mix

Roadrash Remix

Комментарий автора: Back in early 2018, I had the idea to pair up Gunsmith Cats & Riding Bean with one of the trailers for Baby Driver. I was almost going to make it right then and there, but then I got wind of the kickstarter for the Gunsmith Cats bluray. With an HD remaster coming down the pipeline in late 2019, it didn't make sense to edit the video with inferior source footage (the Gunsmith Cats DVD wasn't exactly the greatest quality). Cut to January 2020, when the HD remaster finally ships out, I decided to rewatch Baby Driver to get myself in the mood to start editing. Going through the bonus features I came across the Mike Relm remix of Baby Driver and thought “Well this would be a lot more fun and exciting to edit than just the trailer.” So I switched mental gears and edited this instead. I may still edit the trailer somewhere down the road; but I want to edit some other things before I return to this concept, so we'll see. At any rate, this was one of the more fun videos I've edited in a long time and I think it shows. Hope you enjoy!

Информация
Автор: drewaconclusion
Аниме: Gunsmith Cats, Riding Bean
Музыка: Mike Relm - Baby Driver Remix

Подробнее




mix

End of the world? Close -- a mix-up with Sunday crossword

The crossword in Sunday's Arts & Books section was titled "The Last Sunday Crossword" and noted that according to the Mayan calendar, the world was going to end "this Friday, Dec. 21."




mix

Philipp Plein's fashion tribute to Kobe Bryant garners mixed reaction

Retailing for $2,070 and $3,150, respectively, the Philipp Plein tank top and hoodie are being sold to support the Mamba & Mambacita Sports Foundation, which was started by Lakers legend Kobe Bryant.




mix

Op-Ed: My immigrant parents lost their jobs, but the CARES Act won't help mixed-status families like mine

My immigrant parents lost their jobs because of COVID-19. The CARES Act won't help because they're in the U.S. illegally. At 22, I was the breadwinner.




mix

Bop to Beyoncé and Megan Thee Stallion's new 'Savage' remix for coronavirus relief

Proceeds from Megan Thee Stallion and Beyoncé's new "Savage" remix will go toward coronavirus relief efforts in the artists' hometown of Houston.




mix

RTS Materials Testing Technician- Hot Mix Asphalt (HMA)

JOB RESPONSIBILITIES Laboratory and field testing of asphalt materials and test data analysis; providing test data/analysis to the materials production branch, paving contractor, customer, and recommend and implement improvements to the production process. Support the materials branches and pav




mix

IndyStar staffers try McDonald's new apple pie, and the results are mixed

An iconic fast-food item is going through its midlife crisis. But is McDonald's new apple pie really living its best life in its new body?

      




mix

5 ways Paramore mixed past and present at the Lawn

Paramore played the Farm Bureau Insurance Lawn at White River State Park Sunday, July 1. Here's a recap.

      




mix

Highly Selective Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide Microcolumns

Martin R. Larsen
Jul 1, 2005; 4:873-886
Technology





mix

Orthogonal regression method for observations from a mixture

R. E. Maĭboroda, G. V. Navara and O. V. Sugakova
Theor. Probability and Math. Statist. 99 (2020), 169-188.
Abstract, references and article information




mix

How nonprofits can boost donations using the marketing mix

(American Marketing Association) Nonprofits may better meet their missions by learning to effectively employ the entirety of the marketing mix to attract individuals to available donation opportunities.




mix

Sources: Giants add Parra to outfield mix

As they continue to await a resolution to the Bryce Harper sweepstakes, the Giants augmented their outfield depth by signing veteran Gerardo Parra to a Minor League deal Tuesday, sources confirmed to MLB.com's Jon Paul Morosi and Mark Feinsand.




mix

Randeen Thomas: The Man with the ‘Mix’

IF MIXOLOGY is artistry in motion, then consider the instruments as the canvas, the ingredients as the paint, and Randeen Thomas as the Pablo Picasso of his time, giving spirits new life. Some might be familiar with ‘The Big Belly Bartender’,...




mix

On the Move in a War Zone: Mixed Migration Flows to and through Yemen

War and impending famine in Yemen have captured significant attention. Yet often overlooked is the country’s role as the epicenter of one of the world’s busiest mixed migration routes, linking Africa, Asia, and Europe. This article examines the migration pathways to and through the country, push and pull factors, and the impact of civil war on human movement.




mix

Can Return Migration Revitalize the Baltics? Estonia, Latvia, and Lithuania Engage Their Diasporas, with Mixed Results

Faced with high emigration rates and shrinking, aging populations, the Baltic states—Estonia, Latvia, and Lithuania—are exploring different ways to lure back nationals who have emigrated and establish or solidify ties with members of the diaspora. Of the three countries, Estonia is proving the most successful, while Latvia appears to be ignoring the looming demographic crisis and lacks an immigration plan.




mix

MPI’s Transatlantic Council on Migration Launches Research Series on Lasting Effects of Mixed Migration Flows

First report examines Canadian challenges & solutions in housing Syrian refugees

WASHINGTON — Four years after the peak of the 2015–16 migration and refugee crisis in Europe and amid swelling arrivals at the U.S.-Mexico border and elsewhere, new evidence sheds light on how well countries have responded to an unprecedented surge in mixed flows of humanitarian, economic and family migrants.




mix

Mix tape / Jane Sanderson.

First loves -- Fiction.




mix

Mixed feelings around hockey about holding NHL draft early

The NFL's successful virtual draft and uncertainty surrounding the resumption of hockey this season have raised the possibility of an NHL draft held before the Stanley Cup Final. After postponing its draft scheduled for June 26-27 in light of the coronavirus pandemic, the NHL is considering having it earlier in June with the season in an indefinite suspension. Unlike the NFL, which held its draft as usual in the middle of its offseason, the NHL would face several wrinkles going forward with a draft held before the season is complete: Teams would not be able to trade players, there would be a lack of clarity over next year's salary cap and the draft order could be determined before all games are played.




mix

Statistical convergence of the EM algorithm on Gaussian mixture models

Ruofei Zhao, Yuanzhi Li, Yuekai Sun.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 632--660.

Abstract:
We study the convergence behavior of the Expectation Maximization (EM) algorithm on Gaussian mixture models with an arbitrary number of mixture components and mixing weights. We show that as long as the means of the components are separated by at least $Omega (sqrt{min {M,d}})$, where $M$ is the number of components and $d$ is the dimension, the EM algorithm converges locally to the global optimum of the log-likelihood. Further, we show that the convergence rate is linear and characterize the size of the basin of attraction to the global optimum.




mix

Adaptive estimation in the supremum norm for semiparametric mixtures of regressions

Heiko Werner, Hajo Holzmann, Pierre Vandekerkhove.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1816--1871.

Abstract:
We investigate a flexible two-component semiparametric mixture of regressions model, in which one of the conditional component distributions of the response given the covariate is unknown but assumed symmetric about a location parameter, while the other is specified up to a scale parameter. The location and scale parameters together with the proportion are allowed to depend nonparametrically on covariates. After settling identifiability, we provide local M-estimators for these parameters which converge in the sup-norm at the optimal rates over Hölder-smoothness classes. We also introduce an adaptive version of the estimators based on the Lepski-method. Sup-norm bounds show that the local M-estimator properly estimates the functions globally, and are the first step in the construction of useful inferential tools such as confidence bands. In our analysis we develop general results about rates of convergence in the sup-norm as well as adaptive estimation of local M-estimators which might be of some independent interest, and which can also be applied in various other settings. We investigate the finite-sample behaviour of our method in a simulation study, and give an illustration to a real data set from bioinformatics.




mix

A Bayesian sparse finite mixture model for clustering data from a heterogeneous population

Erlandson F. Saraiva, Adriano K. Suzuki, Luís A. Milan.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 323--344.

Abstract:
In this paper, we introduce a Bayesian approach for clustering data using a sparse finite mixture model (SFMM). The SFMM is a finite mixture model with a large number of components $k$ previously fixed where many components can be empty. In this model, the number of components $k$ can be interpreted as the maximum number of distinct mixture components. Then, we explore the use of a prior distribution for the weights of the mixture model that take into account the possibility that the number of clusters $k_{mathbf{c}}$ (e.g., nonempty components) can be random and smaller than the number of components $k$ of the finite mixture model. In order to determine clusters we develop a MCMC algorithm denominated Split-Merge allocation sampler. In this algorithm, the split-merge strategy is data-driven and was inserted within the algorithm in order to increase the mixing of the Markov chain in relation to the number of clusters. The performance of the method is verified using simulated datasets and three real datasets. The first real data set is the benchmark galaxy data, while second and third are the publicly available data set on Enzyme and Acidity, respectively.




mix

Symmetrical and asymmetrical mixture autoregressive processes

Mohsen Maleki, Arezo Hajrajabi, Reinaldo B. Arellano-Valle.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 273--290.

Abstract:
In this paper, we study the finite mixtures of autoregressive processes assuming that the distribution of innovations (errors) belongs to the class of scale mixture of skew-normal (SMSN) distributions. The SMSN distributions allow a simultaneous modeling of the existence of outliers, heavy tails and asymmetries in the distribution of innovations. Therefore, a statistical methodology based on the SMSN family allows us to use a robust modeling on some non-linear time series with great flexibility, to accommodate skewness, heavy tails and heterogeneity simultaneously. The existence of convenient hierarchical representations of the SMSN distributions facilitates also the implementation of an ECME-type of algorithm to perform the likelihood inference in the considered model. Simulation studies and the application to a real data set are finally presented to illustrate the usefulness of the proposed model.




mix

Robust Bayesian model selection for heavy-tailed linear regression using finite mixtures

Flávio B. Gonçalves, Marcos O. Prates, Victor Hugo Lachos.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 51--70.

Abstract:
In this paper, we present a novel methodology to perform Bayesian model selection in linear models with heavy-tailed distributions. We consider a finite mixture of distributions to model a latent variable where each component of the mixture corresponds to one possible model within the symmetrical class of normal independent distributions. Naturally, the Gaussian model is one of the possibilities. This allows for a simultaneous analysis based on the posterior probability of each model. Inference is performed via Markov chain Monte Carlo—a Gibbs sampler with Metropolis–Hastings steps for a class of parameters. Simulated examples highlight the advantages of this approach compared to a segregated analysis based on arbitrarily chosen model selection criteria. Examples with real data are presented and an extension to censored linear regression is introduced and discussed.




mix

Keeping the balance—Bridge sampling for marginal likelihood estimation in finite mixture, mixture of experts and Markov mixture models

Sylvia Frühwirth-Schnatter.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 706--733.

Abstract:
Finite mixture models and their extensions to Markov mixture and mixture of experts models are very popular in analysing data of various kind. A challenge for these models is choosing the number of components based on marginal likelihoods. The present paper suggests two innovative, generic bridge sampling estimators of the marginal likelihood that are based on constructing balanced importance densities from the conditional densities arising during Gibbs sampling. The full permutation bridge sampling estimator is derived from considering all possible permutations of the mixture labels for a subset of these densities. For the double random permutation bridge sampling estimator, two levels of random permutations are applied, first to permute the labels of the MCMC draws and second to randomly permute the labels of the conditional densities arising during Gibbs sampling. Various applications show very good performance of these estimators in comparison to importance and to reciprocal importance sampling estimators derived from the same importance densities.




mix

The coreset variational Bayes (CVB) algorithm for mixture analysis

Qianying Liu, Clare A. McGrory, Peter W. J. Baxter.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 267--279.

Abstract:
The pressing need for improved methods for analysing and coping with big data has opened up a new area of research for statisticians. Image analysis is an area where there is typically a very large number of data points to be processed per image, and often multiple images are captured over time. These issues make it challenging to design methodology that is reliable and yet still efficient enough to be of practical use. One promising emerging approach for this problem is to reduce the amount of data that actually has to be processed by extracting what we call coresets from the full dataset; analysis is then based on the coreset rather than the whole dataset. Coresets are representative subsamples of data that are carefully selected via an adaptive sampling approach. We propose a new approach called coreset variational Bayes (CVB) for mixture modelling; this is an algorithm which can perform a variational Bayes analysis of a dataset based on just an extracted coreset of the data. We apply our algorithm to weed image analysis.




mix

Semi-parametric estimation for conditional independence multivariate finite mixture models

Didier Chauveau, David R. Hunter, Michael Levine.

Source: Statistics Surveys, Volume 9, 1--31.

Abstract:
The conditional independence assumption for nonparametric multivariate finite mixture models, a weaker form of the well-known conditional independence assumption for random effects models for longitudinal data, is the subject of an increasing number of theoretical and algorithmic developments in the statistical literature. After presenting a survey of this literature, including an in-depth discussion of the all-important identifiability results, this article describes and extends an algorithm for estimation of the parameters in these models. The algorithm works for any number of components in three or more dimensions. It possesses a descent property and can be easily adapted to situations where the data are grouped in blocks of conditionally independent variables. We discuss how to adapt this algorithm to various location-scale models that link component densities, and we even adapt it to a particular class of univariate mixture problems in which the components are assumed symmetric. We give a bandwidth selection procedure for our algorithm. Finally, we demonstrate the effectiveness of our algorithm using a simulation study and two psychometric datasets.




mix

Finite mixture models and model-based clustering

Volodymyr Melnykov, Ranjan Maitra

Source: Statist. Surv., Volume 4, 80--116.

Abstract:
Finite mixture models have a long history in statistics, having been used to model population heterogeneity, generalize distributional assumptions, and lately, for providing a convenient yet formal framework for clustering and classification. This paper provides a detailed review into mixture models and model-based clustering. Recent trends as well as open problems in the area are also discussed.




mix

How many modes can a constrained Gaussian mixture have?. (arXiv:2005.01580v2 [math.ST] UPDATED)

We show, by an explicit construction, that a mixture of univariate Gaussians with variance 1 and means in $[-A,A]$ can have $Omega(A^2)$ modes. This disproves a recent conjecture of Dytso, Yagli, Poor and Shamai [IEEE Trans. Inform. Theory, Apr. 2020], who showed that such a mixture can have at most $O(A^2)$ modes and surmised that the upper bound could be improved to $O(A)$. Our result holds even if an additional variance constraint is imposed on the mixing distribution. Extending the result to higher dimensions, we exhibit a mixture of Gaussians in $mathbb{R}^d$, with identity covariances and means inside $[-A,A]^d$, that has $Omega(A^{2d})$ modes.




mix

Convergence and inference for mixed Poisson random sums. (arXiv:2005.03187v1 [math.PR])

In this paper we obtain the limit distribution for partial sums with a random number of terms following a class of mixed Poisson distributions. The resulting weak limit is a mixing between a normal distribution and an exponential family, which we call by normal exponential family (NEF) laws. A new stability concept is introduced and a relationship between {alpha}-stable distributions and NEF laws is established. We propose estimation of the parameters of the NEF models through the method of moments and also by the maximum likelihood method, which is performed via an Expectation-Maximization algorithm. Monte Carlo simulation studies are addressed to check the performance of the proposed estimators and an empirical illustration on financial market is presented.




mix

mgm: Estimating Time-Varying Mixed Graphical Models in High-Dimensional Data

We present the R package mgm for the estimation of k-order mixed graphical models (MGMs) and mixed vector autoregressive (mVAR) models in high-dimensional data. These are a useful extensions of graphical models for only one variable type, since data sets consisting of mixed types of variables (continuous, count, categorical) are ubiquitous. In addition, we allow to relax the stationarity assumption of both models by introducing time-varying versions of MGMs and mVAR models based on a kernel weighting approach. Time-varying models offer a rich description of temporally evolving systems and allow to identify external influences on the model structure such as the impact of interventions. We provide the background of all implemented methods and provide fully reproducible examples that illustrate how to use the package.




mix

Mixed plantations of eucalyptus and leguminous trees : soil, microbiology and ecosystem services

9783030323653 (electronic bk.)






mix

An operator theoretic approach to nonparametric mixture models

Robert A. Vandermeulen, Clayton D. Scott.

Source: The Annals of Statistics, Volume 47, Number 5, 2704--2733.

Abstract:
When estimating finite mixture models, it is common to make assumptions on the mixture components, such as parametric assumptions. In this work, we make no distributional assumptions on the mixture components and instead assume that observations from the mixture model are grouped, such that observations in the same group are known to be drawn from the same mixture component. We precisely characterize the number of observations $n$ per group needed for the mixture model to be identifiable, as a function of the number $m$ of mixture components. In addition to our assumption-free analysis, we also study the settings where the mixture components are either linearly independent or jointly irreducible. Furthermore, our analysis considers two kinds of identifiability, where the mixture model is the simplest one explaining the data, and where it is the only one. As an application of these results, we precisely characterize identifiability of multinomial mixture models. Our analysis relies on an operator-theoretic framework that associates mixture models in the grouped-sample setting with certain infinite-dimensional tensors. Based on this framework, we introduce a general spectral algorithm for recovering the mixture components.




mix

Bayesian mixed effects models for zero-inflated compositions in microbiome data analysis

Boyu Ren, Sergio Bacallado, Stefano Favaro, Tommi Vatanen, Curtis Huttenhower, Lorenzo Trippa.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 494--517.

Abstract:
Detecting associations between microbial compositions and sample characteristics is one of the most important tasks in microbiome studies. Most of the existing methods apply univariate models to single microbial species separately, with adjustments for multiple hypothesis testing. We propose a Bayesian analysis for a generalized mixed effects linear model tailored to this application. The marginal prior on each microbial composition is a Dirichlet process, and dependence across compositions is induced through a linear combination of individual covariates, such as disease biomarkers or the subject’s age, and latent factors. The latent factors capture residual variability and their dimensionality is learned from the data in a fully Bayesian procedure. The proposed model is tested in data analyses and simulation studies with zero-inflated compositions. In these settings and within each sample, a large proportion of counts per microbial species are equal to zero. In our Bayesian model a priori the probability of compositions with absent microbial species is strictly positive. We propose an efficient algorithm to sample from the posterior and visualizations of model parameters which reveal associations between covariates and microbial compositions. We evaluate the proposed method in simulation studies, and then analyze a microbiome dataset for infants with type 1 diabetes which contains a large proportion of zeros in the sample-specific microbial compositions.




mix

Feature selection for generalized varying coefficient mixed-effect models with application to obesity GWAS

Wanghuan Chu, Runze Li, Jingyuan Liu, Matthew Reimherr.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 276--298.

Abstract:
Motivated by an empirical analysis of data from a genome-wide association study on obesity, measured by the body mass index (BMI), we propose a two-step gene-detection procedure for generalized varying coefficient mixed-effects models with ultrahigh dimensional covariates. The proposed procedure selects significant single nucleotide polymorphisms (SNPs) impacting the mean BMI trend, some of which have already been biologically proven to be “fat genes.” The method also discovers SNPs that significantly influence the age-dependent variability of BMI. The proposed procedure takes into account individual variations of genetic effects and can also be directly applied to longitudinal data with continuous, binary or count responses. We employ Monte Carlo simulation studies to assess the performance of the proposed method and further carry out causal inference for the selected SNPs.




mix

Estimating the health effects of environmental mixtures using Bayesian semiparametric regression and sparsity inducing priors

Joseph Antonelli, Maitreyi Mazumdar, David Bellinger, David Christiani, Robert Wright, Brent Coull.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 257--275.

Abstract:
Humans are routinely exposed to mixtures of chemical and other environmental factors, making the quantification of health effects associated with environmental mixtures a critical goal for establishing environmental policy sufficiently protective of human health. The quantification of the effects of exposure to an environmental mixture poses several statistical challenges. It is often the case that exposure to multiple pollutants interact with each other to affect an outcome. Further, the exposure-response relationship between an outcome and some exposures, such as some metals, can exhibit complex, nonlinear forms, since some exposures can be beneficial and detrimental at different ranges of exposure. To estimate the health effects of complex mixtures, we propose a flexible Bayesian approach that allows exposures to interact with each other and have nonlinear relationships with the outcome. We induce sparsity using multivariate spike and slab priors to determine which exposures are associated with the outcome and which exposures interact with each other. The proposed approach is interpretable, as we can use the posterior probabilities of inclusion into the model to identify pollutants that interact with each other. We utilize our approach to study the impact of exposure to metals on child neurodevelopment in Bangladesh and find a nonlinear, interactive relationship between arsenic and manganese.




mix

Microsimulation model calibration using incremental mixture approximate Bayesian computation

Carolyn M. Rutter, Jonathan Ozik, Maria DeYoreo, Nicholson Collier.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2189--2212.

Abstract:
Microsimulation models (MSMs) are used to inform policy by predicting population-level outcomes under different scenarios. MSMs simulate individual-level event histories that mark the disease process (such as the development of cancer) and the effect of policy actions (such as screening) on these events. MSMs often have many unknown parameters; calibration is the process of searching the parameter space to select parameters that result in accurate MSM prediction of a wide range of targets. We develop Incremental Mixture Approximate Bayesian Computation (IMABC) for MSM calibration which results in a simulated sample from the posterior distribution of model parameters given calibration targets. IMABC begins with a rejection-based ABC step, drawing a sample of points from the prior distribution of model parameters and accepting points that result in simulated targets that are near observed targets. Next, the sample is iteratively updated by drawing additional points from a mixture of multivariate normal distributions and accepting points that result in accurate predictions. Posterior estimates are obtained by weighting the final set of accepted points to account for the adaptive sampling scheme. We demonstrate IMABC by calibrating CRC-SPIN 2.0, an updated version of a MSM for colorectal cancer (CRC) that has been used to inform national CRC screening guidelines.




mix

Prediction of small area quantiles for the conservation effects assessment project using a mixed effects quantile regression model

Emily Berg, Danhyang Lee.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2158--2188.

Abstract:
Quantiles of the distributions of several measures of erosion are important parameters in the Conservation Effects Assessment Project, a survey intended to quantify soil and nutrient loss on crop fields. Because sample sizes for domains of interest are too small to support reliable direct estimators, model based methods are needed. Quantile regression is appealing for CEAP because finding a single family of parametric models that adequately describes the distributions of all variables is difficult and small area quantiles are parameters of interest. We construct empirical Bayes predictors and bootstrap mean squared error estimators based on the linearly interpolated generalized Pareto distribution (LIGPD). We apply the procedures to predict county-level quantiles for four types of erosion in Wisconsin and validate the procedures through simulation.




mix

Reliable clustering of Bernoulli mixture models

Amir Najafi, Seyed Abolfazl Motahari, Hamid R. Rabiee.

Source: Bernoulli, Volume 26, Number 2, 1535--1559.

Abstract:
A Bernoulli Mixture Model (BMM) is a finite mixture of random binary vectors with independent dimensions. The problem of clustering BMM data arises in a variety of real-world applications, ranging from population genetics to activity analysis in social networks. In this paper, we analyze the clusterability of BMMs from a theoretical perspective, when the number of clusters is unknown. In particular, we stipulate a set of conditions on the sample complexity and dimension of the model in order to guarantee the Probably Approximately Correct (PAC)-clusterability of a dataset. To the best of our knowledge, these findings are the first non-asymptotic bounds on the sample complexity of learning or clustering BMMs.




mix

Robust estimation of mixing measures in finite mixture models

Nhat Ho, XuanLong Nguyen, Ya’acov Ritov.

Source: Bernoulli, Volume 26, Number 2, 828--857.

Abstract:
In finite mixture models, apart from underlying mixing measure, true kernel density function of each subpopulation in the data is, in many scenarios, unknown. Perhaps the most popular approach is to choose some kernel functions that we empirically believe our data are generated from and use these kernels to fit our models. Nevertheless, as long as the chosen kernel and the true kernel are different, statistical inference of mixing measure under this setting will be highly unstable. To overcome this challenge, we propose flexible and efficient robust estimators of the mixing measure in these models, which are inspired by the idea of minimum Hellinger distance estimator, model selection criteria, and superefficiency phenomenon. We demonstrate that our estimators consistently recover the true number of components and achieve the optimal convergence rates of parameter estimation under both the well- and misspecified kernel settings for any fixed bandwidth. These desirable asymptotic properties are illustrated via careful simulation studies with both synthetic and real data.




mix

Bayesian Quantile Regression with Mixed Discrete and Nonignorable Missing Covariates

Zhi-Qiang Wang, Nian-Sheng Tang.

Source: Bayesian Analysis, Volume 15, Number 2, 579--604.

Abstract:
Bayesian inference on quantile regression (QR) model with mixed discrete and non-ignorable missing covariates is conducted by reformulating QR model as a hierarchical structure model. A probit regression model is adopted to specify missing covariate mechanism. A hybrid algorithm combining the Gibbs sampler and the Metropolis-Hastings algorithm is developed to simultaneously produce Bayesian estimates of unknown parameters and latent variables as well as their corresponding standard errors. Bayesian variable selection method is proposed to recognize significant covariates. A Bayesian local influence procedure is presented to assess the effect of minor perturbations to the data, priors and sampling distributions on posterior quantities of interest. Several simulation studies and an example are presented to illustrate the proposed methodologies.




mix

Function-Specific Mixing Times and Concentration Away from Equilibrium

Maxim Rabinovich, Aaditya Ramdas, Michael I. Jordan, Martin J. Wainwright.

Source: Bayesian Analysis, Volume 15, Number 2, 505--532.

Abstract:
Slow mixing is the central hurdle is applications of Markov chains, especially those used for Monte Carlo approximations (MCMC). In the setting of Bayesian inference, it is often only of interest to estimate the stationary expectations of a small set of functions, and so the usual definition of mixing based on total variation convergence may be too conservative. Accordingly, we introduce function-specific analogs of mixing times and spectral gaps, and use them to prove Hoeffding-like function-specific concentration inequalities. These results show that it is possible for empirical expectations of functions to concentrate long before the underlying chain has mixed in the classical sense, and we show that the concentration rates we achieve are optimal up to constants. We use our techniques to derive confidence intervals that are sharper than those implied by both classical Markov-chain Hoeffding bounds and Berry-Esseen-corrected central limit theorem (CLT) bounds. For applications that require testing, rather than point estimation, we show similar improvements over recent sequential testing results for MCMC. We conclude by applying our framework to real-data examples of MCMC, providing evidence that our theory is both accurate and relevant to practice.




mix

Determinantal Point Process Mixtures Via Spectral Density Approach

Ilaria Bianchini, Alessandra Guglielmi, Fernando A. Quintana.

Source: Bayesian Analysis, Volume 15, Number 1, 187--214.

Abstract:
We consider mixture models where location parameters are a priori encouraged to be well separated. We explore a class of determinantal point process (DPP) mixture models, which provide the desired notion of separation or repulsion. Instead of using the rather restrictive case where analytical results are partially available, we adopt a spectral representation from which approximations to the DPP density functions can be readily computed. For the sake of concreteness the presentation focuses on a power exponential spectral density, but the proposed approach is in fact quite general. We later extend our model to incorporate covariate information in the likelihood and also in the assignment to mixture components, yielding a trade-off between repulsiveness of locations in the mixtures and attraction among subjects with similar covariates. We develop full Bayesian inference, and explore model properties and posterior behavior using several simulation scenarios and data illustrations. Supplementary materials for this article are available online (Bianchini et al., 2019).




mix

Adaptive Bayesian Nonparametric Regression Using a Kernel Mixture of Polynomials with Application to Partial Linear Models

Fangzheng Xie, Yanxun Xu.

Source: Bayesian Analysis, Volume 15, Number 1, 159--186.

Abstract:
We propose a kernel mixture of polynomials prior for Bayesian nonparametric regression. The regression function is modeled by local averages of polynomials with kernel mixture weights. We obtain the minimax-optimal contraction rate of the full posterior distribution up to a logarithmic factor by estimating metric entropies of certain function classes. Under the assumption that the degree of the polynomials is larger than the unknown smoothness level of the true function, the posterior contraction behavior can adapt to this smoothness level provided an upper bound is known. We also provide a frequentist sieve maximum likelihood estimator with a near-optimal convergence rate. We further investigate the application of the kernel mixture of polynomials to partial linear models and obtain both the near-optimal rate of contraction for the nonparametric component and the Bernstein-von Mises limit (i.e., asymptotic normality) of the parametric component. The proposed method is illustrated with numerical examples and shows superior performance in terms of computational efficiency, accuracy, and uncertainty quantification compared to the local polynomial regression, DiceKriging, and the robust Gaussian stochastic process.




mix

Bayesian Zero-Inflated Negative Binomial Regression Based on Pólya-Gamma Mixtures

Brian Neelon.

Source: Bayesian Analysis, Volume 14, Number 3, 849--875.

Abstract:
Motivated by a study examining spatiotemporal patterns in inpatient hospitalizations, we propose an efficient Bayesian approach for fitting zero-inflated negative binomial models. To facilitate posterior sampling, we introduce a set of latent variables that are represented as scale mixtures of normals, where the precision terms follow independent Pólya-Gamma distributions. Conditional on the latent variables, inference proceeds via straightforward Gibbs sampling. For fixed-effects models, our approach is comparable to existing methods. However, our model can accommodate more complex data structures, including multivariate and spatiotemporal data, settings in which current approaches often fail due to computational challenges. Using simulation studies, we highlight key features of the method and compare its performance to other estimation procedures. We apply the approach to a spatiotemporal analysis examining the number of annual inpatient admissions among United States veterans with type 2 diabetes.




mix

Low Information Omnibus (LIO) Priors for Dirichlet Process Mixture Models

Yushu Shi, Michael Martens, Anjishnu Banerjee, Purushottam Laud.

Source: Bayesian Analysis, Volume 14, Number 3, 677--702.

Abstract:
Dirichlet process mixture (DPM) models provide flexible modeling for distributions of data as an infinite mixture of distributions from a chosen collection. Specifying priors for these models in individual data contexts can be challenging. In this paper, we introduce a scheme which requires the investigator to specify only simple scaling information. This is used to transform the data to a fixed scale on which a low information prior is constructed. Samples from the posterior with the rescaled data are transformed back for inference on the original scale. The low information prior is selected to provide a wide variety of components for the DPM to generate flexible distributions for the data on the fixed scale. The method can be applied to all DPM models with kernel functions closed under a suitable scaling transformation. Construction of the low information prior, however, is kernel dependent. Using DPM-of-Gaussians and DPM-of-Weibulls models as examples, we show that the method provides accurate estimates of a diverse collection of distributions that includes skewed, multimodal, and highly dispersed members. With the recommended priors, repeated data simulations show performance comparable to that of standard empirical estimates. Finally, we show weak convergence of posteriors with the proposed priors for both kernels considered.




mix

Analysis of the Maximal a Posteriori Partition in the Gaussian Dirichlet Process Mixture Model

Łukasz Rajkowski.

Source: Bayesian Analysis, Volume 14, Number 2, 477--494.

Abstract:
Mixture models are a natural choice in many applications, but it can be difficult to place an a priori upper bound on the number of components. To circumvent this, investigators are turning increasingly to Dirichlet process mixture models (DPMMs). It is therefore important to develop an understanding of the strengths and weaknesses of this approach. This work considers the MAP (maximum a posteriori) clustering for the Gaussian DPMM (where the cluster means have Gaussian distribution and, for each cluster, the observations within the cluster have Gaussian distribution). Some desirable properties of the MAP partition are proved: ‘almost disjointness’ of the convex hulls of clusters (they may have at most one point in common) and (with natural assumptions) the comparability of sizes of those clusters that intersect any fixed ball with the number of observations (as the latter goes to infinity). Consequently, the number of such clusters remains bounded. Furthermore, if the data arises from independent identically distributed sampling from a given distribution with bounded support then the asymptotic MAP partition of the observation space maximises a function which has a straightforward expression, which depends only on the within-group covariance parameter. As the operator norm of this covariance parameter decreases, the number of clusters in the MAP partition becomes arbitrarily large, which may lead to the overestimation of the number of mixture components.