to many randomized experiments. We derive an expression for expected improvement under greedy batch optimization with noisy observations and noisy constraints, and develop a quasi-Monte Carlo approximation that allows it to be efficiently optimized. Simulations with synthetic functions show that optimization performance on noisy, constrained problems outperforms existing methods. We further demonstrate the effectiveness of the method with two real-world experiments conducted at Facebook: optimizing a ranking system, and optimizing server compiler flags.




ed

A Bayesian Approach to Statistical Shape Analysis via the Projected Normal Distribution

Luis Gutiérrez, Eduardo Gutiérrez-Peña, Ramsés H. Mena.

Source: Bayesian Analysis, Volume 14, Number 2, 427--447.

Abstract:
This work presents a Bayesian predictive approach to statistical shape analysis. A modeling strategy that starts with a Gaussian distribution on the configuration space, and then removes the effects of location, rotation and scale, is studied. This boils down to an application of the projected normal distribution to model the configurations in the shape space, which together with certain identifiability constraints, facilitates parameter interpretation. Having better control over the parameters allows us to generalize the model to a regression setting where the effect of predictors on shapes can be considered. The methodology is illustrated and tested using both simulated scenarios and a real data set concerning eight anatomical landmarks on a sagittal plane of the corpus callosum in patients with autism and in a group of controls.




ed

Bayesian Effect Fusion for Categorical Predictors

Daniela Pauger, Helga Wagner.

Source: Bayesian Analysis, Volume 14, Number 2, 341--369.

Abstract:
We propose a Bayesian approach to obtain a sparse representation of the effect of a categorical predictor in regression type models. As this effect is captured by a group of level effects, sparsity cannot only be achieved by excluding single irrelevant level effects or the whole group of effects associated to this predictor but also by fusing levels which have essentially the same effect on the response. To achieve this goal, we propose a prior which allows for almost perfect as well as almost zero dependence between level effects a priori. This prior can alternatively be obtained by specifying spike and slab prior distributions on all effect differences associated to this categorical predictor. We show how restricted fusion can be implemented and develop an efficient MCMC (Markov chain Monte Carlo) method for posterior computation. The performance of the proposed method is investigated on simulated data and we illustrate its application on real data from EU-SILC (European Union Statistics on Income and Living Conditions).




ed

Model-Based Approach to the Joint Analysis of Single-Cell Data on Chromatin Accessibility and Gene Expression

Zhixiang Lin, Mahdi Zamanighomi, Timothy Daley, Shining Ma, Wing Hung Wong.

Source: Statistical Science, Volume 35, Number 1, 2--13.

Abstract:
Unsupervised methods, including clustering methods, are essential to the analysis of single-cell genomic data. Model-based clustering methods are under-explored in the area of single-cell genomics, and have the advantage of quantifying the uncertainty of the clustering result. Here we develop a model-based approach for the integrative analysis of single-cell chromatin accessibility and gene expression data. We show that combining these two types of data, we can achieve a better separation of the underlying cell types. An efficient Markov chain Monte Carlo algorithm is also developed.




ed

Comment: Statistical Inference from a Predictive Perspective

Alessandro Rinaldo, Ryan J. Tibshirani, Larry Wasserman.

Source: Statistical Science, Volume 34, Number 4, 599--603.

Abstract:
What is the meaning of a regression parameter? Why is this the de facto standard object of interest for statistical inference? These are delicate issues, especially when the model is misspecified. We argue that focusing on predictive quantities may be a desirable alternative.




ed

Comment: “Models as Approximations I: Consequences Illustrated with Linear Regression” by A. Buja, R. Berk, L. Brown, E. George, E. Pitkin, L. Zhan and K. Zhang

Roderick J. Little.

Source: Statistical Science, Volume 34, Number 4, 580--583.




ed

Models as Approximations I: Consequences Illustrated with Linear Regression

Andreas Buja, Lawrence Brown, Richard Berk, Edward George, Emil Pitkin, Mikhail Traskin, Kai Zhang, Linda Zhao.

Source: Statistical Science, Volume 34, Number 4, 523--544.

Abstract:
In the early 1980s, Halbert White inaugurated a “model-robust” form of statistical inference based on the “sandwich estimator” of standard error. This estimator is known to be “heteroskedasticity-consistent,” but it is less well known to be “nonlinearity-consistent” as well. Nonlinearity, however, raises fundamental issues because in its presence regressors are not ancillary, hence cannot be treated as fixed. The consequences are deep: (1) population slopes need to be reinterpreted as statistical functionals obtained from OLS fits to largely arbitrary joint ${x extrm{-}y}$ distributions; (2) the meaning of slope parameters needs to be rethought; (3) the regressor distribution affects the slope parameters; (4) randomness of the regressors becomes a source of sampling variability in slope estimates of order $1/sqrt{N}$; (5) inference needs to be based on model-robust standard errors, including sandwich estimators or the ${x extrm{-}y}$ bootstrap. In theory, model-robust and model-trusting standard errors can deviate by arbitrary magnitudes either way. In practice, significant deviations between them can be detected with a diagnostic test.




ed

Assessing the Causal Effect of Binary Interventions from Observational Panel Data with Few Treated Units

Pantelis Samartsidis, Shaun R. Seaman, Anne M. Presanis, Matthew Hickman, Daniela De Angelis.

Source: Statistical Science, Volume 34, Number 3, 486--503.

Abstract:
Researchers are often challenged with assessing the impact of an intervention on an outcome of interest in situations where the intervention is nonrandomised, the intervention is only applied to one or few units, the intervention is binary, and outcome measurements are available at multiple time points. In this paper, we review existing methods for causal inference in these situations. We detail the assumptions underlying each method, emphasize connections between the different approaches and provide guidelines regarding their practical implementation. Several open problems are identified thus highlighting the need for future research.




ed

User-Friendly Covariance Estimation for Heavy-Tailed Distributions

Yuan Ke, Stanislav Minsker, Zhao Ren, Qiang Sun, Wen-Xin Zhou.

Source: Statistical Science, Volume 34, Number 3, 454--471.

Abstract:
We provide a survey of recent results on covariance estimation for heavy-tailed distributions. By unifying ideas scattered in the literature, we propose user-friendly methods that facilitate practical implementation. Specifically, we introduce elementwise and spectrumwise truncation operators, as well as their $M$-estimator counterparts, to robustify the sample covariance matrix. Different from the classical notion of robustness that is characterized by the breakdown property, we focus on the tail robustness which is evidenced by the connection between nonasymptotic deviation and confidence level. The key insight is that estimators should adapt to the sample size, dimensionality and noise level to achieve optimal tradeoff between bias and robustness. Furthermore, to facilitate practical implementation, we propose data-driven procedures that automatically calibrate the tuning parameters. We demonstrate their applications to a series of structured models in high dimensions, including the bandable and low-rank covariance matrices and sparse precision matrices. Numerical studies lend strong support to the proposed methods.




ed

Producing Official County-Level Agricultural Estimates in the United States: Needs and Challenges

Nathan B. Cruze, Andreea L. Erciulescu, Balgobin Nandram, Wendy J. Barboza, Linda J. Young.

Source: Statistical Science, Volume 34, Number 2, 301--316.

Abstract:
In the United States, county-level estimates of crop yield, production, and acreage published by the United States Department of Agriculture’s National Agricultural Statistics Service (USDA NASS) play an important role in determining the value of payments allotted to farmers and ranchers enrolled in several federal programs. Given the importance of these official county-level crop estimates, NASS continually strives to improve its crops county estimates program in terms of accuracy, reliability and coverage. In 2015, NASS engaged a panel of experts convened under the auspices of the National Academies of Sciences, Engineering, and Medicine Committee on National Statistics (CNSTAT) for guidance on implementing models that may synthesize multiple sources of information into a single estimate, provide defensible measures of uncertainty, and potentially increase the number of publishable county estimates. The final report titled Improving Crop Estimates by Integrating Multiple Data Sources was released in 2017. This paper discusses several needs and requirements for NASS county-level crop estimates that were illuminated during the activities of the CNSTAT panel. A motivating example of planted acreage estimation in Illinois illustrates several challenges that NASS faces as it considers adopting any explicit model for official crops county estimates.




ed

The Importance of Being Clustered: Uncluttering the Trends of Statistics from 1970 to 2015

Laura Anderlucci, Angela Montanari, Cinzia Viroli.

Source: Statistical Science, Volume 34, Number 2, 280--300.

Abstract:
In this paper, we retrace the recent history of statistics by analyzing all the papers published in five prestigious statistical journals since 1970, namely: The Annals of Statistics , Biometrika , Journal of the American Statistical Association , Journal of the Royal Statistical Society, Series B and Statistical Science . The aim is to construct a kind of “taxonomy” of the statistical papers by organizing and clustering them in main themes. In this sense being identified in a cluster means being important enough to be uncluttered in the vast and interconnected world of the statistical research. Since the main statistical research topics naturally born, evolve or die during time, we will also develop a dynamic clustering strategy, where a group in a time period is allowed to migrate or to merge into different groups in the following one. Results show that statistics is a very dynamic and evolving science, stimulated by the rise of new research questions and types of data.




ed

Statistical Analysis of Zero-Inflated Nonnegative Continuous Data: A Review

Lei Liu, Ya-Chen Tina Shih, Robert L. Strawderman, Daowen Zhang, Bankole A. Johnson, Haitao Chai.

Source: Statistical Science, Volume 34, Number 2, 253--279.

Abstract:
Zero-inflated nonnegative continuous (or semicontinuous) data arise frequently in biomedical, economical, and ecological studies. Examples include substance abuse, medical costs, medical care utilization, biomarkers (e.g., CD4 cell counts, coronary artery calcium scores), single cell gene expression rates, and (relative) abundance of microbiome. Such data are often characterized by the presence of a large portion of zero values and positive continuous values that are skewed to the right and heteroscedastic. Both of these features suggest that no simple parametric distribution may be suitable for modeling such type of outcomes. In this paper, we review statistical methods for analyzing zero-inflated nonnegative outcome data. We will start with the cross-sectional setting, discussing ways to separate zero and positive values and introducing flexible models to characterize right skewness and heteroscedasticity in the positive values. We will then present models of correlated zero-inflated nonnegative continuous data, using random effects to tackle the correlation on repeated measures from the same subject and that across different parts of the model. We will also discuss expansion to related topics, for example, zero-inflated count and survival data, nonlinear covariate effects, and joint models of longitudinal zero-inflated nonnegative continuous data and survival. Finally, we will present applications to three real datasets (i.e., microbiome, medical costs, and alcohol drinking) to illustrate these methods. Example code will be provided to facilitate applications of these methods.




ed

A Kernel Regression Procedure in the 3D Shape Space with an Application to Online Sales of Children’s Wear

Gregorio Quintana-Ortí, Amelia Simó.

Source: Statistical Science, Volume 34, Number 2, 236--252.

Abstract:
This paper is focused on kernel regression when the response variable is the shape of a 3D object represented by a configuration matrix of landmarks. Regression methods on this shape space are not trivial because this space has a complex finite-dimensional Riemannian manifold structure (non-Euclidean). Papers about it are scarce in the literature, the majority of them are restricted to the case of a single explanatory variable, and many of them are based on the approximated tangent space. In this paper, there are several methodological innovations. The first one is the adaptation of the general method for kernel regression analysis in manifold-valued data to the three-dimensional case of Kendall’s shape space. The second one is its generalization to the multivariate case and the addressing of the curse-of-dimensionality problem. Finally, we propose bootstrap confidence intervals for prediction. A simulation study is carried out to check the goodness of the procedure, and a comparison with a current approach is performed. Then, it is applied to a 3D database obtained from an anthropometric survey of the Spanish child population with a potential application to online sales of children’s wear.




ed

Generalized Multiple Importance Sampling

Víctor Elvira, Luca Martino, David Luengo, Mónica F. Bugallo.

Source: Statistical Science, Volume 34, Number 1, 129--155.

Abstract:
Importance sampling (IS) methods are broadly used to approximate posterior distributions or their moments. In the standard IS approach, samples are drawn from a single proposal distribution and weighted adequately. However, since the performance in IS depends on the mismatch between the targeted and the proposal distributions, several proposal densities are often employed for the generation of samples. Under this multiple importance sampling (MIS) scenario, extensive literature has addressed the selection and adaptation of the proposal distributions, interpreting the sampling and weighting steps in different ways. In this paper, we establish a novel general framework with sampling and weighting procedures when more than one proposal is available. The new framework encompasses most relevant MIS schemes in the literature, and novel valid schemes appear naturally. All the MIS schemes are compared and ranked in terms of the variance of the associated estimators. Finally, we provide illustrative examples revealing that, even with a good choice of the proposal densities, a careful interpretation of the sampling and weighting procedures can make a significant difference in the performance of the method.




ed

Comment on “Automated Versus Do-It-Yourself Methods for Causal Inference: Lessons Learned from a Data Analysis Competition”

Susan Gruber, Mark J. van der Laan.

Source: Statistical Science, Volume 34, Number 1, 82--85.

Abstract:
Dorie and co-authors (DHSSC) are to be congratulated for initiating the ACIC Data Challenge. Their project engaged the community and accelerated research by providing a level playing field for comparing the performance of a priori specified algorithms. DHSSC identified themes concerning characteristics of the DGP, properties of the estimators, and inference. We discuss these themes in the context of targeted learning.




ed

Cleanair posters to create a smoke-free environment / designed by Biman Mullick ; published by Cleanair.

London (33 Stillness Road, London SE23 ING) : Cleanair, [198-?]




ed

Each year in Britain 9,300 babies are killed by their smoking mums. / Biman Mullick.

[London?], [6th June 1990]




ed

Danny Smith from No Human Being Is Illegal (in all our glory). Collaged photograph by Deborah Kelly and collaborators, 2014-2018.

[London], 2019.




ed

The Joyful Reduction of Uncertainty: Music Perception as a Window to Predictive Neuronal Processing




ed

The 2019 Victoria’s Secret Fashion Show Is Canceled After Facing Backlash for Lack of Body Diversity

The reaction on social media has been fierce.




ed

Editor’s Pick: Gifts for Your Tech-Obsessed Friend

A guide to the tech gadgets even your hard-to-shop-for friends and family members will love.




ed

Jennifer Lopez Just Stepped Out in These Glittery Leggings (Again)—and We Found Them on Sale

They’re already going out of stock.