in

Stressed Memories: How Acute Stress Affects Memory Formation in Humans

Marloes J. A. G. Henckens
Aug 12, 2009; 29:10111-10119
BehavioralSystemsCognitive




in

Atp13a5 Marker Reveals Pericyte Specification in the Mouse Central Nervous System

Xinying Guo
Oct 23, 2024; 44:e0727242024-e0727242024
Cellular




in

On Myelinated Axon Plasticity and Neuronal Circuit Formation and Function

Rafael G. Almeida
Oct 18, 2017; 37:10023-10034
Viewpoints




in

Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type

Guo-qiang Bi
Dec 15, 1998; 18:10464-10472
Articles




in

Right Temporoparietal Junction Underlies Avoidance of Moral Transgression in Autism Spectrum Disorder

Yang Hu
Feb 24, 2021; 41:1699-1715
BehavioralSystemsCognitive




in

Sequential Activation of Lateral Hypothalamic Neuronal Populations during Feeding and Their Assembly by Gamma Oscillations

Mahsa Altafi
Oct 23, 2024; 44:e0518242024-e0518242024
Systems/Circuits




in

Identification and Characterization of a Sleep-Active Cell Group in the Rostral Medullary Brainstem

Christelle Anaclet
Dec 12, 2012; 32:17970-17976
BehavioralSystemsCognitive




in

{gamma}1 GABAA Receptors in Spinal Nociceptive Circuits

Elena Neumann
Oct 9, 2024; 44:e0591242024-e0591242024
Systems/Circuits




in

Gravin Orchestrates Protein Kinase A and {beta}2-Adrenergic Receptor Signaling Critical for Synaptic Plasticity and Memory

Robbert Havekes
Dec 12, 2012; 32:18137-18149
BehavioralSystemsCognitive




in

Multiscale Computer Model of the Spinal Dorsal Horn Reveals Changes in Network Processing Associated with Chronic Pain

Laura Medlock
Apr 13, 2022; 42:3133-3149
Systems/Circuits




in

Aperiodic EEG Predicts Variability of Visual Temporal Processing

Michele Deodato
Oct 2, 2024; 44:e2308232024-e2308232024
BehavioralSystemsCognitive




in

Neuregulin1 Nuclear Signaling Influences Adult Neurogenesis and Regulates a Schizophrenia Susceptibility Gene Network within the Mouse Dentate Gyrus

Prithviraj Rajebhosale
Oct 23, 2024; 44:e0063242024-e0063242024
Cellular




in

Cannabis and the Developing Brain: Insights into Its Long-Lasting Effects

Yasmin L. Hurd
Oct 16, 2019; 39:8250-8258
Symposium and Mini-Symposium




in

Beyond the 5-HT2A Receptor: Classic and Nonclassic Targets in Psychedelic Drug Action

Lindsay P. Cameron
Nov 8, 2023; 43:7472-7482
Symposium and Mini-Symposium




in

Musical Training Shapes Structural Brain Development

Krista L. Hyde
Mar 11, 2009; 29:3019-3025
Development Plasticity Repair




in

Revisiting the Stress Concept: Implications for Affective Disorders

Bruce S. McEwen
Jan 2, 2020; 40:12-21
Viewpoints




in

Gender in Science, Technology, Engineering, and Mathematics: Issues, Causes, Solutions

Tessa E.S. Charlesworth
Sep 11, 2019; 39:7228-7243
Viewpoints




in

Mindfulness Meditation-Based Pain Relief Employs Different Neural Mechanisms Than Placebo and Sham Mindfulness Meditation-Induced Analgesia

Fadel Zeidan
Nov 18, 2015; 35:15307-15325
BehavioralSystemsCognitive




in

Loss of Dopamine Transporters in Methamphetamine Abusers Recovers with Protracted Abstinence

Nora D. Volkow
Dec 1, 2001; 21:9414-9418
Behavioral




in

Neuronal and Behavioral Responses to Naturalistic Texture Images in Macaque Monkeys

Corey M. Ziemba
Oct 16, 2024; 44:e0349242024-e0349242024
Systems/Circuits




in

Human REM Sleep Delta Waves and the Blurring Distinction between NREM and REM Sleep

Jesse J. Langille
Jul 3, 2019; 39:5244-5246
Journal Club




in

A Gradient in Endogenous Rhythmicity and Oscillatory Drive Matches Recruitment Order in an Axial Motor Pool

Evdokia Menelaou
Aug 8, 2012; 32:10925-10939
BehavioralSystemsCognitive




in

Hallucinogens in Mental Health: Preclinical and Clinical Studies on LSD, Psilocybin, MDMA, and Ketamine

Danilo De Gregorio
Feb 3, 2021; 41:891-900
Symposium and Mini-Symposium




in

Diurnal Fluctuations in Steroid Hormones Tied to Variation in Intrinsic Functional Connectivity in a Densely Sampled Male

Hannah Grotzinger
May 29, 2024; 44:e1856232024-e1856232024
BehavioralSystemsCognitive




in

Striatal Serotonin Release Signals Reward Value

Mitchell G. Spring
Oct 9, 2024; 44:e0602242024-e0602242024
BehavioralSystemsCognitive




in

On the Role of Theory and Modeling in Neuroscience

Daniel Levenstein
Feb 15, 2023; 43:1074-1088
Viewpoints




in

The Salience Network: A Neural System for Perceiving and Responding to Homeostatic Demands

William W. Seeley
Dec 11, 2019; 39:9878-9882
Progressions




in

Circadian Rhythms Tied to Changes in Brain Morphology in a Densely Sampled Male

Elle M. Murata
Sep 18, 2024; 44:e0573242024-e0573242024
BehavioralSystemsCognitive




in

Drawing in the Galleries

Join us in the Paintings Galleries for drawing adventures!
 




in

100 years of organised Aboriginal activism

Centenary Forum for the Australian Aboriginal Progressive Association 1924–2024.




in

Rediscovering Ancient Egypt in print

Drop in for a special collection viewing of some of the Library's most spectacular works documenting Egypt in the 19th century.




in

An Implicit Plan Overrides an Explicit Strategy during Visuomotor Adaptation

Pietro Mazzoni
Apr 5, 2006; 26:3642-3645
BRIEF COMMUNICATION




in

Decoding and Reconstructing Color from Responses in Human Visual Cortex

Gijs Joost Brouwer
Nov 4, 2009; 29:13992-14003
BehavioralSystemsCognitive




in

On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex

AP Georgopoulos
Nov 1, 1982; 2:1527-1537
Articles




in

Age-Related Changes in 1/f Neural Electrophysiological Noise

Bradley Voytek
Sep 23, 2015; 35:13257-13265
BehavioralSystemsCognitive




in

A Hierarchy of Temporal Receptive Windows in Human Cortex

Uri Hasson
Mar 5, 2008; 28:2539-2550
BehavioralSystemsCognitive




in

Explicit and Implicit Contributions to Learning in a Sensorimotor Adaptation Task

Jordan A. Taylor
Feb 19, 2014; 34:3023-3032
BehavioralSystemsCognitive




in

Neuronal Avalanches in Neocortical Circuits

John M. Beggs
Dec 3, 2003; 23:11167-11177
BehavioralSystemsCognitive




in

Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome Constructs

Shiaoching Gong
Sep 12, 2007; 27:9817-9823
Toolbox




in

Topographic Mapping of a Hierarchy of Temporal Receptive Windows Using a Narrated Story

Yulia Lerner
Feb 23, 2011; 31:2906-2915
BehavioralSystemsCognitive




in

A Recurrent Network Mechanism of Time Integration in Perceptual Decisions

Kong-Fatt Wong
Jan 25, 2006; 26:1314-1328
BehavioralSystemsCognitive




in

Intraneuronal beta-Amyloid Aggregates, Neurodegeneration, and Neuron Loss in Transgenic Mice with Five Familial Alzheimer's Disease Mutations: Potential Factors in Amyloid Plaque Formation

Holly Oakley
Oct 4, 2006; 26:10129-10140
Neurobiology of Disease




in

Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream

Umut Güçlü
Jul 8, 2015; 35:10005-10014
BehavioralSystemsCognitive




in

Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI

Matthew F. Glasser
Aug 10, 2011; 31:11597-11616
BehavioralSystemsCognitive




in

Cells and Molecules Underpinning Cannabis-Related Variations in Cortical Thickness during Adolescence

During adolescence, cannabis experimentation is common, and its association with interindividual variations in brain maturation well studied. Cellular and molecular underpinnings of these system-level relationships are, however, unclear. We thus conducted a three-step study. First, we exposed adolescent male mice to -9-tetrahydrocannabinol (THC) or a synthetic cannabinoid WIN 55,212-2 (WIN) and assessed differentially expressed genes (DEGs), spine numbers, and dendritic complexity in their frontal cortex. Second, in human (male) adolescents, we examined group differences in cortical thickness in 34 brain regions, using magnetic resonance imaging, between those who experimented with cannabis before age 16 (n = 140) and those who did not (n = 327). Finally, we correlated spatially these group differences with gene expression of human homologs of mouse-identified DEGs. The spatial expression of 13 THC-related human homologs of DEGs correlated with cannabis-related variations in cortical thickness, and virtual histology revealed coexpression patterns of these 13 genes with cell-specific markers of astrocytes, microglia, and a type of pyramidal cells enriched in dendrite-regulating genes. Similarly, the spatial expression of 18 WIN-related human homologs of DEGs correlated with group differences in cortical thickness and showed coexpression patterns with the same three cell types. Gene ontology analysis indicated that 37 THC-related human homologs are enriched in neuron projection development, while 33 WIN-related homologs are enriched in processes associated with learning and memory. In mice, we observed spine loss and lower dendritic complexity in pyramidal cells of THC-exposed animals (vs controls). Experimentation with cannabis during adolescence may influence cortical thickness by impacting glutamatergic synapses and dendritic arborization.




in

Cardiac-Sympathetic Contractility and Neural Alpha-Band Power: Cross-Modal Collaboration during Approach-Avoidance Conflict

As evidence mounts that the cardiac-sympathetic nervous system reacts to challenging cognitive settings, we ask if these responses are epiphenomenal companions or if there is evidence suggesting a more intertwined role of this system with cognitive function. Healthy male and female human participants performed an approach-avoidance paradigm, trading off monetary reward for painful electric shock, while we recorded simultaneous electroencephalographic and cardiac-sympathetic signals. Participants were reward sensitive but also experienced approach-avoidance "conflict" when the subjective appeal of the reward was near equivalent to the revulsion of the cost. Drift-diffusion model parameters suggested that participants managed conflict in part by integrating larger volumes of evidence into choices (wider decision boundaries). Late alpha-band (neural) dynamics were consistent with widening decision boundaries serving to combat reward sensitivity and spread attention more fairly to all dimensions of available information. Independently, wider boundaries were also associated with cardiac "contractility" (an index of sympathetically mediated positive inotropy). We also saw evidence of conflict-specific "collaboration" between the neural and cardiac-sympathetic signals. In states of high conflict, the alignment (i.e., product) of alpha dynamics and contractility were associated with a further widening of the boundary, independent of either signal's singular association. Cross-trial coherence analyses provided additional evidence that the autonomic systems controlling cardiac-sympathetics might influence the assessment of information streams during conflict by disrupting or overriding reward processing. We conclude that cardiac-sympathetic control might play a critical role, in collaboration with cognitive processes, during the approach-avoidance conflict in humans.




in

A Systematic Structure-Function Characterization of a Human Mutation in Neurexin-3{alpha} Reveals an Extracellular Modulatory Sequence That Stabilizes Neuroligin-1 Binding to Enhance the Postsynaptic Properties of Excitatory Synapses

α-Neurexins are essential and highly expressed presynaptic cell-adhesion molecules that are frequently linked to neuropsychiatric and neurodevelopmental disorders. Despite their importance, how the elaborate extracellular sequences of α-neurexins contribute to synapse function is poorly understood. We recently characterized the presynaptic gain-of-function phenotype caused by a missense mutation in an evolutionarily conserved extracellular sequence of neurexin-3α (A687T) that we identified in a patient diagnosed with profound intellectual disability and epilepsy. The striking A687T gain-of-function mutation on neurexin-3α prompted us to systematically test using mutants whether the presynaptic gain-of-function phenotype is a consequence of the addition of side-chain bulk (i.e., A687V) or polar/hydrophilic properties (i.e., A687S). We used multidisciplinary approaches in mixed-sex primary hippocampal cultures to assess the impact of the neurexin-3αA687 residue on synapse morphology, function and ligand binding. Unexpectedly, neither A687V nor A687S recapitulated the neurexin-3α A687T phenotype. Instead, distinct from A687T, molecular replacement with A687S significantly enhanced postsynaptic properties exclusively at excitatory synapses and selectively increased binding to neuroligin-1 and neuroligin-3 without changing binding to neuroligin-2 or LRRTM2. Importantly, we provide the first experimental evidence supporting the notion that the position A687 of neurexin-3α and the N-terminal sequences of neuroligins may contribute to the stability of α-neurexin–neuroligin-1 trans-synaptic interactions and that these interactions may specifically regulate the postsynaptic strength of excitatory synapses.




in

Role of the STING->IRF3 Pathway in Ambient GABA Homeostasis and Cognitive Function

Targeting altered expression and/or activity of GABA (-aminobutyric acid) transporters (GATs) provide therapeutic benefit for age-related impairments, including cognitive dysfunction. However, the mechanisms underlying the transcriptional regulation of GATs are unknown. In the present study, we demonstrated that the stimulator of interferon genes (STING) upregulates GAT1 and GAT3 expression in the brain, which resulted in cognitive dysfunction. Genetic and pharmacological intervention of STING suppressed the expression of both GAT1 and GAT3, increased the ambient GABA concentration, and therefore, enhanced tonic GABAA inhibition of principal hippocampal neurons, resulting in spatial learning and working memory deficits in mice in a type I interferon-independent manner. Stimulation of the STING->GAT pathway efficiently restored cognitive dysfunction in STING-deficient mice models. Our study uncovered for the first time that the STING signaling pathway regulates GAT expression in a cell autonomous manner and therefore could be a novel target for GABAergic cognitive deficits.




in

A Virtual In Vivo Dissection and Analysis of Socioaffective Symptoms Related to Cerebellum-Midbrain Reward Circuitry in Humans

Emerging research in nonhuman animals implicates cerebellar projections to the ventral tegmental area (VTA) in appetitive behaviors, but these circuits have not been characterized in humans. Here, we mapped cerebello-VTA white matter connectivity in a cohort of men and women using probabilistic tractography on diffusion imaging data from the Human Connectome Project. We uncovered the topographical organization of these connections by separately tracking from parcels of cerebellar lobule VI, crus I/II, vermis, paravermis, and cerebrocerebellum. Results revealed that connections between the cerebellum and VTA predominantly originate in the right cerebellar hemisphere, interposed nucleus, and paravermal cortex and terminate mostly ipsilaterally. Paravermal crus I sends the most connections to the VTA compared with other lobules. We discovered a mediolateral gradient of connectivity, such that the medial cerebellum has the highest connectivity with the VTA. Individual differences in microstructure were associated with measures of negative affect and social functioning. By splitting the tracts into quarters, we found that the socioaffective effects were driven by the third quarter of the tract, corresponding to the point at which the fibers leave the deep nuclei. Taken together, we produced detailed maps of cerebello-VTA structural connectivity for the first time in humans and established their relevance for trait differences in socioaffective regulation.




in

The Role of the Hippocampus in Consolidating Motor Learning during Wakefulness