arch HARMAN and Tsinghua University Establish Joint Research Lab for Automotive Innovation By news.harman.com Published On :: Mon, 21 Apr 2014 12:30:00 GMT AUTO CHINA 2014, BEIJING -- Harman International Industries, Inc. (NYSE:HAR), the premium global audio and infotainment group, announced today it has entered into an agreement with China’s Tsinghua University to establish a new joint research laboratory focused on creating disruptive innovations for future vehicles. Full Article
arch UK royal Archie celebrates first birthday with story from mum Meghan By feeds.reuters.com Published On :: Wed, 06 May 2020 19:39:29 -0400 Archie Mountbatten-Windsor, the son of Britain's Prince Harry and his American wife Meghan, celebrated his first birthday on Wednesday, with his parents marking the occasion with a video of his... Full Article lifestyleMolt
arch South Korean artist crafts cornstarch furniture By feeds.reuters.com Published On :: Mon, 20 Apr 2020 11:53:51 -0400 Artist Ryu Jong-dae experiments with various cornstarch-based bioplastic in the bid to protect the Earth. Rosanna Philpott reports. Full Article
arch Investors fled bonds as well as stocks in March By feeds.reuters.com Published On :: Wed, 15 Apr 2020 16:52:20 -0400 Investors withdrew record amounts of money from bond and equity funds in March while money market funds showed record inflows, as the prospect of a massive economic downturn due to coronavirus... Full Article PersonalFinance
arch From the archives: Does dowsing really help you find water? By www.newscientist.com Published On :: Wed, 30 Jan 2019 18:00:00 +0000 The ancient practice of water divining is still used across the world to locate water sources. Forty years ago, we wondered whether it might actually work Full Article
arch Antarctica team to search world's oldest ice for climate change clues By www.newscientist.com Published On :: Tue, 09 Apr 2019 11:56:04 +0000 Scientists are setting out to drill for the world’s oldest ice, in a bid to shed light on a dramatic tipping point in the world’s climate 900,000 years ago Full Article
arch Rights group says Saudi Arabia is holding a senior prince incommunicado since March By feeds.reuters.com Published On :: Sat, 09 May 2020 04:47:15 -0400 Human Rights Watch (HRW) said on Saturday that Saudi Arabian authorities recently detained and are holding incommunicado Prince Faisal bin Abdullah, who had previously been netted in an anti-corruption drive and released in late 2017. Full Article topNews HRW
arch I scanned thousands of research images by eye to expose academic fraud By www.newscientist.com Published On :: Wed, 19 Feb 2020 18:00:00 +0000 Elisabeth Bik is on a mission to detect duplicate images in scientific papers, exposing either genuine mistakes or signs of fraud. But her work isn't always appreciated, she says Full Article
arch How I went from selling MDMA to researching the science of its effects By www.newscientist.com Published On :: Thu, 27 Feb 2020 13:27:44 +0000 Christopher Medina-Kirchner used to be a drug dealer. Now he is a researcher looking at their effects, and says society's views on drugs and addiction need updating Full Article
arch Death researcher on pandemics and our fascination with dying By www.newscientist.com Published On :: Wed, 25 Mar 2020 18:00:00 +0000 Pandemics of the past can teach us about the current one, says John Troyer, who studies how we use technology to alter the experience of death Full Article
arch AI can search satellite data to find plastic floating in the sea By www.newscientist.com Published On :: Thu, 23 Apr 2020 16:00:13 +0000 AI can check satellite images of the ocean and distinguish between floating materials such as seaweed or plastics, which could help clean-up efforts Full Article
arch Research volunteers won't be told of their coronavirus genetic risk By www.newscientist.com Published On :: Mon, 27 Apr 2020 13:50:58 +0000 Half a million people taking part in the UK Biobank, which gathers genetic information for researchers to study, won't be told if they turn out to be genetically vulnerable to the coronavirus Full Article
arch I'm a space archaeologist studying junk strewn across the solar system By www.newscientist.com Published On :: Wed, 29 Apr 2020 18:00:00 +0000 From vintage satellites to lunar rovers, space archaeologist Alice Gorman is teasing out a unique history of humanity from the objects we've dispatched from Earth Full Article
arch Your Teeth Are a Permanent Archive of Your Life: Study By www.medicinenet.com Published On :: Wed, 25 Mar 2020 00:00:00 PDT Title: Your Teeth Are a Permanent Archive of Your Life: StudyCategory: Health NewsCreated: 3/25/2020 12:00:00 AMLast Editorial Review: 3/25/2020 12:00:00 AM Full Article
arch Researchers Develop Quick Way to Create Human Antibodies By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Researchers Develop Quick Way to Create Human AntibodiesCategory: Health NewsCreated: 5/1/2008 2:00:00 AMLast Editorial Review: 5/1/2008 12:00:00 AM Full Article
arch New Finding Could Mark Shift in Alzheimer's Research By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: New Finding Could Mark Shift in Alzheimer's ResearchCategory: Health NewsCreated: 4/29/2010 8:10:00 AMLast Editorial Review: 4/29/2010 12:00:00 AM Full Article
arch Positive Thinking, Persistence Pay Off in Job Search: Study By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Positive Thinking, Persistence Pay Off in Job Search: StudyCategory: Health NewsCreated: 5/3/2012 8:05:00 PMLast Editorial Review: 5/4/2012 12:00:00 AM Full Article
arch Researchers Rejuvenate Blood-Forming Stem Cells in Mice By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Researchers Rejuvenate Blood-Forming Stem Cells in MiceCategory: Health NewsCreated: 5/3/2012 2:05:00 PMLast Editorial Review: 5/4/2012 12:00:00 AM Full Article
arch At-Home Drug Errors Common for Kids With Cancer, Research Shows By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: At-Home Drug Errors Common for Kids With Cancer, Research ShowsCategory: Health NewsCreated: 5/3/2013 10:35:00 AMLast Editorial Review: 5/3/2013 12:00:00 AM Full Article
arch Brain Research Fuels New Migraine Treatments By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Brain Research Fuels New Migraine TreatmentsCategory: Health NewsCreated: 5/3/2017 12:00:00 AMLast Editorial Review: 5/3/2017 12:00:00 AM Full Article
arch Researchers Report First U.S. Dog With Coronavirus By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Researchers Report First U.S. Dog With CoronavirusCategory: Health NewsCreated: 4/29/2020 12:00:00 AMLast Editorial Review: 4/30/2020 12:00:00 AM Full Article
arch Pain Is a Growing Threat to the Nation's Surgeons, New Research Reveals By www.medicinenet.com Published On :: Thu, 2 Apr 2020 00:00:00 PDT Title: Pain Is a Growing Threat to the Nation's Surgeons, New Research RevealsCategory: Health NewsCreated: 4/1/2020 12:00:00 AMLast Editorial Review: 4/2/2020 12:00:00 AM Full Article
arch New Search Function Released By www.ncbi.nlm.nih.gov Published On :: Fri, 24 Jul 2009 08:00:00 EST You can now find embargoed articles and their corresponding PMCIDs through a recently released search option in the PMC Entrez database. Using the “Limits” tab, click in the field, “Show both free and embargoed articles” and refine your search by journal, author, date, article type, and/or tag term, as needed. Once you’re on the summary page, click on the “embargoed” tab at the top to find the articles in this category. You can then find the PMCID and date of availability at the bottom of the article citation, as indicated in the example below. Note: The PMC search option only includes articles with an initial embargo of up to 12 months. Articles with an embargo greater than 12 months are not compliant with the NIH Public Access Policy and will appear in search results only when the full text is free in PMC. For more information, see the article in the September-October issue of the NLM Technical Bulletin. Full Article
arch Search for Open Access Articles by License By www.ncbi.nlm.nih.gov Published On :: Mon, 5 Aug 2013 08:00:00 EST You can now search for Open Access articles that have certain types of licenses, by using special filters in both PMC and PubMed. These filters are based on license information that is provided to PMC by publishers and other content providers, as encoded by machine-readable identifiers in the source XML of each article. For more information, see our updated Open Access Subset page. Full Article
arch New Search Result Filters and Updated Reference List Display By www.ncbi.nlm.nih.gov Published On :: Wed, 17 Aug 2016 08:00:00 EST As of August 2016, PMC is home to four million articles! To make this wealth of full-text content easier to navigate, PMC has rolled out a few updates:1) Search Result Filters On all search results pages, you will now see filters (similar to PubMed’s filters) on the left-hand side that allow you to filter your results by article attributes, publication date, research funder, and search fields. These filters replace the Limits page and allow you to more readily: find open access articles (PMC has more than 1.35 million open access articles that can be reused according to their license statements), explore PMC’s rich historical content from NLM's back issue digitization project, browse research supported by PMC-participating funding organizations (click "Customize" to view additional funder options), and much more. You can now also quickly add articles that are under a 12-month or less embargo in PMC to your search results by selecting the “Include embargoed articles” filter option under Text Availability. See the PMC User Guide for more information on these filters. 2) Reference List Display Using related article data available in PMC, articles that cite papers that have been either retracted or named in a Findings of Research Misconduct issued by the HHS Office of Research Integrity and not yet retracted will now include a red hyperlink to the relevant notice directly from the article’s reference list. This update will help users more easily identify post-publication updates to existing research. Full Article
arch PMC Continues to Expand its Role as a Repository for Federally and Privately-funded Research By www.ncbi.nlm.nih.gov Published On :: Mon, 28 Aug 2017 08:00:00 EST Since March 2016, the NIH Manuscript Submission (NIHMS) system has added support for researchers from the following federal agencies to deposit in PMC any manuscripts that fall under the agency’s public access policy: Assistant Secretary for Preparedness and Response (ASPR/HHS; intramural only at this time) Environmental Protection Agency (EPA; intramural only at this time) National Aeronautics and Space Administration (NASA; intramural/civil servants and grantees) Manuscript deposit support for all Administration for Community Living (ACL/HHS) researchers will be available in NIHMS by October 2017 and for Department of Homeland Security researchers in early 2018.Additionally, the Bill & Melinda Gates Foundation Open Access Policy now requires their grantees to make their published research results available in PMC immediately upon publication under a Creative Commons Attribution (CC-BY) license. Manuscript deposit support is not provided in NIHMS for Gates-funded researchers; rather the final published version of any Gates-funded article is to be deposited directly to PMC by the publisher or a funder-supported data provider without author involvement. More information on this open access policy is available on the Gates Foundation website. PMC will continue to update the list of participating funding agencies at Public Access and PMC as support is implemented. Full Article
arch Researchers Move Toward Once-Yearly Treatment for HIV By www.medicinenet.com Published On :: Fri, 1 May 2020 00:00:00 PDT Title: Researchers Move Toward Once-Yearly Treatment for HIVCategory: Health NewsCreated: 4/30/2020 12:00:00 AMLast Editorial Review: 5/1/2020 12:00:00 AM Full Article
arch Research Finds Contagious Staph in Lupus-Related Skin Rashes By www.medicinenet.com Published On :: Mon, 2 Mar 2020 00:00:00 PDT Title: Research Finds Contagious Staph in Lupus-Related Skin RashesCategory: Health NewsCreated: 2/28/2020 12:00:00 AMLast Editorial Review: 3/2/2020 12:00:00 AM Full Article
arch Skipping Sleep to Watch Sports is The Real March Madness By www.medicinenet.com Published On :: Fri, 6 Mar 2020 00:00:00 PDT Title: Skipping Sleep to Watch Sports is The Real March MadnessCategory: Health NewsCreated: 3/6/2020 12:00:00 AMLast Editorial Review: 3/6/2020 12:00:00 AM Full Article
arch SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:28-07:00 Membrane-bound proteins have been proposed to mediate the transport of long-chain FA (LCFA) transport through the plasma membrane (PM). These proposals are based largely on reports that PM transport of LCFAs can be blocked by a number of enzymes and purported inhibitors of LCFA transport. Here, using the ratiometric pH indicator (2',7'-bis-(2-carboxyethyl)-5-(and-6-)-carboxyfluorescein and acrylodated intestinal FA-binding protein-based dual fluorescence assays, we investigated the effects of nine inhibitors of the putative FA transporter protein CD36 on the binding and transmembrane movement of LCFAs. We particularly focused on sulfosuccinimidyl oleate (SSO), reported to be a competitive inhibitor of CD36-mediated LCFA transport. Using these assays in adipocytes and inhibitor-treated protein-free lipid vesicles, we demonstrate that rapid LCFA transport across model and biological membranes remains unchanged in the presence of these purported inhibitors. We have previously shown in live cells that CD36 does not accelerate the transport of unesterified LCFAs across the PM. Our present experiments indicated disruption of LCFA metabolism inside the cell within minutes upon treatment with many of the "inhibitors" previously assumed to inhibit LCFA transport across the PM. Furthermore, using confocal microscopy and a specific anti-SSO antibody, we found that numerous intracellular and PM-bound proteins are SSO-modified in addition to CD36. Our results support the hypothesis that LCFAs diffuse rapidly across biological membranes and do not require an active protein transporter for their transmembrane movement. Full Article
arch Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:28-07:00 Geranylgeranoic acid (GGA) originally was identified in some animals and has been developed as an agent for preventing second primary hepatoma. We previously have also identified GGA as an acyclic diterpenoid in some medicinal herbs. Recently, we reported that in human hepatoma-derived HuH-7 cells, GGA is metabolically labeled from 13C-mevalonate. Several cell-free experiments have demonstrated that GGA is synthesized through geranylgeranial by oxygen-dependent oxidation of geranylgeraniol (GGOH), but the exact biochemical events giving rise to GGA in hepatoma cells remain unclear. Monoamine oxidase B (MOAB) has been suggested to be involved in GGOH oxidation. Here, using two human hepatoma cell lines, we investigated whether MAOB contributes to GGA biosynthesis. Using either HuH-7 cell lysates or recombinant human MAOB, we found that: 1) the MAO inhibitor tranylcypromine dose-dependently downregulates endogenous GGA levels in HuH-7 cells; and 2) siRNA-mediated MAOB silencing reduces intracellular GGA levels in HuH-7 and Hep3B cells. Unexpectedly, however, CRISPR/Cas9-generated MAOB-KO human hepatoma Hep3B cells had GGA levels similar to those in MAOB-WT cells. A sensitivity of GGA levels to siRNA-mediated MAOB downregulation was recovered when the MAOB-KO cells were transfected with a MAOB-expression plasmid, suggesting that MAOB is the enzyme primarily responsible for GGOH oxidation and that some other latent metabolic pathways may maintain endogenous GGA levels in the MAOB-KO hepatoma cells. Along with the previous findings, these results provide critical insights into the biological roles of human MAOB and provide evidence that hepatic MAOB is involved in endogenous GGA biosynthesis via GGOH oxidation. Full Article
arch A novel GPER antagonist protects against the formation of estrogen-induced cholesterol gallstones in female mice [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 Many clinical studies and epidemiological investigations have clearly demonstrated that women are twice as likely to develop cholesterol gallstones as men, and oral contraceptives and other estrogen therapies dramatically increase that risk. Further, animal studies have revealed that estrogen promotes cholesterol gallstone formation through the estrogen receptor (ER) α, but not ERβ, pathway. More importantly, some genetic and pathophysiological studies have found that G protein-coupled estrogen receptor (GPER) 1 is a new gallstone gene, Lith18, on chromosome 5 in mice and produces additional lithogenic actions, working independently of ERα, to markedly increase cholelithogenesis in female mice. Based on computational modeling of GPER, a novel series of GPER-selective antagonists were designed, synthesized, and subsequently assessed for their therapeutic effects via calcium mobilization, cAMP, and ERα and ERβ fluorescence polarization binding assays. From this series of compounds, one new compound, 2-cyclohexyl-4-isopropyl-N-(4-methoxybenzyl)aniline (CIMBA), exhibits superior antagonism and selectivity exclusively for GPER. Furthermore, CIMBA reduces the formation of 17β-estradiol-induced gallstones in a dose-dependent manner in ovariectomized mice fed a lithogenic diet for 8 weeks. At 32 μg/day/kg CIMBA, no gallstones are found, even in ovariectomized ERα (–/–) mice treated with 6 μg/day 17β-estradiol and fed the lithogenic diet for 8 weeks. In conclusion, CIMBA treatment protects against the formation of estrogen-induced cholesterol gallstones by inhibiting the GPER signaling pathway in female mice. CIMBA may thus be a new agent for effectively treating cholesterol gallstone disease in women. Full Article
arch Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 The formation and properties of liquid-ordered (Lo) lipid domains (rafts) in the plasma membrane are still poorly understood. This limits our ability to manipulate ordered lipid domain-dependent biological functions. Giant plasma membrane vesicles (GPMVs) undergo large-scale phase separations into coexisting Lo and liquid-disordered lipid domains. However, large-scale phase separation in GPMVs detected by light microscopy is observed only at low temperatures. Comparing Förster resonance energy transfer-detected versus light microscopy-detected domain formation, we found that nanodomains, domains of nanometer size, persist at temperatures up to 20°C higher than large-scale phases, up to physiologic temperature. The persistence of nanodomains at higher temperatures is consistent with previously reported theoretical calculations. To investigate the sensitivity of nanodomains to lipid composition, GPMVs were prepared from mammalian cells in which sterol, phospholipid, or sphingolipid composition in the plasma membrane outer leaflet had been altered by cyclodextrin-catalyzed lipid exchange. Lipid substitutions that stabilize or destabilize ordered domain formation in artificial lipid vesicles had a similar effect on the thermal stability of nanodomains and large-scale phase separation in GPMVs, with nanodomains persisting at higher temperatures than large-scale phases for a wide range of lipid compositions. This indicates that it is likely that plasma membrane nanodomains can form under physiologic conditions more readily than large-scale phase separation. We also conclude that membrane lipid substitutions carried out in intact cells are able to modulate the propensity of plasma membranes to form ordered domains. This implies lipid substitutions can be used to alter biological processes dependent upon ordered domains. Full Article
arch Schnyder corneal dystrophy-associated UBIAD1 is defective in MK-4 synthesis and resists autophagy-mediated degradation [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 The autosomal dominant disorder Schnyder corneal dystrophy (SCD) is caused by mutations in UbiA prenyltransferase domain-containing protein-1 (UBIAD1), which uses geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4 (MK-4). SCD is characterized by opacification of the cornea, owing to aberrant build-up of cholesterol in the tissue. We previously discovered that sterols stimulate association of UBIAD1 with ER-localized HMG-CoA reductase, which catalyzes a rate-limiting step in the synthesis of cholesterol and nonsterol isoprenoids, including GGpp. Binding to UBIAD1 inhibits sterol-accelerated ER-associated degradation (ERAD) of reductase and permits continued synthesis of GGpp in cholesterol-replete cells. GGpp disrupts UBIAD1-reductase binding and thereby allows for maximal ERAD of reductase as well as ER-to-Golgi translocation of UBIAD1. SCD-associated UBIAD1 is refractory to GGpp-mediated dissociation from reductase and remains sequestered in the ER to inhibit ERAD. Here, we report development of a biochemical assay for UBIAD1-mediated synthesis of MK-4 in isolated membranes and intact cells. Using this assay, we compared enzymatic activity of WT UBIAD1 with that of SCD-associated variants. Our studies revealed that SCD-associated UBIAD1 exhibited reduced MK-4 synthetic activity, which may result from its reduced affinity for GGpp. Sequestration in the ER protects SCD-associated UBIAD1 from autophagy and allows intracellular accumulation of the mutant protein, which amplifies the inhibitory effect on reductase ERAD. These findings have important implications not only for the understanding of SCD etiology but also for the efficacy of cholesterol-lowering statin therapy, which becomes limited, in part, because of UBIAD1-mediated inhibition of reductase ERAD. Full Article
arch Slc43a3 is a regulator of free fatty acid flux [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 Adipocytes take up long chain FAs through diffusion and protein-mediated transport, whereas FA efflux is considered to occur by diffusion. To identify potential membrane proteins that are involved in regulating FA flux in adipocytes, the expression levels of 55 membrane transporters without known function were screened in subcutaneous adipose samples from obese patients before and after bariatric surgery using branched DNA methodology. Among the 33 solute carrier (SLC) transporter family members screened, the expression of 14 members showed significant changes before and after bariatric surgery. One of them, Slc43a3, increased about 2.5-fold after bariatric surgery. Further investigation demonstrated that Slc43a3 is highly expressed in murine adipose tissue and induced during adipocyte differentiation in primary preadipocytes and in OP9 cells. Knockdown of Slc43a3 with siRNA in differentiated OP9 adipocytes reduced both basal and forskolin-stimulated FA efflux, while also increasing FA uptake and lipid droplet accumulation. In contrast, overexpression of Slc43a3 decreased FA uptake in differentiated OP9 cells and resulted in decreased lipid droplet accumulation. Therefore, Slc43a3 seems to regulate FA flux in adipocytes, functioning as a positive regulator of FA efflux and as a negative regulator of FA uptake. Full Article
arch The grease trap: uncovering the mechanism of the hydrophobic lid in Cutibacterium acnes lipase [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 Acne is one of the most common dermatological conditions, but the details of its pathology are unclear, and current management regimens often have adverse effects. Cutibacterium acnes is known as a major acne-associated bacterium that derives energy from lipase-mediated sebum lipid degradation. C. acnes is commensal, but lipase activity has been observed to differ among C. acnes types. For example, higher populations of the type IA strains are present in acne lesions with higher lipase activity. In the present study, we examined a conserved lipase in types IB and II that was truncated in type IA C. acnes strains. Closed, blocked, and open structures of C. acnes ATCC11828 lipases were elucidated by X-ray crystallography at 1.6–2.4 Å. The closed crystal structure, which is the most common form in aqueous solution, revealed that a hydrophobic lid domain shields the active site. By comparing closed, blocked, and open structures, we found that the lid domain-opening mechanisms of C. acnes lipases (CAlipases) involve the lid-opening residues, Phe-179 and Phe-211. To the best of our knowledge, this is the first structure-function study of CAlipases, which may help to shed light on the mechanisms involved in acne development and may aid in future drug design. Full Article
arch Vitamin E does not prevent Western diet-induced NASH progression and increases metabolic flux dysregulation in mice [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 Fatty liver involves ectopic lipid accumulation and dysregulated hepatic oxidative metabolism, which can progress to a state of elevated inflammation and fibrosis referred to as nonalcoholic steatohepatitis (NASH). The factors that control progression from simple steatosis to NASH are not fully known. Here, we tested the hypothesis that dietary vitamin E (VitE) supplementation would prevent NASH progression and associated metabolic alterations induced by a Western diet (WD). Hyperphagic melanocortin-4 receptor-deficient (MC4R–/–) mice were fed chow, chow+VitE, WD, or WD+VitE starting at 8 or 20 weeks of age. All groups exhibited extensive hepatic steatosis by the end of the study (28 weeks of age). WD feeding exacerbated liver disease severity without inducing proportional changes in liver triglycerides. Eight weeks of WD accelerated liver pyruvate cycling, and 20 weeks of WD extensively upregulated liver glucose and oxidative metabolism assessed by 2H/13C flux analysis. VitE supplementation failed to reduce the histological features of NASH. Rather, WD+VitE increased the abundance and saturation of liver ceramides and accelerated metabolic flux dysregulation compared with 8 weeks of WD alone. In summary, VitE did not limit NASH pathogenesis in genetically obese mice, but instead increased some indicators of metabolic dysfunction. Full Article
arch Myeloid-specific deficiency of pregnane X receptor decreases atherosclerosis in LDL receptor-deficient mice [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 The pregnane X receptor (PXR) is a nuclear receptor that can be activated by numerous drugs and xenobiotic chemicals. PXR thereby functions as a xenobiotic sensor to coordinately regulate host responses to xenobiotics by transcriptionally regulating many genes involved in xenobiotic metabolism. We have previously reported that PXR has pro-atherogenic effects in animal models, but how PXR contributes to atherosclerosis development in different tissues or cell types remains elusive. In this study, we generated an LDL receptor-deficient mouse model with myeloid-specific PXR deficiency (PXRMyeLDLR–/–) to elucidate the role of macrophage PXR signaling in atherogenesis. The myeloid PXR deficiency did not affect metabolic phenotypes and plasma lipid profiles, but PXRMyeLDLR–/– mice had significantly decreased atherosclerosis at both aortic root and brachiocephalic arteries compared with control littermates. Interestingly, the PXR deletion did not affect macrophage adhesion and migration properties, but reduced lipid accumulation and foam cell formation in the macrophages. PXR deficiency also led to decreased expression of the scavenger receptor CD36 and impaired lipid uptake in macrophages of the PXRMyeLDLR–/– mice. Further, RNA-Seq analysis indicated that treatment with a prototypical PXR ligand affects the expression of many atherosclerosis-related genes in macrophages in vitro. These findings reveal a pivotal role of myeloid PXR signaling in atherosclerosis development and suggest that PXR may be a potential therapeutic target in atherosclerosis management. Full Article
arch GPIHBP1, a partner protein for lipoprotein lipase, is expressed only in capillary endothelial cells [Images In Lipid Research] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 Full Article
arch Images in Lipid Research [Editorials] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 Full Article
arch Role of Plasmodium falciparum Protein GEXP07 in Maurers Cleft Morphology, Knob Architecture, and P. falciparum EMP1 Trafficking By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT The malaria parasite Plasmodium falciparum traffics the virulence protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of infected red blood cells (RBCs) via membranous organelles, known as the Maurer’s clefts. We developed a method for efficient enrichment of Maurer’s clefts and profiled the protein composition of this trafficking organelle. We identified 13 previously uncharacterized or poorly characterized Maurer’s cleft proteins. We generated transfectants expressing green fluorescent protein (GFP) fusions of 7 proteins and confirmed their Maurer’s cleft location. Using co-immunoprecipitation and mass spectrometry, we generated an interaction map of proteins at the Maurer’s clefts. We identified two key clusters that may function in the loading and unloading of PfEMP1 into and out of the Maurer’s clefts. We focus on a putative PfEMP1 loading complex that includes the protein GEXP07/CX3CL1-binding protein 2 (CBP2). Disruption of GEXP07 causes Maurer’s cleft fragmentation, aberrant knobs, ablation of PfEMP1 surface expression, and loss of the PfEMP1-mediated adhesion. GEXP07 parasites have a growth advantage compared to wild-type parasites, and the infected RBCs are more deformable and more osmotically fragile. IMPORTANCE The trafficking of the virulence antigen PfEMP1 and its presentation at the knob structures at the surface of parasite-infected RBCs are central to severe adhesion-related pathologies such as cerebral and placental malaria. This work adds to our understanding of how PfEMP1 is trafficked to the RBC membrane by defining the protein-protein interaction networks that function at the Maurer’s clefts controlling PfEMP1 loading and unloading. We characterize a protein needed for virulence protein trafficking and provide new insights into the mechanisms for host cell remodeling, parasite survival within the host, and virulence. Full Article
arch Lipid Anchoring of Archaeosortase Substrates and Midcell Growth in Haloarchaea By mbio.asm.org Published On :: 2020-03-24T01:31:01-07:00 ABSTRACT The archaeal cytoplasmic membrane provides an anchor for many surface proteins. Recently, a novel membrane anchoring mechanism involving a peptidase, archaeosortase A (ArtA), and C-terminal lipid attachment of surface proteins was identified in the model archaeon Haloferax volcanii. ArtA is required for optimal cell growth and morphogenesis, and the S-layer glycoprotein (SLG), the sole component of the H. volcanii cell wall, is one of the targets for this anchoring mechanism. However, how exactly ArtA function and regulation control cell growth and morphogenesis is still elusive. Here, we report that archaeal homologs to the bacterial phosphatidylserine synthase (PssA) and phosphatidylserine decarboxylase (PssD) are involved in ArtA-dependent protein maturation. Haloferax volcanii strains lacking either HvPssA or HvPssD exhibited motility, growth, and morphological phenotypes similar to those of an artA mutant. Moreover, we showed a loss of covalent lipid attachment to SLG in the hvpssA mutant and that proteolytic cleavage of the ArtA substrate HVO_0405 was blocked in the hvpssA and hvpssD mutant strains. Strikingly, ArtA, HvPssA, and HvPssD green fluorescent protein (GFP) fusions colocalized to the midcell position of H. volcanii cells, strongly supporting that they are involved in the same pathway. Finally, we have shown that the SLG is also recruited to the midcell before being secreted and lipid anchored at the cell outer surface. Collectively, our data suggest that haloarchaea use the midcell as the main surface processing hot spot for cell elongation, division, and shape determination. IMPORTANCE The subcellular organization of biochemical processes in space and time is still one of the most mysterious topics in archaeal cell biology. Despite the fact that haloarchaea largely rely on covalent lipid anchoring to coat the cell envelope, little is known about how cells coordinate de novo synthesis and about the insertion of this proteinaceous layer throughout the cell cycle. Here, we report the identification of two novel contributors to ArtA-dependent lipid-mediated protein anchoring to the cell surface, HvPssA and HvPssD. ArtA, HvPssA, and HvPssD, as well as SLG, showed midcell localization during growth and cytokinesis, indicating that haloarchaeal cells confine phospholipid processing in order to promote midcell elongation. Our findings have important implications for the biogenesis of the cell surface. Full Article
arch Report from the American Society for Microbiology COVID-19 International Summit, 23 March 2020: Value of Diagnostic Testing for SARS-CoV-2/COVID-19 By mbio.asm.org Published On :: 2020-03-26T14:58:07-07:00 Full Article
arch Coping with COVID: How a Research Team Learned To Stay Engaged in This Time of Physical Distancing By mbio.asm.org Published On :: 2020-04-17T14:59:27-07:00 ABSTRACT Physical distancing imposed by the COVID-19 pandemic has led to alterations in routines and new responsibilities for much of the research community. We provide some tips for how research teams can cope with physical distancing, some of which require a change in how we define productivity. Importantly, we need to maintain and strengthen social connections in this time when we can’t be physically together. Full Article
arch "Candidatus Ethanoperedens," a Thermophilic Genus of Archaea Mediating the Anaerobic Oxidation of Ethane By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Cold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation. Here, using hydrothermal sediments of the Guaymas Basin (Gulf of California) and ethane as the substrate, we cultured microbial consortia of a novel anaerobic ethane oxidizer, "Candidatus Ethanoperedens thermophilum" (GoM-Arc1 clade), and its partner bacterium "Candidatus Desulfofervidus auxilii," previously known from methane-oxidizing consortia. The sulfate reduction activity of the culture doubled within one week, indicating a much faster growth than in any other alkane-oxidizing archaea described before. The dominance of a single archaeal phylotype in this culture allowed retrieval of a closed genome of "Ca. Ethanoperedens," a sister genus of the recently reported ethane oxidizer "Candidatus Argoarchaeum." The metagenome-assembled genome of "Ca. Ethanoperedens" encoded a complete methanogenesis pathway including a methyl-coenzyme M reductase (MCR) that is highly divergent from those of methanogens and methanotrophs. Combined substrate and metabolite analysis showed ethane as the sole growth substrate and production of ethyl-coenzyme M as the activation product. Stable isotope probing demonstrated that the enzymatic mechanism of ethane oxidation in "Ca. Ethanoperedens" is fully reversible; thus, its enzymatic machinery has potential for the biotechnological development of microbial ethane production from carbon dioxide. IMPORTANCE In the seabed, gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing bacterium known to aid in methane oxidation and have retrieved the first complete genome of a short-chain alkane-degrading archaeon. This will greatly enhance the understanding of nonmethane alkane activation by noncanonical methyl-coenzyme M reductase enzymes and provide insights into additional metabolic steps and the mechanisms underlying syntrophic partnerships. Ultimately, this knowledge could lead to the biotechnological development of alkanogenic microorganisms to support the carbon neutrality of industrial processes. Full Article
arch Killer Archaea: Virus-Mediated Antagonism to CRISPR-Immune Populations Results in Emergent Virus-Host Mutualism By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Theory, simulation, and experimental evolution demonstrate that diversified CRISPR-Cas immunity to lytic viruses can lead to stochastic virus extinction due to a limited number of susceptible hosts available to each potential new protospacer escape mutation. Under such conditions, theory predicts that to evade extinction, viruses evolve toward decreased virulence and promote vertical transmission and persistence in infected hosts. To better understand the evolution of host-virus interactions in microbial populations with active CRISPR-Cas immunity, we studied the interaction between CRISPR-immune Sulfolobus islandicus cells and immune-deficient strains that are infected by the chronic virus SSV9. We demonstrate that Sulfolobus islandicus cells infected with SSV9, and with other related SSVs, kill uninfected, immune strains through an antagonistic mechanism that is a protein and is independent of infectious virus. Cells that are infected with SSV9 are protected from killing and persist in the population. We hypothesize that this infection acts as a form of mutualism between the host and the virus by removing competitors in the population and ensuring continued vertical transmission of the virus within populations with diversified CRISPR-Cas immunity. IMPORTANCE Multiple studies, especially those focusing on the role of lytic viruses in key model systems, have shown the importance of viruses in shaping microbial populations. However, it has become increasingly clear that viruses with a long host-virus interaction, such as those with a chronic lifestyle, can be important drivers of evolution and have large impacts on host ecology. In this work, we describe one such interaction with the acidic crenarchaeon Sulfolobus islandicus and its chronic virus Sulfolobus spindle-shaped virus 9. Our work expands the view in which this symbiosis between host and virus evolved, describing a killing phenotype which we hypothesize has evolved in part due to the high prevalence and diversity of CRISPR-Cas immunity seen in natural populations. We explore the implications of this phenotype in population dynamics and host ecology, as well as the implications of mutualism between this virus-host pair. Full Article
arch Many people face high risk of PTSD after being injured, research finds By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 A significant number of injury survivors experience post-traumatic stress disorder, and better screening practices could help connect them to mental health services. Full Article
arch Federal funding for gun violence prevention research sparks hopes: Priorities, direction being explored By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 After more than 20 years of minimal funding, the U.S. is opening its purse strings to research on gun violence prevention. Full Article
arch Digging deeper: The influence of historical mining on Glasgow's subsurface thermal state to inform geothermal research By sjg.lyellcollection.org Published On :: 2019-11-29T02:21:48-08:00 Studies of the former NE England coalfield in Tyneside demonstrated that heat flow perturbations in boreholes were due to the entrainment and lateral dispersion of heat from deeper in the subsurface through flooded mine workings. This work assesses the influence of historical mining on geothermal observations across Greater Glasgow. The regional heat flow for Glasgow is 60 mW m–2 and, after correction for palaeoclimate, is estimated as c. 80 mW m–2. An example of reduced heat flow above mine workings is observed at Hallside (c. 10 km SE of Glasgow), where the heat flow through a 352 m deep borehole is c. 14 mW m–2. Similarly, the heat flow across the 199 m deep GGC01 borehole in the Glasgow Geothermal Energy Research Field Site is c. 44 mW m–2. The differences between these values and the expected regional heat flow suggest a significant component of horizontal heat flow into surrounding flooded mine workings. This deduction also influences the quantification of deeper geothermal resources, as extrapolation of the temperature gradient above mine workings would underestimate the temperature at depth. Future projects should consider the influence of historical mining on heat flow when temperature datasets such as these are used in the design of geothermal developments. Supplementary material: Background information on the chronology of historical mining at each borehole location and a summary of groundwater flow in mine workings beneath Glasgow are available at https://doi.org/10.6084/m9.figshare.c.4681100 Thematic collection: This article is part of the ‘Early Career Research’ available at: https://www.lyellcollection.org/cc/SJG-early-career-research Full Article