ed A fast MCMC algorithm for the uniform sampling of binary matrices with fixed margins By projecteuclid.org Published On :: Thu, 09 Apr 2020 04:00 EDT Guanyang Wang. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1690--1706.Abstract: Uniform sampling of binary matrix with fixed margins is an important and difficult problem in statistics, computer science, ecology and so on. The well-known swap algorithm would be inefficient when the size of the matrix becomes large or when the matrix is too sparse/dense. Here we propose the Rectangle Loop algorithm, a Markov chain Monte Carlo algorithm to sample binary matrices with fixed margins uniformly. Theoretically the Rectangle Loop algorithm is better than the swap algorithm in Peskun’s order. Empirically studies also demonstrates the Rectangle Loop algorithm is remarkablely more efficient than the swap algorithm. Full Article
ed Asymptotic seed bias in respondent-driven sampling By projecteuclid.org Published On :: Wed, 08 Apr 2020 22:01 EDT Yuling Yan, Bret Hanlon, Sebastien Roch, Karl Rohe. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1577--1610.Abstract: Respondent-driven sampling (RDS) collects a sample of individuals in a networked population by incentivizing the sampled individuals to refer their contacts into the sample. This iterative process is initialized from some seed node(s). Sometimes, this selection creates a large amount of seed bias. Other times, the seed bias is small. This paper gains a deeper understanding of this bias by characterizing its effect on the limiting distribution of various RDS estimators. Using classical tools and results from multi-type branching processes [12], we show that the seed bias is negligible for the Generalized Least Squares (GLS) estimator and non-negligible for both the inverse probability weighted and Volz-Heckathorn (VH) estimators. In particular, we show that (i) above a critical threshold, VH converge to a non-trivial mixture distribution, where the mixture component depends on the seed node, and the mixture distribution is possibly multi-modal. Moreover, (ii) GLS converges to a Gaussian distribution independent of the seed node, under a certain condition on the Markov process. Numerical experiments with both simulated data and empirical social networks suggest that these results appear to hold beyond the Markov conditions of the theorems. Full Article
ed A Bayesian approach to disease clustering using restricted Chinese restaurant processes By projecteuclid.org Published On :: Wed, 08 Apr 2020 22:01 EDT Claudia Wehrhahn, Samuel Leonard, Abel Rodriguez, Tatiana Xifara. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1449--1478.Abstract: Identifying disease clusters (areas with an unusually high incidence of a particular disease) is a common problem in epidemiology and public health. We describe a Bayesian nonparametric mixture model for disease clustering that constrains clusters to be made of adjacent areal units. This is achieved by modifying the exchangeable partition probability function associated with the Ewen’s sampling distribution. We call the resulting prior the Restricted Chinese Restaurant Process, as the associated full conditional distributions resemble those associated with the standard Chinese Restaurant Process. The model is illustrated using synthetic data sets and in an application to oral cancer mortality in Germany. Full Article
ed Nonconcave penalized estimation in sparse vector autoregression model By projecteuclid.org Published On :: Wed, 01 Apr 2020 04:00 EDT Xuening Zhu. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1413--1448.Abstract: High dimensional time series receive considerable attention recently, whose temporal and cross-sectional dependency could be captured by the vector autoregression (VAR) model. To tackle with the high dimensionality, penalization methods are widely employed. However, theoretically, the existing studies of the penalization methods mainly focus on $i.i.d$ data, therefore cannot quantify the effect of the dependence level on the convergence rate. In this work, we use the spectral properties of the time series to quantify the dependence and derive a nonasymptotic upper bound for the estimation errors. By focusing on the nonconcave penalization methods, we manage to establish the oracle properties of the penalized VAR model estimation by considering the effects of temporal and cross-sectional dependence. Extensive numerical studies are conducted to compare the finite sample performance using different penalization functions. Lastly, an air pollution data of mainland China is analyzed for illustration purpose. Full Article
ed Computing the degrees of freedom of rank-regularized estimators and cousins By projecteuclid.org Published On :: Thu, 26 Mar 2020 22:03 EDT Rahul Mazumder, Haolei Weng. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1348--1385.Abstract: Estimating a low rank matrix from its linear measurements is a problem of central importance in contemporary statistical analysis. The choice of tuning parameters for estimators remains an important challenge from a theoretical and practical perspective. To this end, Stein’s Unbiased Risk Estimate (SURE) framework provides a well-grounded statistical framework for degrees of freedom estimation. In this paper, we use the SURE framework to obtain degrees of freedom estimates for a general class of spectral regularized matrix estimators—our results generalize beyond the class of estimators that have been studied thus far. To this end, we use a result due to Shapiro (2002) pertaining to the differentiability of symmetric matrix valued functions, developed in the context of semidefinite optimization algorithms. We rigorously verify the applicability of Stein’s Lemma towards the derivation of degrees of freedom estimates; and also present new techniques based on Gaussian convolution to estimate the degrees of freedom of a class of spectral estimators, for which Stein’s Lemma does not directly apply. Full Article
ed Differential network inference via the fused D-trace loss with cross variables By projecteuclid.org Published On :: Tue, 24 Mar 2020 22:01 EDT Yichong Wu, Tiejun Li, Xiaoping Liu, Luonan Chen. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1269--1301.Abstract: Detecting the change of biological interaction networks is of great importance in biological and medical research. We proposed a simple loss function, named as CrossFDTL, to identify the network change or differential network by estimating the difference between two precision matrices under Gaussian assumption. The CrossFDTL is a natural fusion of the D-trace loss for the considered two networks by imposing the $ell _{1}$ penalty to the differential matrix to ensure sparsity. The key point of our method is to utilize the cross variables, which correspond to the sum and difference of two precision matrices instead of using their original forms. Moreover, we developed an efficient minimization algorithm for the proposed loss function and further rigorously proved its convergence. Numerical results showed that our method outperforms the existing methods in both accuracy and convergence speed for the simulated and real data. Full Article
ed Sparsely observed functional time series: estimation and prediction By projecteuclid.org Published On :: Thu, 27 Feb 2020 22:04 EST Tomáš Rubín, Victor M. Panaretos. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1137--1210.Abstract: Functional time series analysis, whether based on time or frequency domain methodology, has traditionally been carried out under the assumption of complete observation of the constituent series of curves, assumed stationary. Nevertheless, as is often the case with independent functional data, it may well happen that the data available to the analyst are not the actual sequence of curves, but relatively few and noisy measurements per curve, potentially at different locations in each curve’s domain. Under this sparse sampling regime, neither the established estimators of the time series’ dynamics nor their corresponding theoretical analysis will apply. The subject of this paper is to tackle the problem of estimating the dynamics and of recovering the latent process of smooth curves in the sparse regime. Assuming smoothness of the latent curves, we construct a consistent nonparametric estimator of the series’ spectral density operator and use it to develop a frequency-domain recovery approach, that predicts the latent curve at a given time by borrowing strength from the (estimated) dynamic correlations in the series across time. This new methodology is seen to comprehensively outperform a naive recovery approach that would ignore temporal dependence and use only methodology employed in the i.i.d. setting and hinging on the lag zero covariance. Further to predicting the latent curves from their noisy point samples, the method fills in gaps in the sequence (curves nowhere sampled), denoises the data, and serves as a basis for forecasting. Means of providing corresponding confidence bands are also investigated. A simulation study interestingly suggests that sparse observation for a longer time period may provide better performance than dense observation for a shorter period, in the presence of smoothness. The methodology is further illustrated by application to an environmental data set on fair-weather atmospheric electricity, which naturally leads to a sparse functional time series. Full Article
ed A general drift estimation procedure for stochastic differential equations with additive fractional noise By projecteuclid.org Published On :: Tue, 25 Feb 2020 22:00 EST Fabien Panloup, Samy Tindel, Maylis Varvenne. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1075--1136.Abstract: In this paper we consider the drift estimation problem for a general differential equation driven by an additive multidimensional fractional Brownian motion, under ergodic assumptions on the drift coefficient. Our estimation procedure is based on the identification of the invariant measure, and we provide consistency results as well as some information about the convergence rate. We also give some examples of coefficients for which the identifiability assumption for the invariant measure is satisfied. Full Article
ed Generalized bounds for active subspaces By projecteuclid.org Published On :: Mon, 17 Feb 2020 22:06 EST Mario Teixeira Parente, Jonas Wallin, Barbara Wohlmuth. Source: Electronic Journal of Statistics, Volume 14, Number 1, 917--943.Abstract: In this article, we consider scenarios in which traditional estimates for the active subspace method based on probabilistic Poincaré inequalities are not valid due to unbounded Poincaré constants. Consequently, we propose a framework that allows to derive generalized estimates in the sense that it enables to control the trade-off between the size of the Poincaré constant and a weaker order of the final error bound. In particular, we investigate independently exponentially distributed random variables in dimension two or larger and give explicit expressions for corresponding Poincaré constants showing their dependence on the dimension of the problem. Finally, we suggest possibilities for future work that aim for extending the class of distributions applicable to the active subspace method as we regard this as an opportunity to enlarge its usability. Full Article
ed Reduction problems and deformation approaches to nonstationary covariance functions over spheres By projecteuclid.org Published On :: Tue, 11 Feb 2020 22:03 EST Emilio Porcu, Rachid Senoussi, Enner Mendoza, Moreno Bevilacqua. Source: Electronic Journal of Statistics, Volume 14, Number 1, 890--916.Abstract: The paper considers reduction problems and deformation approaches for nonstationary covariance functions on the $(d-1)$-dimensional spheres, $mathbb{S}^{d-1}$, embedded in the $d$-dimensional Euclidean space. Given a covariance function $C$ on $mathbb{S}^{d-1}$, we chase a pair $(R,Psi)$, for a function $R:[-1,+1] o mathbb{R}$ and a smooth bijection $Psi$, such that $C$ can be reduced to a geodesically isotropic one: $C(mathbf{x},mathbf{y})=R(langle Psi (mathbf{x}),Psi (mathbf{y}) angle )$, with $langle cdot ,cdot angle $ denoting the dot product. The problem finds motivation in recent statistical literature devoted to the analysis of global phenomena, defined typically over the sphere of $mathbb{R}^{3}$. The application domains considered in the manuscript makes the problem mathematically challenging. We show the uniqueness of the representation in the reduction problem. Then, under some regularity assumptions, we provide an inversion formula to recover the bijection $Psi$, when it exists, for a given $C$. We also give sufficient conditions for reducibility. Full Article
ed Estimation of a semiparametric transformation model: A novel approach based on least squares minimization By projecteuclid.org Published On :: Tue, 04 Feb 2020 22:03 EST Benjamin Colling, Ingrid Van Keilegom. Source: Electronic Journal of Statistics, Volume 14, Number 1, 769--800.Abstract: Consider the following semiparametric transformation model $Lambda_{ heta }(Y)=m(X)+varepsilon $, where $X$ is a $d$-dimensional covariate, $Y$ is a univariate response variable and $varepsilon $ is an error term with zero mean and independent of $X$. We assume that $m$ is an unknown regression function and that ${Lambda _{ heta }: heta inTheta }$ is a parametric family of strictly increasing functions. Our goal is to develop two new estimators of the transformation parameter $ heta $. The main idea of these two estimators is to minimize, with respect to $ heta $, the $L_{2}$-distance between the transformation $Lambda _{ heta }$ and one of its fully nonparametric estimators. We consider in particular the nonparametric estimator based on the least-absolute deviation loss constructed in Colling and Van Keilegom (2019). We establish the consistency and the asymptotic normality of the two proposed estimators of $ heta $. We also carry out a simulation study to illustrate and compare the performance of our new parametric estimators to that of the profile likelihood estimator constructed in Linton et al. (2008). Full Article
ed Universal Latent Space Model Fitting for Large Networks with Edge Covariates By Published On :: 2020 Latent space models are effective tools for statistical modeling and visualization of network data. Due to their close connection to generalized linear models, it is also natural to incorporate covariate information in them. The current paper presents two universal fitting algorithms for networks with edge covariates: one based on nuclear norm penalization and the other based on projected gradient descent. Both algorithms are motivated by maximizing the likelihood function for an existing class of inner-product models, and we establish their statistical rates of convergence for these models. In addition, the theory informs us that both methods work simultaneously for a wide range of different latent space models that allow latent positions to affect edge formation in flexible ways, such as distance models. Furthermore, the effectiveness of the methods is demonstrated on a number of real world network data sets for different statistical tasks, including community detection with and without edge covariates, and network assisted learning. Full Article
ed Lower Bounds for Parallel and Randomized Convex Optimization By Published On :: 2020 We study the question of whether parallelization in the exploration of the feasible set can be used to speed up convex optimization, in the local oracle model of computation and in the high-dimensional regime. We show that the answer is negative for both deterministic and randomized algorithms applied to essentially any of the interesting geometries and nonsmooth, weakly-smooth, or smooth objective functions. In particular, we show that it is not possible to obtain a polylogarithmic (in the sequential complexity of the problem) number of parallel rounds with a polynomial (in the dimension) number of queries per round. In the majority of these settings and when the dimension of the space is polynomial in the inverse target accuracy, our lower bounds match the oracle complexity of sequential convex optimization, up to at most a logarithmic factor in the dimension, which makes them (nearly) tight. Another conceptual contribution of our work is in providing a general and streamlined framework for proving lower bounds in the setting of parallel convex optimization. Prior to our work, lower bounds for parallel convex optimization algorithms were only known in a small fraction of the settings considered in this paper, mainly applying to Euclidean ($ell_2$) and $ell_infty$ spaces. Full Article
ed Path-Based Spectral Clustering: Guarantees, Robustness to Outliers, and Fast Algorithms By Published On :: 2020 We consider the problem of clustering with the longest-leg path distance (LLPD) metric, which is informative for elongated and irregularly shaped clusters. We prove finite-sample guarantees on the performance of clustering with respect to this metric when random samples are drawn from multiple intrinsically low-dimensional clusters in high-dimensional space, in the presence of a large number of high-dimensional outliers. By combining these results with spectral clustering with respect to LLPD, we provide conditions under which the Laplacian eigengap statistic correctly determines the number of clusters for a large class of data sets, and prove guarantees on the labeling accuracy of the proposed algorithm. Our methods are quite general and provide performance guarantees for spectral clustering with any ultrametric. We also introduce an efficient, easy to implement approximation algorithm for the LLPD based on a multiscale analysis of adjacency graphs, which allows for the runtime of LLPD spectral clustering to be quasilinear in the number of data points. Full Article
ed Online Sufficient Dimension Reduction Through Sliced Inverse Regression By Published On :: 2020 Sliced inverse regression is an effective paradigm that achieves the goal of dimension reduction through replacing high dimensional covariates with a small number of linear combinations. It does not impose parametric assumptions on the dependence structure. More importantly, such a reduction of dimension is sufficient in that it does not cause loss of information. In this paper, we adapt the stationary sliced inverse regression to cope with the rapidly changing environments. We propose to implement sliced inverse regression in an online fashion. This online learner consists of two steps. In the first step we construct an online estimate for the kernel matrix; in the second step we propose two online algorithms, one is motivated by the perturbation method and the other is originated from the gradient descent optimization, to perform online singular value decomposition. The theoretical properties of this online learner are established. We demonstrate the numerical performance of this online learner through simulations and real world applications. All numerical studies confirm that this online learner performs as well as the batch learner. Full Article
ed Weighted Message Passing and Minimum Energy Flow for Heterogeneous Stochastic Block Models with Side Information By Published On :: 2020 We study the misclassification error for community detection in general heterogeneous stochastic block models (SBM) with noisy or partial label information. We establish a connection between the misclassification rate and the notion of minimum energy on the local neighborhood of the SBM. We develop an optimally weighted message passing algorithm to reconstruct labels for SBM based on the minimum energy flow and the eigenvectors of a certain Markov transition matrix. The general SBM considered in this paper allows for unequal-size communities, degree heterogeneity, and different connection probabilities among blocks. We focus on how to optimally weigh the message passing to improve misclassification. Full Article
ed Generalized probabilistic principal component analysis of correlated data By Published On :: 2020 Principal component analysis (PCA) is a well-established tool in machine learning and data processing. The principal axes in PCA were shown to be equivalent to the maximum marginal likelihood estimator of the factor loading matrix in a latent factor model for the observed data, assuming that the latent factors are independently distributed as standard normal distributions. However, the independence assumption may be unrealistic for many scenarios such as modeling multiple time series, spatial processes, and functional data, where the outcomes are correlated. In this paper, we introduce the generalized probabilistic principal component analysis (GPPCA) to study the latent factor model for multiple correlated outcomes, where each factor is modeled by a Gaussian process. Our method generalizes the previous probabilistic formulation of PCA (PPCA) by providing the closed-form maximum marginal likelihood estimator of the factor loadings and other parameters. Based on the explicit expression of the precision matrix in the marginal likelihood that we derived, the number of the computational operations is linear to the number of output variables. Furthermore, we also provide the closed-form expression of the marginal likelihood when other covariates are included in the mean structure. We highlight the advantage of GPPCA in terms of the practical relevance, estimation accuracy and computational convenience. Numerical studies of simulated and real data confirm the excellent finite-sample performance of the proposed approach. Full Article
ed Expectation Propagation as a Way of Life: A Framework for Bayesian Inference on Partitioned Data By Published On :: 2020 A common divide-and-conquer approach for Bayesian computation with big data is to partition the data, perform local inference for each piece separately, and combine the results to obtain a global posterior approximation. While being conceptually and computationally appealing, this method involves the problematic need to also split the prior for the local inferences; these weakened priors may not provide enough regularization for each separate computation, thus eliminating one of the key advantages of Bayesian methods. To resolve this dilemma while still retaining the generalizability of the underlying local inference method, we apply the idea of expectation propagation (EP) as a framework for distributed Bayesian inference. The central idea is to iteratively update approximations to the local likelihoods given the state of the other approximations and the prior. The present paper has two roles: we review the steps that are needed to keep EP algorithms numerically stable, and we suggest a general approach, inspired by EP, for approaching data partitioning problems in a way that achieves the computational benefits of parallelism while allowing each local update to make use of relevant information from the other sites. In addition, we demonstrate how the method can be applied in a hierarchical context to make use of partitioning of both data and parameters. The paper describes a general algorithmic framework, rather than a specific algorithm, and presents an example implementation for it. Full Article
ed Convergences of Regularized Algorithms and Stochastic Gradient Methods with Random Projections By Published On :: 2020 We study the least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space as a special case. We first investigate regularized algorithms adapted to a projection operator on a closed subspace of the Hilbert space. We prove convergence results with respect to variants of norms, under a capacity assumption on the hypothesis space and a regularity condition on the target function. As a result, we obtain optimal rates for regularized algorithms with randomized sketches, provided that the sketch dimension is proportional to the effective dimension up to a logarithmic factor. As a byproduct, we obtain similar results for Nystr"{o}m regularized algorithms. Our results provide optimal, distribution-dependent rates that do not have any saturation effect for sketched/Nystr"{o}m regularized algorithms, considering both the attainable and non-attainable cases, in the well-conditioned regimes. We then study stochastic gradient methods with projection over the subspace, allowing multi-pass over the data and minibatches, and we derive similar optimal statistical convergence results. Full Article
ed A Unified Framework for Structured Graph Learning via Spectral Constraints By Published On :: 2020 Graph learning from data is a canonical problem that has received substantial attention in the literature. Learning a structured graph is essential for interpretability and identification of the relationships among data. In general, learning a graph with a specific structure is an NP-hard combinatorial problem and thus designing a general tractable algorithm is challenging. Some useful structured graphs include connected, sparse, multi-component, bipartite, and regular graphs. In this paper, we introduce a unified framework for structured graph learning that combines Gaussian graphical model and spectral graph theory. We propose to convert combinatorial structural constraints into spectral constraints on graph matrices and develop an optimization framework based on block majorization-minimization to solve structured graph learning problem. The proposed algorithms are provably convergent and practically amenable for a number of graph based applications such as data clustering. Extensive numerical experiments with both synthetic and real data sets illustrate the effectiveness of the proposed algorithms. An open source R package containing the code for all the experiments is available at https://CRAN.R-project.org/package=spectralGraphTopology. Full Article
ed Distributed Feature Screening via Componentwise Debiasing By Published On :: 2020 Feature screening is a powerful tool in processing high-dimensional data. When the sample size N and the number of features p are both large, the implementation of classic screening methods can be numerically challenging. In this paper, we propose a distributed screening framework for big data setup. In the spirit of 'divide-and-conquer', the proposed framework expresses a correlation measure as a function of several component parameters, each of which can be distributively estimated using a natural U-statistic from data segments. With the component estimates aggregated, we obtain a final correlation estimate that can be readily used for screening features. This framework enables distributed storage and parallel computing and thus is computationally attractive. Due to the unbiased distributive estimation of the component parameters, the final aggregated estimate achieves a high accuracy that is insensitive to the number of data segments m. Under mild conditions, we show that the aggregated correlation estimator is as efficient as the centralized estimator in terms of the probability convergence bound and the mean squared error rate; the corresponding screening procedure enjoys sure screening property for a wide range of correlation measures. The promising performances of the new method are supported by extensive numerical examples. Full Article
ed Targeted Fused Ridge Estimation of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes By Published On :: 2020 We consider the problem of jointly estimating multiple inverse covariance matrices from high-dimensional data consisting of distinct classes. An $ell_2$-penalized maximum likelihood approach is employed. The suggested approach is flexible and generic, incorporating several other $ell_2$-penalized estimators as special cases. In addition, the approach allows specification of target matrices through which prior knowledge may be incorporated and which can stabilize the estimation procedure in high-dimensional settings. The result is a targeted fused ridge estimator that is of use when the precision matrices of the constituent classes are believed to chiefly share the same structure while potentially differing in a number of locations of interest. It has many applications in (multi)factorial study designs. We focus on the graphical interpretation of precision matrices with the proposed estimator then serving as a basis for integrative or meta-analytic Gaussian graphical modeling. Situations are considered in which the classes are defined by data sets and subtypes of diseases. The performance of the proposed estimator in the graphical modeling setting is assessed through extensive simulation experiments. Its practical usability is illustrated by the differential network modeling of 12 large-scale gene expression data sets of diffuse large B-cell lymphoma subtypes. The estimator and its related procedures are incorporated into the R-package rags2ridges. Full Article
ed On the consistency of graph-based Bayesian semi-supervised learning and the scalability of sampling algorithms By Published On :: 2020 This paper considers a Bayesian approach to graph-based semi-supervised learning. We show that if the graph parameters are suitably scaled, the graph-posteriors converge to a continuum limit as the size of the unlabeled data set grows. This consistency result has profound algorithmic implications: we prove that when consistency holds, carefully designed Markov chain Monte Carlo algorithms have a uniform spectral gap, independent of the number of unlabeled inputs. Numerical experiments illustrate and complement the theory. Full Article
ed The Maximum Separation Subspace in Sufficient Dimension Reduction with Categorical Response By Published On :: 2020 Sufficient dimension reduction (SDR) is a very useful concept for exploratory analysis and data visualization in regression, especially when the number of covariates is large. Many SDR methods have been proposed for regression with a continuous response, where the central subspace (CS) is the target of estimation. Various conditions, such as the linearity condition and the constant covariance condition, are imposed so that these methods can estimate at least a portion of the CS. In this paper we study SDR for regression and discriminant analysis with categorical response. Motivated by the exploratory analysis and data visualization aspects of SDR, we propose a new geometric framework to reformulate the SDR problem in terms of manifold optimization and introduce a new concept called Maximum Separation Subspace (MASES). The MASES naturally preserves the “sufficiency” in SDR without imposing additional conditions on the predictor distribution, and directly inspires a semi-parametric estimator. Numerical studies show MASES exhibits superior performance as compared with competing SDR methods in specific settings. Full Article
ed Generalized Nonbacktracking Bounds on the Influence By Published On :: 2020 This paper develops deterministic upper and lower bounds on the influence measure in a network, more precisely, the expected number of nodes that a seed set can influence in the independent cascade model. In particular, our bounds exploit r-nonbacktracking walks and Fortuin-Kasteleyn-Ginibre (FKG) type inequalities, and are computed by message passing algorithms. Further, we provide parameterized versions of the bounds that control the trade-off between efficiency and accuracy. Finally, the tightness of the bounds is illustrated on various network models. Full Article
ed On the Complexity Analysis of the Primal Solutions for the Accelerated Randomized Dual Coordinate Ascent By Published On :: 2020 Dual first-order methods are essential techniques for large-scale constrained convex optimization. However, when recovering the primal solutions, we need $T(epsilon^{-2})$ iterations to achieve an $epsilon$-optimal primal solution when we apply an algorithm to the non-strongly convex dual problem with $T(epsilon^{-1})$ iterations to achieve an $epsilon$-optimal dual solution, where $T(x)$ can be $x$ or $sqrt{x}$. In this paper, we prove that the iteration complexity of the primal solutions and dual solutions have the same $Oleft(frac{1}{sqrt{epsilon}} ight)$ order of magnitude for the accelerated randomized dual coordinate ascent. When the dual function further satisfies the quadratic functional growth condition, by restarting the algorithm at any period, we establish the linear iteration complexity for both the primal solutions and dual solutions even if the condition number is unknown. When applied to the regularized empirical risk minimization problem, we prove the iteration complexity of $Oleft(nlog n+sqrt{frac{n}{epsilon}} ight)$ in both primal space and dual space, where $n$ is the number of samples. Our result takes out the $left(log frac{1}{epsilon} ight)$ factor compared with the methods based on smoothing/regularization or Catalyst reduction. As far as we know, this is the first time that the optimal $Oleft(sqrt{frac{n}{epsilon}} ight)$ iteration complexity in the primal space is established for the dual coordinate ascent based stochastic algorithms. We also establish the accelerated linear complexity for some problems with nonsmooth loss, e.g., the least absolute deviation and SVM. Full Article
ed Graph-Dependent Implicit Regularisation for Distributed Stochastic Subgradient Descent By Published On :: 2020 We propose graph-dependent implicit regularisation strategies for synchronised distributed stochastic subgradient descent (Distributed SGD) for convex problems in multi-agent learning. Under the standard assumptions of convexity, Lipschitz continuity, and smoothness, we establish statistical learning rates that retain, up to logarithmic terms, single-machine serial statistical guarantees through implicit regularisation (step size tuning and early stopping) with appropriate dependence on the graph topology. Our approach avoids the need for explicit regularisation in decentralised learning problems, such as adding constraints to the empirical risk minimisation rule. Particularly for distributed methods, the use of implicit regularisation allows the algorithm to remain simple, without projections or dual methods. To prove our results, we establish graph-independent generalisation bounds for Distributed SGD that match the single-machine serial SGD setting (using algorithmic stability), and we establish graph-dependent optimisation bounds that are of independent interest. We present numerical experiments to show that the qualitative nature of the upper bounds we derive can be representative of real behaviours. Full Article
ed Greedy Attack and Gumbel Attack: Generating Adversarial Examples for Discrete Data By Published On :: 2020 We present a probabilistic framework for studying adversarial attacks on discrete data. Based on this framework, we derive a perturbation-based method, Greedy Attack, and a scalable learning-based method, Gumbel Attack, that illustrate various tradeoffs in the design of attacks. We demonstrate the effectiveness of these methods using both quantitative metrics and human evaluation on various state-of-the-art models for text classification, including a word-based CNN, a character-based CNN and an LSTM. As an example of our results, we show that the accuracy of character-based convolutional networks drops to the level of random selection by modifying only five characters through Greedy Attack. Full Article
ed Expected Policy Gradients for Reinforcement Learning By Published On :: 2020 We propose expected policy gradients (EPG), which unify stochastic policy gradients (SPG) and deterministic policy gradients (DPG) for reinforcement learning. Inspired by expected sarsa, EPG integrates (or sums) across actions when estimating the gradient, instead of relying only on the action in the sampled trajectory. For continuous action spaces, we first derive a practical result for Gaussian policies and quadratic critics and then extend it to a universal analytical method, covering a broad class of actors and critics, including Gaussian, exponential families, and policies with bounded support. For Gaussian policies, we introduce an exploration method that uses covariance proportional to the matrix exponential of the scaled Hessian of the critic with respect to the actions. For discrete action spaces, we derive a variant of EPG based on softmax policies. We also establish a new general policy gradient theorem, of which the stochastic and deterministic policy gradient theorems are special cases. Furthermore, we prove that EPG reduces the variance of the gradient estimates without requiring deterministic policies and with little computational overhead. Finally, we provide an extensive experimental evaluation of EPG and show that it outperforms existing approaches on multiple challenging control domains. Full Article
ed High-Dimensional Inference for Cluster-Based Graphical Models By Published On :: 2020 Motivated by modern applications in which one constructs graphical models based on a very large number of features, this paper introduces a new class of cluster-based graphical models, in which variable clustering is applied as an initial step for reducing the dimension of the feature space. We employ model assisted clustering, in which the clusters contain features that are similar to the same unobserved latent variable. Two different cluster-based Gaussian graphical models are considered: the latent variable graph, corresponding to the graphical model associated with the unobserved latent variables, and the cluster-average graph, corresponding to the vector of features averaged over clusters. Our study reveals that likelihood based inference for the latent graph, not analyzed previously, is analytically intractable. Our main contribution is the development and analysis of alternative estimation and inference strategies, for the precision matrix of an unobservable latent vector Z. We replace the likelihood of the data by an appropriate class of empirical risk functions, that can be specialized to the latent graphical model and to the simpler, but under-analyzed, cluster-average graphical model. The estimators thus derived can be used for inference on the graph structure, for instance on edge strength or pattern recovery. Inference is based on the asymptotic limits of the entry-wise estimates of the precision matrices associated with the conditional independence graphs under consideration. While taking the uncertainty induced by the clustering step into account, we establish Berry-Esseen central limit theorems for the proposed estimators. It is noteworthy that, although the clusters are estimated adaptively from the data, the central limit theorems regarding the entries of the estimated graphs are proved under the same conditions one would use if the clusters were known in advance. As an illustration of the usage of these newly developed inferential tools, we show that they can be reliably used for recovery of the sparsity pattern of the graphs we study, under FDR control, which is verified via simulation studies and an fMRI data analysis. These experimental results confirm the theoretically established difference between the two graph structures. Furthermore, the data analysis suggests that the latent variable graph, corresponding to the unobserved cluster centers, can help provide more insight into the understanding of the brain connectivity networks relative to the simpler, average-based, graph. Full Article
ed Fast Rates for General Unbounded Loss Functions: From ERM to Generalized Bayes By Published On :: 2020 We present new excess risk bounds for general unbounded loss functions including log loss and squared loss, where the distribution of the losses may be heavy-tailed. The bounds hold for general estimators, but they are optimized when applied to $eta$-generalized Bayesian, MDL, and empirical risk minimization estimators. In the case of log loss, the bounds imply convergence rates for generalized Bayesian inference under misspecification in terms of a generalization of the Hellinger metric as long as the learning rate $eta$ is set correctly. For general loss functions, our bounds rely on two separate conditions: the $v$-GRIP (generalized reversed information projection) conditions, which control the lower tail of the excess loss; and the newly introduced witness condition, which controls the upper tail. The parameter $v$ in the $v$-GRIP conditions determines the achievable rate and is akin to the exponent in the Tsybakov margin condition and the Bernstein condition for bounded losses, which the $v$-GRIP conditions generalize; favorable $v$ in combination with small model complexity leads to $ ilde{O}(1/n)$ rates. The witness condition allows us to connect the excess risk to an 'annealed' version thereof, by which we generalize several previous results connecting Hellinger and Rényi divergence to KL divergence. Full Article
ed Self-paced Multi-view Co-training By Published On :: 2020 Co-training is a well-known semi-supervised learning approach which trains classifiers on two or more different views and exchanges pseudo labels of unlabeled instances in an iterative way. During the co-training process, pseudo labels of unlabeled instances are very likely to be false especially in the initial training, while the standard co-training algorithm adopts a 'draw without replacement' strategy and does not remove these wrongly labeled instances from training stages. Besides, most of the traditional co-training approaches are implemented for two-view cases, and their extensions in multi-view scenarios are not intuitive. These issues not only degenerate their performance as well as available application range but also hamper their fundamental theory. Moreover, there is no optimization model to explain the objective a co-training process manages to optimize. To address these issues, in this study we design a unified self-paced multi-view co-training (SPamCo) framework which draws unlabeled instances with replacement. Two specified co-regularization terms are formulated to develop different strategies for selecting pseudo-labeled instances during training. Both forms share the same optimization strategy which is consistent with the iteration process in co-training and can be naturally extended to multi-view scenarios. A distributed optimization strategy is also introduced to train the classifier of each view in parallel to further improve the efficiency of the algorithm. Furthermore, the SPamCo algorithm is proved to be PAC learnable, supporting its theoretical soundness. Experiments conducted on synthetic, text categorization, person re-identification, image recognition and object detection data sets substantiate the superiority of the proposed method. Full Article
ed Generalized Optimal Matching Methods for Causal Inference By Published On :: 2020 We develop an encompassing framework for matching, covariate balancing, and doubly-robust methods for causal inference from observational data called generalized optimal matching (GOM). The framework is given by generalizing a new functional-analytical formulation of optimal matching, giving rise to the class of GOM methods, for which we provide a single unified theory to analyze tractability and consistency. Many commonly used existing methods are included in GOM and, using their GOM interpretation, can be extended to optimally and automatically trade off balance for variance and outperform their standard counterparts. As a subclass, GOM gives rise to kernel optimal matching (KOM), which, as supported by new theoretical and empirical results, is notable for combining many of the positive properties of other methods in one. KOM, which is solved as a linearly-constrained convex-quadratic optimization problem, inherits both the interpretability and model-free consistency of matching but can also achieve the $sqrt{n}$-consistency of well-specified regression and the bias reduction and robustness of doubly robust methods. In settings of limited overlap, KOM enables a very transparent method for interval estimation for partial identification and robust coverage. We demonstrate this in examples with both synthetic and real data. Full Article
ed Community-Based Group Graphical Lasso By Published On :: 2020 A new strategy for probabilistic graphical modeling is developed that draws parallels to community detection analysis. The method jointly estimates an undirected graph and homogeneous communities of nodes. The structure of the communities is taken into account when estimating the graph and at the same time, the structure of the graph is accounted for when estimating communities of nodes. The procedure uses a joint group graphical lasso approach with community detection-based grouping, such that some groups of edges co-occur in the estimated graph. The grouping structure is unknown and is estimated based on community detection algorithms. Theoretical derivations regarding graph convergence and sparsistency, as well as accuracy of community recovery are included, while the method's empirical performance is illustrated in an fMRI context, as well as with simulated examples. Full Article
ed Smoothed Nonparametric Derivative Estimation using Weighted Difference Quotients By Published On :: 2020 Derivatives play an important role in bandwidth selection methods (e.g., plug-ins), data analysis and bias-corrected confidence intervals. Therefore, obtaining accurate derivative information is crucial. Although many derivative estimation methods exist, the majority require a fixed design assumption. In this paper, we propose an effective and fully data-driven framework to estimate the first and second order derivative in random design. We establish the asymptotic properties of the proposed derivative estimator, and also propose a fast selection method for the tuning parameters. The performance and flexibility of the method is illustrated via an extensive simulation study. Full Article
ed WONDER: Weighted One-shot Distributed Ridge Regression in High Dimensions By Published On :: 2020 In many areas, practitioners need to analyze large data sets that challenge conventional single-machine computing. To scale up data analysis, distributed and parallel computing approaches are increasingly needed. Here we study a fundamental and highly important problem in this area: How to do ridge regression in a distributed computing environment? Ridge regression is an extremely popular method for supervised learning, and has several optimality properties, thus it is important to study. We study one-shot methods that construct weighted combinations of ridge regression estimators computed on each machine. By analyzing the mean squared error in a high-dimensional random-effects model where each predictor has a small effect, we discover several new phenomena. Infinite-worker limit: The distributed estimator works well for very large numbers of machines, a phenomenon we call 'infinite-worker limit'. Optimal weights: The optimal weights for combining local estimators sum to more than unity, due to the downward bias of ridge. Thus, all averaging methods are suboptimal. We also propose a new Weighted ONe-shot DistributEd Ridge regression algorithm (WONDER). We test WONDER in simulation studies and using the Million Song Dataset as an example. There it can save at least 100x in computation time, while nearly preserving test accuracy. Full Article
ed Estimation of a Low-rank Topic-Based Model for Information Cascades By Published On :: 2020 We consider the problem of estimating the latent structure of a social network based on the observed information diffusion events, or cascades, where the observations for a given cascade consist of only the timestamps of infection for infected nodes but not the source of the infection. Most of the existing work on this problem has focused on estimating a diffusion matrix without any structural assumptions on it. In this paper, we propose a novel model based on the intuition that an information is more likely to propagate among two nodes if they are interested in similar topics which are also prominent in the information content. In particular, our model endows each node with an influence vector (which measures how authoritative the node is on each topic) and a receptivity vector (which measures how susceptible the node is for each topic). We show how this node-topic structure can be estimated from the observed cascades, and prove the consistency of the estimator. Experiments on synthetic and real data demonstrate the improved performance and better interpretability of our model compared to existing state-of-the-art methods. Full Article
ed (1 + epsilon)-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets By Published On :: 2020 Anomaly detection is not an easy problem since distribution of anomalous samples is unknown a priori. We explore a novel method that gives a trade-off possibility between one-class and two-class approaches, and leads to a better performance on anomaly detection problems with small or non-representative anomalous samples. The method is evaluated using several data sets and compared to a set of conventional one-class and two-class approaches. Full Article
ed High-dimensional Gaussian graphical models on network-linked data By Published On :: 2020 Graphical models are commonly used to represent conditional dependence relationships between variables. There are multiple methods available for exploring them from high-dimensional data, but almost all of them rely on the assumption that the observations are independent and identically distributed. At the same time, observations connected by a network are becoming increasingly common, and tend to violate these assumptions. Here we develop a Gaussian graphical model for observations connected by a network with potentially different mean vectors, varying smoothly over the network. We propose an efficient estimation algorithm and demonstrate its effectiveness on both simulated and real data, obtaining meaningful and interpretable results on a statistics coauthorship network. We also prove that our method estimates both the inverse covariance matrix and the corresponding graph structure correctly under the assumption of network “cohesion”, which refers to the empirically observed phenomenon of network neighbors sharing similar traits. Full Article
ed GADMM: Fast and Communication Efficient Framework for Distributed Machine Learning By Published On :: 2020 When the data is distributed across multiple servers, lowering the communication cost between the servers (or workers) while solving the distributed learning problem is an important problem and is the focus of this paper. In particular, we propose a fast, and communication-efficient decentralized framework to solve the distributed machine learning (DML) problem. The proposed algorithm, Group Alternating Direction Method of Multipliers (GADMM) is based on the Alternating Direction Method of Multipliers (ADMM) framework. The key novelty in GADMM is that it solves the problem in a decentralized topology where at most half of the workers are competing for the limited communication resources at any given time. Moreover, each worker exchanges the locally trained model only with two neighboring workers, thereby training a global model with a lower amount of communication overhead in each exchange. We prove that GADMM converges to the optimal solution for convex loss functions, and numerically show that it converges faster and more communication-efficient than the state-of-the-art communication-efficient algorithms such as the Lazily Aggregated Gradient (LAG) and dual averaging, in linear and logistic regression tasks on synthetic and real datasets. Furthermore, we propose Dynamic GADMM (D-GADMM), a variant of GADMM, and prove its convergence under the time-varying network topology of the workers. Full Article
ed Oriented first passage percolation in the mean field limit By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Nicola Kistler, Adrien Schertzer, Marius A. Schmidt. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 414--425.Abstract: The Poisson clumping heuristic has lead Aldous to conjecture the value of the oriented first passage percolation on the hypercube in the limit of large dimensions. Aldous’ conjecture has been rigorously confirmed by Fill and Pemantle ( Ann. Appl. Probab. 3 (1993) 593–629) by means of a variance reduction trick. We present here a streamlined and, we believe, more natural proof based on ideas emerged in the study of Derrida’s random energy models. Full Article
ed Bayesian modeling and prior sensitivity analysis for zero–one augmented beta regression models with an application to psychometric data By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Danilo Covaes Nogarotto, Caio Lucidius Naberezny Azevedo, Jorge Luis Bazán. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 304--322.Abstract: The interest on the analysis of the zero–one augmented beta regression (ZOABR) model has been increasing over the last few years. In this work, we developed a Bayesian inference for the ZOABR model, providing some contributions, namely: we explored the use of Jeffreys-rule and independence Jeffreys prior for some of the parameters, performing a sensitivity study of prior choice, comparing the Bayesian estimates with the maximum likelihood ones and measuring the accuracy of the estimates under several scenarios of interest. The results indicate, in a general way, that: the Bayesian approach, under the Jeffreys-rule prior, was as accurate as the ML one. Also, different from other approaches, we use the predictive distribution of the response to implement Bayesian residuals. To further illustrate the advantages of our approach, we conduct an analysis of a real psychometric data set including a Bayesian residual analysis, where it is shown that misleading inference can be obtained when the data is transformed. That is, when the zeros and ones are transformed to suitable values and the usual beta regression model is considered, instead of the ZOABR model. Finally, future developments are discussed. Full Article
ed Random environment binomial thinning integer-valued autoregressive process with Poisson or geometric marginal By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Zhengwei Liu, Qi Li, Fukang Zhu. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 251--272.Abstract: To predict time series of counts with small values and remarkable fluctuations, an available model is the $r$ states random environment process based on the negative binomial thinning operator and the geometric marginal. However, we argue that the aforementioned model may suffer from the following two drawbacks. First, under the condition of no prior information, the overdispersed property of the geometric distribution may cause the predictions fluctuate greatly. Second, because of the constraints on the model parameters, some estimated parameters are close to zero in real-data examples, which may not objectively reveal the correlation relationship. For the first drawback, an $r$ states random environment process based on the binomial thinning operator and the Poisson marginal is introduced. For the second drawback, we propose a generalized $r$ states random environment integer-valued autoregressive model based on the binomial thinning operator to model fluctuations of data. Yule–Walker and conditional maximum likelihood estimates are considered and their performances are assessed via simulation studies. Two real-data sets are conducted to illustrate the better performances of the proposed models compared with some existing models. Full Article
ed Recent developments in complex and spatially correlated functional data By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Israel Martínez-Hernández, Marc G. Genton. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 204--229.Abstract: As high-dimensional and high-frequency data are being collected on a large scale, the development of new statistical models is being pushed forward. Functional data analysis provides the required statistical methods to deal with large-scale and complex data by assuming that data are continuous functions, for example, realizations of a continuous process (curves) or continuous random field (surfaces), and that each curve or surface is considered as a single observation. Here, we provide an overview of functional data analysis when data are complex and spatially correlated. We provide definitions and estimators of the first and second moments of the corresponding functional random variable. We present two main approaches: The first assumes that data are realizations of a functional random field, that is, each observation is a curve with a spatial component. We call them spatial functional data . The second approach assumes that data are continuous deterministic fields observed over time. In this case, one observation is a surface or manifold, and we call them surface time series . For these two approaches, we describe software available for the statistical analysis. We also present a data illustration, using a high-resolution wind speed simulated dataset, as an example of the two approaches. The functional data approach offers a new paradigm of data analysis, where the continuous processes or random fields are considered as a single entity. We consider this approach to be very valuable in the context of big data. Full Article
ed A message from the editorial board By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 203--203. Full Article
ed On estimating the location parameter of the selected exponential population under the LINEX loss function By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Mohd Arshad, Omer Abdalghani. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 167--182.Abstract: Suppose that $pi_{1},pi_{2},ldots ,pi_{k}$ be $k(geq2)$ independent exponential populations having unknown location parameters $mu_{1},mu_{2},ldots,mu_{k}$ and known scale parameters $sigma_{1},ldots,sigma_{k}$. Let $mu_{[k]}=max {mu_{1},ldots,mu_{k}}$. For selecting the population associated with $mu_{[k]}$, a class of selection rules (proposed by Arshad and Misra [ Statistical Papers 57 (2016) 605–621]) is considered. We consider the problem of estimating the location parameter $mu_{S}$ of the selected population under the criterion of the LINEX loss function. We consider three natural estimators $delta_{N,1},delta_{N,2}$ and $delta_{N,3}$ of $mu_{S}$, based on the maximum likelihood estimators, uniformly minimum variance unbiased estimator (UMVUE) and minimum risk equivariant estimator (MREE) of $mu_{i}$’s, respectively. The uniformly minimum risk unbiased estimator (UMRUE) and the generalized Bayes estimator of $mu_{S}$ are derived. Under the LINEX loss function, a general result for improving a location-equivariant estimator of $mu_{S}$ is derived. Using this result, estimator better than the natural estimator $delta_{N,1}$ is obtained. We also shown that the estimator $delta_{N,1}$ is dominated by the natural estimator $delta_{N,3}$. Finally, we perform a simulation study to evaluate and compare risk functions among various competing estimators of $mu_{S}$. Full Article
ed Application of weighted and unordered majorization orders in comparisons of parallel systems with exponentiated generalized gamma components By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Abedin Haidari, Amir T. Payandeh Najafabadi, Narayanaswamy Balakrishnan. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 150--166.Abstract: Consider two parallel systems, say $A$ and $B$, with respective lifetimes $T_{1}$ and $T_{2}$ wherein independent component lifetimes of each system follow exponentiated generalized gamma distribution with possibly different exponential shape and scale parameters. We show here that $T_{2}$ is smaller than $T_{1}$ with respect to the usual stochastic order (reversed hazard rate order) if the vector of logarithm (the main vector) of scale parameters of System $B$ is weakly weighted majorized by that of System $A$, and if the vector of exponential shape parameters of System $A$ is unordered mojorized by that of System $B$. By means of some examples, we show that the above results can not be extended to the hazard rate and likelihood ratio orders. However, when the scale parameters of each system divide into two homogeneous groups, we verify that the usual stochastic and reversed hazard rate orders can be extended, respectively, to the hazard rate and likelihood ratio orders. The established results complete and strengthen some of the known results in the literature. Full Article
ed Robust Bayesian model selection for heavy-tailed linear regression using finite mixtures By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Flávio B. Gonçalves, Marcos O. Prates, Victor Hugo Lachos. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 51--70.Abstract: In this paper, we present a novel methodology to perform Bayesian model selection in linear models with heavy-tailed distributions. We consider a finite mixture of distributions to model a latent variable where each component of the mixture corresponds to one possible model within the symmetrical class of normal independent distributions. Naturally, the Gaussian model is one of the possibilities. This allows for a simultaneous analysis based on the posterior probability of each model. Inference is performed via Markov chain Monte Carlo—a Gibbs sampler with Metropolis–Hastings steps for a class of parameters. Simulated examples highlight the advantages of this approach compared to a segregated analysis based on arbitrarily chosen model selection criteria. Examples with real data are presented and an extension to censored linear regression is introduced and discussed. Full Article
ed A joint mean-correlation modeling approach for longitudinal zero-inflated count data By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Weiping Zhang, Jiangli Wang, Fang Qian, Yu Chen. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 35--50.Abstract: Longitudinal zero-inflated count data are widely encountered in many fields, while modeling the correlation between measurements for the same subject is more challenge due to the lack of suitable multivariate joint distributions. This paper studies a novel mean-correlation modeling approach for longitudinal zero-inflated regression model, solving both problems of specifying joint distribution and parsimoniously modeling correlations with no constraint. The joint distribution of zero-inflated discrete longitudinal responses is modeled by a copula model whose correlation parameters are innovatively represented in hyper-spherical coordinates. To overcome the computational intractability in maximizing the full likelihood function of the model, we further propose a computationally efficient pairwise likelihood approach. We then propose separated mean and correlation regression models to model these key quantities, such modeling approach can also handle irregularly and possibly subject-specific times points. The resulting estimators are shown to be consistent and asymptotically normal. Data example and simulations support the effectiveness of the proposed approach. Full Article
ed Bootstrap-based testing inference in beta regressions By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Fábio P. Lima, Francisco Cribari-Neto. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 18--34.Abstract: We address the issue of performing testing inference in small samples in the class of beta regression models. We consider the likelihood ratio test and its standard bootstrap version. We also consider two alternative resampling-based tests. One of them uses the bootstrap test statistic replicates to numerically estimate a Bartlett correction factor that can be applied to the likelihood ratio test statistic. By doing so, we avoid estimation of quantities located in the tail of the likelihood ratio test statistic null distribution. The second alternative resampling-based test uses a fast double bootstrap scheme in which a single second level bootstrapping resample is performed for each first level bootstrap replication. It delivers accurate testing inferences at a computational cost that is considerably smaller than that of a standard double bootstrapping scheme. The Monte Carlo results we provide show that the standard likelihood ratio test tends to be quite liberal in small samples. They also show that the bootstrap tests deliver accurate testing inferences even when the sample size is quite small. An empirical application is also presented and discussed. Full Article