los

Rising Number of Older Americans at Risk of Vision Loss

Title: Rising Number of Older Americans at Risk of Vision Loss
Category: Health News
Created: 3/12/2020 12:00:00 AM
Last Editorial Review: 3/13/2020 12:00:00 AM




los

Aspergillus Infection (Aspergillosis)

Title: Aspergillus Infection (Aspergillosis)
Category: Diseases and Conditions
Created: 3/13/2020 12:00:00 AM
Last Editorial Review: 3/13/2020 12:00:00 AM




los

Solosec (secnidazole)

Title: Solosec (secnidazole)
Category: Medications
Created: 4/17/2020 12:00:00 AM
Last Editorial Review: 4/17/2020 12:00:00 AM




los

Xiaflex (collagenase clostridium histolyticum)

Title: Xiaflex (collagenase clostridium histolyticum)
Category: Medications
Created: 3/3/2020 12:00:00 AM
Last Editorial Review: 3/3/2020 12:00:00 AM




los

Peptidoglycan Hydrolases RipA and Ami1 Are Critical for Replication and Persistence of Mycobacterium tuberculosis in the Host

ABSTRACT

Synthesis and cleavage of the cell wall polymer peptidoglycan (PG) are carefully orchestrated processes and are essential for the growth and survival of bacteria. Yet, the function and importance of many enzymes that act on PG in Mycobacterium tuberculosis remain to be elucidated. We demonstrate that the activity of the N-acetylmuramyl-l-alanine amidase Ami1 is dispensable for cell division in M. tuberculosis in vitro yet contributes to the bacterium’s ability to persist during chronic infection in mice. Furthermore, the d,l-endopeptidase RipA, a predicted essential enzyme, is dispensable for the viability of M. tuberculosis but required for efficient cell division in vitro and in vivo. Depletion of RipA sensitizes M. tuberculosis to rifampin and to cell envelope-targeting antibiotics. Ami1 helps sustain residual cell division in cells lacking RipA, but the partial redundancy provided by Ami1 is not sufficient during infection, as depletion of RipA prevents M. tuberculosis from replicating in macrophages and leads to dramatic killing of the bacteria in mice. Notably, RipA is essential for persistence of M. tuberculosis in mice, suggesting that cell division is required during chronic mouse infection. Despite the multiplicity of enzymes acting on PG with redundant functions, we have identified two PG hydrolases that are important for M. tuberculosis to replicate and persist in the host.

IMPORTANCE Tuberculosis (TB) is a major global heath burden, with 1.6 million people succumbing to the disease every year. The search for new drugs to improve the current chemotherapeutic regimen is crucial to reducing this global health burden. The cell wall polymer peptidoglycan (PG) has emerged as a very successful drug target in bacterial pathogens, as many currently used antibiotics target the synthesis of this macromolecule. However, the multitude of genes encoding PG-synthesizing and PG-modifying enzymes with apparent redundant functions has hindered the identification of novel drug targets in PG synthesis in Mycobacterium tuberculosis. Here, we demonstrate that two PG-cleaving enzymes are important for virulence of M. tuberculosis. In particular, the d,l-endopeptidase RipA represents a potentially attractive drug target, as its depletion results in the clearance of M. tuberculosis from the host and renders the bacteria hypersusceptible to rifampin, a frontline TB drug, and to several cell wall-targeting antibiotics.




los

Mycobacterium tuberculosis Reactivates HIV-1 via Exosome-Mediated Resetting of Cellular Redox Potential and Bioenergetics

ABSTRACT

The synergy between Mycobacterium tuberculosis and human immunodeficiency virus-1 (HIV-1) interferes with therapy and facilitates the pathogenesis of both human pathogens. Fundamental mechanisms by which M. tuberculosis exacerbates HIV-1 infection are not clear. Here, we show that exosomes secreted by macrophages infected with M. tuberculosis, including drug-resistant clinical strains, reactivated HIV-1 by inducing oxidative stress. Mechanistically, M. tuberculosis-specific exosomes realigned mitochondrial and nonmitochondrial oxygen consumption rates (OCR) and modulated the expression of host genes mediating oxidative stress response, inflammation, and HIV-1 transactivation. Proteomics analyses revealed the enrichment of several host factors (e.g., HIF-1α, galectins, and Hsp90) known to promote HIV-1 reactivation in M. tuberculosis-specific exosomes. Treatment with a known antioxidant—N-acetyl cysteine (NAC)—or with inhibitors of host factors—galectins and Hsp90—attenuated HIV-1 reactivation by M. tuberculosis-specific exosomes. Our findings uncover new paradigms for understanding the redox and bioenergetics bases of HIV-M. tuberculosis coinfection, which will enable the design of effective therapeutic strategies.

IMPORTANCE Globally, individuals coinfected with the AIDS virus (HIV-1) and with M. tuberculosis (causative agent of tuberculosis [TB]) pose major obstacles in the clinical management of both diseases. At the heart of this issue is the apparent synergy between the two human pathogens. On the one hand, mechanisms induced by HIV-1 for reactivation of TB in AIDS patients are well characterized. On the other hand, while clinical findings clearly identified TB as a risk factor for HIV-1 reactivation and associated mortality, basic mechanisms by which M. tuberculosis exacerbates HIV-1 replication and infection remain poorly characterized. The significance of our research is in identifying the role of fundamental mechanisms such as redox and energy metabolism in catalyzing HIV-M. tuberculosis synergy. The quantification of redox and respiratory parameters affected by M. tuberculosis in stimulating HIV-1 will greatly enhance our understanding of HIV-M. tuberculosis coinfection, leading to a wider impact on the biomedical research community and creating new translational opportunities.




los

Reply to Losick, "Concerns about Continuing Claims that a Protein Complex Interacts with the Phosphorelay"




los

New Host-Directed Therapeutics for the Treatment of Clostridioides difficile Infection

ABSTRACT

Frequent and excessive use of antibiotics primes patients to Clostridioides difficile infection (CDI), which leads to fatal pseudomembranous colitis, with limited treatment options. In earlier reports, we used a drug repurposing strategy and identified amoxapine (an antidepressant), doxapram (a breathing stimulant), and trifluoperazine (an antipsychotic), which provided significant protection to mice against lethal infections with several pathogens, including C. difficile. However, the mechanisms of action of these drugs were not known. Here, we provide evidence that all three drugs offered protection against experimental CDI by reducing bacterial burden and toxin levels, although the drugs were neither bacteriostatic nor bactericidal in nature and had minimal impact on the composition of the microbiota. Drug-mediated protection was dependent on the presence of the microbiota, implicating its role in evoking host defenses that promoted protective immunity. By utilizing transcriptome sequencing (RNA-seq), we identified that each drug increased expression of several innate immune response-related genes, including those involved in the recruitment of neutrophils, the production of interleukin 33 (IL-33), and the IL-22 signaling pathway. The RNA-seq data on selected genes were confirmed by quantitative real-time PCR (qRT-PCR) and protein assays. Focusing on amoxapine, which had the best anti-CDI outcome, we demonstrated that neutralization of IL-33 or depletion of neutrophils resulted in loss of drug efficacy. Overall, our lead drugs promote disease alleviation and survival in the murine model through activation of IL-33 and by clearing the pathogen through host defense mechanisms that critically include an early influx of neutrophils.

IMPORTANCE Clostridioides difficile is a spore-forming anaerobic bacterium and the leading cause of antibiotic-associated colitis. With few therapeutic options and high rates of disease recurrence, the need to develop new treatment options is urgent. Prior studies utilizing a repurposing approach identified three nonantibiotic Food and Drug Administration-approved drugs, amoxapine, doxapram, and trifluoperazine, with efficacy against a broad range of human pathogens; however, the protective mechanisms remained unknown. Here, we identified mechanisms leading to drug efficacy in a murine model of lethal C. difficile infection (CDI), advancing our understanding of the role of these drugs in infectious disease pathogenesis that center on host immune responses to C. difficile. Overall, these studies highlight the crucial involvement of innate immune responses, as well as the importance of immunomodulation as a potential therapeutic option to combat CDI.




los

In Vivo Targeting of Clostridioides difficile Using Phage-Delivered CRISPR-Cas3 Antimicrobials

ABSTRACT

Clostridioides difficile is an important nosocomial pathogen that causes approximately 500,000 cases of C. difficile infection (CDI) and 29,000 deaths annually in the United States. Antibiotic use is a major risk factor for CDI because broad-spectrum antimicrobials disrupt the indigenous gut microbiota, decreasing colonization resistance against C. difficile. Vancomycin is the standard of care for the treatment of CDI, likely contributing to the high recurrence rates due to the continued disruption of the gut microbiota. Thus, there is an urgent need for the development of novel therapeutics that can prevent and treat CDI and precisely target the pathogen without disrupting the gut microbiota. Here, we show that the endogenous type I-B CRISPR-Cas system in C. difficile can be repurposed as an antimicrobial agent by the expression of a self-targeting CRISPR that redirects endogenous CRISPR-Cas3 activity against the bacterial chromosome. We demonstrate that a recombinant bacteriophage expressing bacterial genome-targeting CRISPR RNAs is significantly more effective than its wild-type parent bacteriophage at killing C. difficile both in vitro and in a mouse model of CDI. We also report that conversion of the phage from temperate to obligately lytic is feasible and contributes to the therapeutic suitability of intrinsic C. difficile phages, despite the specific challenges encountered in the disease phenotypes of phage-treated animals. Our findings suggest that phage-delivered programmable CRISPR therapeutics have the potential to leverage the specificity and apparent safety of phage therapies and improve their potency and reliability for eradicating specific bacterial species within complex communities, offering a novel mechanism to treat pathogenic and/or multidrug-resistant organisms.

IMPORTANCE Clostridioides difficile is a bacterial pathogen responsible for significant morbidity and mortality across the globe. Current therapies based on broad-spectrum antibiotics have some clinical success, but approximately 30% of patients have relapses, presumably due to the continued perturbation to the gut microbiota. Here, we show that phages can be engineered with type I CRISPR-Cas systems and modified to reduce lysogeny and to enable the specific and efficient targeting and killing of C. difficile in vitro and in vivo. Additional genetic engineering to disrupt phage modulation of toxin expression by lysogeny or other mechanisms would be required to advance a CRISPR-enhanced phage antimicrobial for C. difficile toward clinical application. These findings provide evidence into how phage can be combined with CRISPR-based targeting to develop novel therapies and modulate microbiomes associated with health and disease.




los

Erratum for Dai et al., "Autoantibody-Mediated Erythrophagocytosis Increases Tuberculosis Susceptibility in HIV Patients"




los

Minimalistic Cellulosome of the Butanologenic Bacterium Clostridium saccharoperbutylacetonicum

ABSTRACT

Clostridium saccharoperbutylacetonicum is a mesophilic, anaerobic, butanol-producing bacterium, originally isolated from soil. It was recently reported that C. saccharoperbutylacetonicum possesses multiple cellulosomal elements and would potentially form the smallest cellulosome known in nature. Its genome contains only eight dockerin-bearing enzymes, and its unique scaffoldin bears two cohesins (Cohs), three X2 modules, and two carbohydrate-binding modules (CBMs). In this study, all of the cellulosome-related modules were cloned, expressed, and purified. The recombinant cohesins, dockerins, and CBMs were tested for binding activity using enzyme-linked immunosorbent assay (ELISA)-based techniques. All the enzymes were tested for their comparative enzymatic activity on seven different cellulosic and hemicellulosic substrates, thus revealing four cellulases, a xylanase, a mannanase, a xyloglucanase, and a lichenase. All dockerin-containing enzymes interacted similarly with the second cohesin (Coh2) module, whereas Coh1 was more restricted in its interaction pattern. In addition, the polysaccharide-binding properties of the CBMs within the scaffoldin were examined by two complementary assays, affinity electrophoresis and affinity pulldown. The scaffoldin of C. saccharoperbutylacetonicum exhibited high affinity for cellulosic and hemicellulosic substrates, specifically to microcrystalline cellulose and xyloglucan. Evidence that supports substrate-dependent in vivo secretion of cellulosomes is presented. The results of our analyses contribute to a better understanding of simple cellulosome systems by identifying the key players in this minimalistic system and the binding pattern of its cohesin-dockerin interaction. The knowledge gained by our study will assist further exploration of similar minimalistic cellulosomes and will contribute to the significance of specific sets of defined cellulosomal enzymes in the degradation of cellulosic biomass.

IMPORTANCE Cellulosome-producing bacteria are considered among the most important bacteria in both mesophilic and thermophilic environments, owing to their capacity to deconstruct recalcitrant plant-derived polysaccharides (and notably cellulose) into soluble saccharides for subsequent processing. In many ecosystems, the cellulosome-producing bacteria are particularly effective "first responders." The massive amounts of sugars produced are potentially amenable in industrial settings to further fermentation by appropriate microbes to biofuels, notably ethanol and butanol. Among the solvent-producing bacteria, Clostridium saccharoperbutylacetonicum has the smallest cellulosome system known thus far. The importance of investigating the building blocks of such a small, multifunctional nanomachine is crucial to understanding the fundamental activities of this efficient enzymatic complex.




los

A Sensitive Yellow Fever Virus Entry Reporter Identifies Valosin-Containing Protein (VCP/p97) as an Essential Host Factor for Flavivirus Uncoating

ABSTRACT

While the basic mechanisms of flavivirus entry and fusion are understood, little is known about the postfusion events that precede RNA replication, such as nucleocapsid disassembly. We describe here a sensitive, conditionally replication-defective yellow fever virus (YFV) entry reporter, YFVSK/Nluc, to quantitively monitor the translation of incoming, virus particle-delivered genomes. We validated that YFVSK/Nluc gene expression can be neutralized by YFV-specific antisera and requires known flavivirus entry pathways and cellular factors, including clathrin- and dynamin-mediated endocytosis, endosomal acidification, YFV E glycoprotein-mediated fusion, and cellular LY6E and RPLP1 expression. The initial round of YFV translation was shown to require cellular ubiquitylation, consistent with recent findings that dengue virus capsid protein must be ubiquitylated in order for nucleocapsid uncoating to occur. Importantly, translation of incoming YFV genomes also required valosin-containing protein (VCP)/p97, a cellular ATPase that unfolds and extracts ubiquitylated client proteins from large complexes. RNA transfection and washout experiments showed that VCP/p97 functions at a postfusion, pretranslation step in YFV entry. Finally, VCP/p97 activity was required by other flaviviruses in mammalian cells and by YFV in mosquito cells. Together, these data support a critical role for VCP/p97 in the disassembly of incoming flavivirus nucleocapsids during a postfusion step in virus entry.

IMPORTANCE Flaviviruses are an important group of RNA viruses that cause significant human disease. The mechanisms by which flavivirus nucleocapsids are disassembled during virus entry remain unclear. Here, we used a yellow fever virus entry reporter, which expresses a sensitive reporter enzyme but does not replicate, to show that nucleocapsid disassembly requires the cellular protein-disaggregating enzyme valosin-containing protein, also known as p97.




los

Cerebellar ataxia, neuropathy, hearing loss, and intellectual disability due to AIFM1 mutation

Objective

To describe the clinical and molecular genetic findings in a family segregating a novel mutation in the AIFM1 gene on the X chromosome.

Methods

We studied the clinical features and performed brain MRI scans, nerve conduction studies, audiometry, cognitive testing, and clinical exome sequencing (CES) in the proband, his mother, and maternal uncle. We used in silico tools, X chromosome inactivation assessment, and Western blot analysis to predict the consequences of an AIFM1 variant identified by CES and demonstrate its pathogenicity.

Results

The proband and his maternal uncle presented with childhood-onset nonprogressive cerebellar ataxia, hearing loss, intellectual disability (ID), peripheral neuropathy, and mood and behavioral disorder. The proband's mother had mild cerebellar ataxia, ID, and mood and behavior disorder, but no neuropathy or hearing loss. The 3 subjects shared a variant (c.1195G>A; p.Gly399Ser) in exon 12 of the AIFM1 gene, which is not reported in the exome/genome sequence databases, affecting a critical amino acid for protein function involved in NAD(H) binding and predicted to be pathogenic with very high probability by variant analysis programs. X chromosome inactivation was highly skewed in the proband's mother. The mutation did not cause quantitative changes in protein abundance.

Conclusions

Our report extends the molecular and phenotypic spectrum of AIFM1 mutations. Specific findings include limited progression of neurologic abnormalities after the first decade and the coexistence of mood and behavior disorder. This family also shows the confounding effect on the phenotype of nongenetic factors, such as alcohol and drug use and side effects of medication.




los

Machine learning as a diagnostic decision aid for patients with transient loss of consciousness

Background

Transient loss of consciousness (TLOC) is a common reason for presentation to primary/emergency care; over 90% are because of epilepsy, syncope, or psychogenic non-epileptic seizures (PNES). Misdiagnoses are common, and there are currently no validated decision rules to aid diagnosis and management. We seek to explore the utility of machine-learning techniques to develop a short diagnostic instrument by extracting features with optimal discriminatory values from responses to detailed questionnaires about TLOC manifestations and comorbidities (86 questions to patients, 31 to TLOC witnesses).

Methods

Multi-center retrospective self- and witness-report questionnaire study in secondary care settings. Feature selection was performed by an iterative algorithm based on random forest analysis. Data were randomly divided in a 2:1 ratio into training and validation sets (163:86 for all data; 208:92 for analysis excluding witness reports).

Results

Three hundred patients with proven diagnoses (100 each: epilepsy, syncope and PNES) were recruited from epilepsy and syncope services. Two hundred forty-nine completed patient and witness questionnaires: 86 epilepsy (64 female), 84 PNES (61 female), and 79 syncope (59 female). Responses to 36 questions optimally predicted diagnoses. A classifier trained on these features classified 74/86 (86.0% [95% confidence interval 76.9%–92.6%]) of patients correctly in validation (100 [86.7%–100%] syncope, 85.7 [67.3%–96.0%] epilepsy, 75.0 [56.6%–88.5%] PNES). Excluding witness reports, 34 features provided optimal prediction (classifier accuracy of 72/92 [78.3 (68.4%–86.2%)] in validation, 83.8 [68.0%–93.8%] syncope, 81.5 [61.9%–93.7%] epilepsy, 67.9 [47.7%–84.1%] PNES).

Conclusions

A tool based on patient symptoms/comorbidities and witness reports separates well between syncope and other common causes of TLOC. It can help to differentiate epilepsy and PNES. Validated decision rules may improve diagnostic processes and reduce misdiagnosis rates.

Classification of evidence

This study provides Class III evidence that for patients with TLOC, patient and witness questionnaires discriminate between syncope, epilepsy and PNES.




los

Ahmed A, Fend PI, Gaensbauer JT, Reves RR, Khurana R, Salcedo K, Punnoose R, Katz DJ, for the TUBERCULOSIS EPIDEMIOLOGIC STUDIES CONSORTIUM. Interferon-{gamma} Release Assays in Children <15 Years of Age. Pediatrics. 2020:145(1):e20191930




los

Loss of IKK Subunits Limits NF-{kappa}B Signaling in Reovirus-Infected Cells [Virus-Cell Interactions]

Viruses commonly antagonize innate immune pathways that are primarily driven by nuclear factor kappa B (NF-B), interferon regulatory factor (IRF), and the signal transducer and activator of transcription proteins (STAT) family of transcription factors. Such a strategy allows viruses to evade immune surveillance and maximize their replication. Using an unbiased transcriptome sequencing (RNA-seq)-based approach to measure gene expression induced by transfected viral genomic RNA (vgRNA) and reovirus infection, we discovered that mammalian reovirus inhibits host cell innate immune signaling. We found that, while vgRNA and reovirus infection both induce a similar IRF-dependent gene expression program, gene expression driven by the NF-B family of transcription factors is lower in infected cells. Potent agonists of NF-B such as tumor necrosis factor alpha (TNF-α) and vgRNA failed to induce NF-B-dependent gene expression in infected cells. We demonstrate that NF-B signaling is blocked due to loss of critical members of the inhibitor of kappa B kinase (IKK) complex, NF-B essential modifier (NEMO), and IKKβ. The loss of the IKK complex components prevents nuclear translocation and phosphorylation of NF-B, thereby preventing gene expression. Our study demonstrates that reovirus infection selectively blocks NF-B, likely to counteract its antiviral effects and promote efficient viral replication.

IMPORTANCE Host cells mount a response to curb virus replication in infected cells and prevent spread of virus to neighboring, as yet uninfected, cells. The NF-B family of proteins is important for the cell to mediate this response. In this study, we show that in cells infected with mammalian reovirus, NF-B is inactive. Further, we demonstrate that NF-B is rendered inactive because virus infection results in reduced levels of upstream intermediaries (called IKKs) that are needed for NF-B function. Based on previous evidence that active NF-B limits reovirus infection, we conclude that inactivating NF-B is a viral strategy to produce a cellular environment that is favorable for virus replication.




los

Loss of nucleus accumbens low-frequency fluctuations is a signature of chronic pain [Neuroscience]

Chronic pain is a highly prevalent disease with poorly understood pathophysiology. In particular, the brain mechanisms mediating the transition from acute to chronic pain remain largely unknown. Here, we identify a subcortical signature of back pain. Specifically, subacute back pain patients who are at risk for developing chronic pain exhibit...




los

Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism [Neuroscience]

Synaptic activity in neurons leads to the rapid activation of genes involved in mammalian behavior. ATP-dependent chromatin remodelers such as the BAF complex contribute to these responses and are generally thought to activate transcription. However, the mechanisms keeping such “early activation” genes silent have been a mystery. In the course...




los

Water lilies, loss of woodiness, and model systems [Plant Biology]

The delicate necklace of threaded petals from the tomb of Rameses II, midnineteenth century glass houses built for the newly discovered Victoria amazonica, and Monet’s giant canvases in the Musée de l'Orangerie all testify to a deep human attraction to water lilies: beguiling plants with showy flowers that seem to...




los

Closing the gap between mind and brain with the dynamic connectome [Neuroscience]

At the pinnacle of the 17th century scientific revolution, René Descartes, the father of modern philosophy, published his monumental Meditations on First Philosophy (1), in which he proposed a division between soul and body—mind and brain—with the former in charge of our thoughts and conscious decisions (res cogitans) and the...




los

Isolation and Characterization of the Novel Phage JD032 and Global Transcriptomic Response during JD032 Infection of Clostridioides difficile Ribotype 078

ABSTRACT

Insights into the interaction between phages and their bacterial hosts are crucial for the development of phage therapy. However, only one study has investigated global gene expression of Clostridioides (formerly Clostridium) difficile carrying prophage, and transcriptional reprogramming during lytic infection has not been studied. Here, we presented the isolation, propagation, and characterization of a newly discovered 35,109-bp phage, JD032, and investigated the global transcriptomes of both JD032 and C. difficile ribotype 078 (RT078) strain TW11 during JD032 infection. Transcriptome sequencing (RNA-seq) revealed the progressive replacement of bacterial host mRNA with phage transcripts. The expressed genes of JD032 were clustered into early, middle, and late temporal categories that were functionally similar. Specifically, a gene (JD032_orf016) involved in the lysis-lysogeny decision was identified as an early expression gene. Only 17.7% (668/3,781) of the host genes were differentially expressed, and more genes were downregulated than upregulated. The expression of genes involved in host macromolecular synthesis (DNA/RNA/proteins) was altered by JD032 at the level of transcription. In particular, the expression of the ropA operon was downregulated. Most noteworthy is that the gene expression of some antiphage systems, including CRISPR-Cas, restriction-modification, and toxin-antitoxin systems, was suppressed by JD032 during infection. In addition, bacterial sporulation, adhesion, and virulence factor genes were significantly downregulated. This study provides the first description of the interaction between anaerobic spore-forming bacteria and phages during lytic infection and highlights new aspects of C. difficile phage-host interactions.

IMPORTANCE C. difficile is one of the most clinically significant intestinal pathogens. Although phages have been shown to effectively control C. difficile infection, the host responses to phage predation have not been fully studied. In this study, we reported the isolation and characterization of a new phage, JD032, and analyzed the global transcriptomic changes in the hypervirulent RT078 C. difficile strain, TW11, during phage JD032 infection. We found that bacterial host mRNA was progressively replaced with phage transcripts, three temporal categories of JD032 gene expression, the extensive interplay between phage-bacterium, antiphage-like responses of the host and phage evasion, and decreased expression of sporulation- and virulence-related genes of the host after phage infection. These findings confirmed the complexity of interactions between C. difficile and phages and suggest that phages undergoing a lytic cycle may also cause different phenotypes in hosts, similar to prophages, which may inspire phage therapy for the control of C. difficile.




los

Experimental facilitation of heat loss affects work rate and innate immune function in a breeding passerine bird [RESEARCH ARTICLE]

Fredrik Andreasson, Arne Hegemann, Andreas Nord, and Jan-Ake Nilsson

The capacity to get rid of excess heat produced during hard work is a possible constraint on parental effort during reproduction [heat dissipation limit (HDL) theory]. We released hard-working blue tits (Cyanistes caeruleus) from this constraint by experimentally removing ventral plumage. We then assessed whether this changed their reproductive effort (feeding rate and nestling size) and levels of self-maintenance (change in body mass and innate immune function). Feather-clipped females reduced the number of feeding visits and increased levels of constitutive innate immunity compared with unclipped females but did not fledge smaller nestlings. Thus, they increased self-maintenance without compromising current reproductive output. In contrast, feather clipping did not affect the number of feeding visits or innate immune function in males, despite increased heat loss rate. Our results show that analyses of physiological parameters, such as constitutive innate immune function, can be important when trying to understand sources of variation in investment in self-maintenance versus reproductive effort and that risk of overheating can influence innate immune function during reproduction.




los

In vitro-virtual-reality: an anatomically explicit musculoskeletal simulation powered by in vitro muscle using closed loop tissue-software interaction [METHODS [amp ] TECHNIQUES]

Christopher T. Richards and Enrico A. Eberhard

Muscle force-length dynamics are governed by intrinsic contractile properties, motor stimulation and mechanical load. Although intrinsic properties are well-characterised, physiologists lack in vitro instrumentation accounting for combined effects of limb inertia, musculoskeletal architecture and contractile dynamics. We introduce in vitro virtual-reality (in vitro-VR) which enables in vitro muscle tissue to drive a musculoskeletal jumping simulation. In hardware, muscle force from a frog plantaris was transmitted to a software model where joint torques, inertia and ground reaction forces were computed to advance the simulation at 1 kHz. To close the loop, simulated muscle strain was returned to update in vitro length. We manipulated 1) stimulation timing and, 2) the virtual muscle's anatomical origin. This influenced interactions among muscular, inertial, gravitational and contact forces dictating limb kinematics and jump performance. We propose that in vitro-VR can be used to illustrate how neuromuscular control and musculoskeletal anatomy influence muscle dynamics and biomechanical performance.




los

Responses of activity rhythms to temperature cues evolve in Drosophila populations selected for divergent timing of eclosion [RESEARCH ARTICLE]

Lakshman Abhilash, Arshad Kalliyil, and Vasu Sheeba

Even though the rhythm in adult emergence and rhythm in locomotor activity are two different rhythmic phenomena that occur at distinct life-stages of the fly life cycle, previous studies have hinted at similarities in certain aspects of the organisation of the circadian clock driving these two rhythms. For instance, the period gene plays an important regulatory role in both rhythms. In an earlier study, we have shown that selection on timing of adult emergence behaviour in populations of Drosophila melanogaster leads to the co-evolution of temperature sensitivity of circadian clocks driving eclosion. In this study, we were interested in asking if temperature sensitivity of the locomotor activity rhythm has evolved in our populations with divergent timing of adult emergence rhythm, with the goal of understanding the extent of similarity (or lack of it) in circadian organisation between the two rhythms. We found that in response to simulated jetlag with temperature cycles, late chronotypes (populations selected for predominant emergence during dusk) indeed re-entrain faster than early chronotypes (populations selected for predominant emergence during dawn) to 6-h phase-delays, thereby indicating enhanced sensitivity of the activity/rest clock to temperature cues in these stocks (entrainment is the synchronisation of internal rhythms to cyclic environmental time-cues). Additionally, we found that late chronotypes show higher plasticity of phases across regimes, day-to-day stability in phases and amplitude of entrainment, all indicative of enhanced temperature sensitive activity/rest rhythms. Our results highlight remarkably similar organisation principles between emergence and activity/rest rhythms.




los

A single amino acid substitution uncouples catalysis and allostery in an essential biosynthetic enzyme in Mycobacterium tuberculosis [Enzymology]

Allostery exploits the conformational dynamics of enzymes by triggering a shift in population ensembles toward functionally distinct conformational or dynamic states. Allostery extensively regulates the activities of key enzymes within biosynthetic pathways to meet metabolic demand for their end products. Here, we have examined a critical enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS), at the gateway to aromatic amino acid biosynthesis in Mycobacterium tuberculosis, which shows extremely complex dynamic allostery: three distinct aromatic amino acids jointly communicate occupancy to the active site via subtle changes in dynamics, enabling exquisite fine-tuning of delivery of these essential metabolites. Furthermore, this allosteric mechanism is co-opted by pathway branchpoint enzyme chorismate mutase upon complex formation. In this study, using statistical coupling analysis, site-directed mutagenesis, isothermal calorimetry, small-angle X-ray scattering, and X-ray crystallography analyses, we have pinpointed a critical node within the complex dynamic communication network responsible for this sophisticated allosteric machinery. Through a facile Gly to Pro substitution, we have altered backbone dynamics, completely severing the allosteric signal yet remarkably, generating a nonallosteric enzyme that retains full catalytic activity. We also identified a second residue of prime importance to the inter-enzyme communication with chorismate mutase. Our results reveal that highly complex dynamic allostery is surprisingly vulnerable and provide further insights into the intimate link between catalysis and allostery.




los

Identification of Novel Antigens Recognized by Serum Antibodies in Bovine Tuberculosis [Diagnostic Laboratory Immunology]

Bovine tuberculosis (TB), caused by Mycobacterium bovis, remains an important zoonotic disease posing a serious threat to livestock and wildlife. The current TB tests relying on cell-mediated and humoral immune responses in cattle have performance limitations. To identify new serodiagnostic markers of bovine TB, we screened a panel of 101 recombinant proteins, including 10 polyepitope fusions, by a multiantigen print immunoassay (MAPIA) with well-characterized serum samples serially collected from cattle with experimental or naturally acquired M. bovis infection. A novel set of 12 seroreactive antigens was established. Evaluation of selected proteins in the dual-path platform (DPP) assay showed that the highest diagnostic accuracy (~95%) was achieved with a cocktail of five best-performing antigens, thus demonstrating the potential for development of an improved and more practical serodiagnostic test for bovine TB.




los

GI-19007, a Novel Saccharomyces cerevisiae-Based Therapeutic Vaccine against Tuberculosis [Vaccines]

As yet, very few vaccine candidates with activity in animals against Mycobacterium tuberculosis infection have been tested as therapeutic postexposure vaccines. We recently described two pools of mycobacterial proteins with this activity, and here we describe further studies in which four of these proteins (Rv1738, Rv2032, Rv3130, and Rv3841) were generated as a fusion polypeptide and then delivered in a novel yeast-based platform (Tarmogen) which itself has immunostimulatory properties, including activation of Toll-like receptors. This platform can deliver antigens into both the class I and class II antigen presentation pathways and stimulate strong Th1 and Th17 responses. In mice this fusion vaccine, designated GI-19007, was immunogenic and elicited strong gamma interferon (IFN-) and interleukin-17 (IL-17) responses; despite this, they displayed minimal prophylactic activity in mice that were subsequently infected with a virulent clinical strain. In contrast, in a therapeutic model in the guinea pig, GI-19007 significantly reduced the lung bacterial load and reduced lung pathology, particularly in terms of secondary lesion development, while significantly improving survival in one-third of these animals. In further studies in which guinea pigs were vaccinated with BCG before challenge, therapeutic vaccination with GI-19007 initially improved survival versus that of animals given BCG alone, although this protective effect was gradually lost at around 400 days after challenge. Given its apparent ability to substantially limit bacterial dissemination within and from the lungs, GI-19007 potentially can be used to limit lung damage as well as facilitating chemotherapeutic regimens in infected individuals.




los

Evaluation of Cycle Threshold, Toxin Concentration, and Clinical Characteristics of Clostridioides difficile Infection in Patients with Discordant Diagnostic Test Results [Bacteriology]

Clostridioides difficile infection (CDI) is one of the most common health care-associated infections that can cause significant morbidity and mortality. CDI diagnosis involves laboratory testing in conjunction with clinical assessment. The objective of this study was to assess the performance of various C. difficile tests and to compare clinical characteristics, Xpert C. difficile/Epi (PCR) cycle threshold (CT), and Singulex Clarity C. diff toxins A/B (Clarity) concentrations between groups with discordant test results. Unformed stool specimens from 200 hospitalized adults (100 PCR positive and 100 negative) were tested by cell cytotoxicity neutralization assay (CCNA), C. diff Quik Chek Complete (Quik Chek), Premier Toxins A and B, and Clarity. Clinical data, including CDI severity and CDI risk factors, were compared between discordant test results. Compared to CCNA, PCR had the highest sensitivity at 100% and Quik Chek had the highest specificity at 100%. Among clinical and laboratory data studied, prevalences of leukocytosis, prior antibiotic use, and hospitalizations were consistently higher across all subgroups in comparisons of toxin-positive to toxin-negative patients. Among PCR-positive samples, the median CT was lower in toxin-positive samples than in toxin-negative samples; however, CT ranges overlapped. Among Clarity-positive samples, the quantitative toxin concentration was significantly higher in toxin-positive samples than in toxin-negative samples as determined by CCNA and Quik Chek Toxin A and B. Laboratory tests for CDI vary in sensitivity and specificity. The quantitative toxin concentration may offer value in guiding CDI diagnosis and treatment. The presence of leukocytosis, prior antibiotic use, and previous hospitalizations may assist with CDI diagnosis, while other clinical parameters may not be consistently reliable.




los

Closing the Brief Case: Mold Infection of an Indwelling Cranial Device--a Perplexing Combination of "Classic" Laboratory Findings [The Brief Case]




los

Pharmacological Characterization of the Novel and Selective {alpha}7 Nicotinic Acetylcholine Receptor-Positive Allosteric Modulator BNC375 [Neuropharmacology]

Treatments for cognitive deficits associated with central nervous system (CNS) disorders such as Alzheimer disease and schizophrenia remain significant unmet medical needs that incur substantial pressure on the health care system. The α7 nicotinic acetylcholine receptor (nAChR) has garnered substantial attention as a target for cognitive deficits based on receptor localization, robust preclinical effects, genetics implicating its involvement in cognitive disorders, and encouraging, albeit mixed, clinical data with α7 nAChR orthosteric agonists. Importantly, previous orthosteric agonists at this receptor suffered from off-target activity, receptor desensitization, and an inverted U-shaped dose-effect curve in preclinical assays that limit their clinical utility. To overcome the challenges with orthosteric agonists, we have identified a novel selective α7 positive allosteric modulator (PAM), BNC375. This compound is selective over related receptors and potentiates acetylcholine-evoked α7 currents with only marginal effect on the receptor desensitization kinetics. In addition, BNC375 enhances long-term potentiation of electrically evoked synaptic responses in rat hippocampal slices and in vivo. Systemic administration of BNC375 reverses scopolamine-induced cognitive deficits in rat novel object recognition and rhesus monkey object retrieval detour (ORD) task over a wide range of exposures, showing no evidence of an inverted U-shaped dose-effect curve. The compound also improves performance in the ORD task in aged African green monkeys. Moreover, ex vivo 13C-NMR analysis indicates that BNC375 treatment can enhance neurotransmitter release in rat medial prefrontal cortex. These findings suggest that α7 nAChR PAMs have multiple advantages over orthosteric α7 nAChR agonists for the treatment of cognitive dysfunction associated with CNS diseases.

SIGNIFICANCE STATEMENT

BNC375 is a novel and selective α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator (PAM) that potentiates acetylcholine-evoked α7 currents in in vitro assays with little to no effect on the desensitization kinetics. In vivo, BNC375 demonstrated robust procognitive effects in multiple preclinical models across a wide exposure range. These results suggest that α7 nAChR PAMs have therapeutic potential in central nervous system diseases with cognitive impairments.




los

Dose Frequency Optimization of the Dual Amylin and Calcitonin Receptor Agonist KBP-088: Long-Lasting Improvement in Food Preference and Body Weight Loss [Behavioral Pharmacology]

Dual amylin and calcitonin receptor agonists (DACRAs) are novel candidates for treatment of type 2 diabetes and obesity because of their beneficial effects on body weight, blood glucose, insulin sensitivity, and food preference, at least short-term. DACRAs activate the receptors for a prolonged time period, resulting in metabolic effects superior to those of amylin. Because of the prolonged receptor activation, different dosing intervals and, hence, less frequent receptor activation might change the efficacy of DACRA treatment in terms of weight loss and food preference. In this study, we compared daily dosing to dosing every other day with the aim of understanding the optimal balance between efficacy and tolerability. Obese and lean male Sprague-Dawley rats were treated with the DACRA KBP-088, applying two different dosing intervals (1.5 nmol/kg once daily and 3 nmol/kg every other day) to assess the effect on body weight, food intake, glucose tolerance, and food preference when given the choice between chow (13% fat) and a high-fat diet (60% fat). Treatment with KBP-088 induced significant weight loss, reduction in adiposity, improvement in glucose control, and altered food preference toward food that is less calorie-dense. KBP-088 dosed every other day (3 nmol/kg) was superior to KBP-088 once daily (1.5 nmol/kg) in terms of weight loss and improvement of food preference. The beneficial effects were evident in both lean and obese rats. Hence, dosing KBP-088 every other day positively affects overall efficacy on metabolic parameters regardless of the lean/obese state, suggesting that less-frequent dosing with KBP-088 could be feasible.

SIGNIFICANCE STATEMENT

Here, we show that food preference can be altered chronically toward choices that are less calorie-dense by pharmacological treatment. Further, pharmacological dosing regimens affect the efficacy differently, as dosing every other day improved body weight loss and alterations in food preference compared with daily dosing. This suggest that alterations of the dosing regimens could be feasible in the treatment of obesity.




los

Mobilising community networks for early identification of tuberculosis and treatment initiation in Cambodia: an evaluation of a seed-and-recruit model

Background and objectives

The effects of active case finding (ACF) models that mobilise community networks for early identification and treatment of tuberculosis (TB) remain unknown. We investigated and compared the effect of community-based ACF using a seed-and-recruit model with one-off roving ACF and passive case finding (PCF) on the time to treatment initiation and identification of bacteriologically confirmed TB.

Methods

In this retrospective cohort study conducted in 12 operational districts in Cambodia, we assessed relationships between ACF models and: 1) the time to treatment initiation using Cox proportional hazards regression; and 2) the identification of bacteriologically confirmed TB using modified Poisson regression with robust sandwich variance.

Results

We included 728 adults with TB, of whom 36% were identified via the community-based ACF using a seed-and-recruit model. We found community-based ACF using a seed-and-recruit model was associated with shorter delay to treatment initiation compared to one-off roving ACF (hazard ratio 0.81, 95% CI 0.68–0.96). Compared to one-off roving ACF and PCF, community-based ACF using a seed-and-recruit model was 45% (prevalence ratio (PR) 1.45, 95% CI 1.19–1.78) and 39% (PR 1.39, 95% CI 0.99–1.94) more likely to find and detect bacteriologically confirmed TB, respectively.

Conclusion

Mobilising community networks to find TB cases was associated with early initiation of TB treatment in Cambodia. This approach was more likely to find bacteriologically confirmed TB cases, contributing to the reduction of risk of transmission within the community.




los

The Transcriptional Aftermath in Two Independently Formed Hybrids of the Opportunistic Pathogen Candida orthopsilosis

ABSTRACT

Interspecific hybridization can drive evolutionary adaptation to novel environments. The Saccharomycotina clade of budding yeasts includes many hybrid lineages, and hybridization has been proposed as a source for new pathogenic species. Candida orthopsilosis is an emerging opportunistic pathogen for which most clinical isolates are hybrids, each derived from one of at least four independent crosses between the same two parental lineages. To gain insight into the transcriptomic aftermath of hybridization in these pathogens, we analyzed allele-specific gene expression in two independently formed hybrid strains and in a homozygous strain representative of one parental lineage. Our results show that the effect of hybridization on overall gene expression is rather limited, affecting ~4% of the genes studied. However, we identified a larger effect in terms of imbalanced allelic expression, affecting ~9.5% of the heterozygous genes in the hybrids. This effect was larger in the hybrid with more extensive loss of heterozygosity, which may indicate a tendency to avoid loss of heterozygosity in these genes. Consistently, the number of shared genes with allele-specific expression in the two independently formed hybrids was higher than random expectation, suggesting selective retention. Some of the imbalanced genes have functions related to pathogenicity, including zinc transport and superoxide dismutase activities. While it remains unclear whether the observed imbalanced genes play a role in virulence, our results suggest that differences in allele-specific expression may add an additional layer of phenotypic plasticity to traits related to virulence in C. orthopsilosis hybrids.

IMPORTANCE How new pathogens emerge is an important question that remains largely unanswered. Some emerging yeast pathogens are hybrids originated through the crossing of two different species, but how hybridization contributes to higher virulence is unclear. Here, we show that hybrids selectively retain gene regulation plasticity inherited from the two parents and that this plasticity affects genes involved in virulence.




los

Genetic Association Reveals Protection against Recurrence of Clostridium difficile Infection with Bezlotoxumab Treatment

ABSTRACT

Bezlotoxumab is a human monoclonal antibody against Clostridium difficile toxin B, indicated to prevent recurrence of C. difficile infection (rCDI) in high-risk adults receiving antibacterial treatment for CDI. An exploratory genome-wide association study investigated whether human genetic variation influences bezlotoxumab response. DNA from 704 participants who achieved initial clinical cure in the phase 3 MODIFY I/II trials was genotyped. Single nucleotide polymorphisms (SNPs) and human leukocyte antigen (HLA) imputation were performed using IMPUTE2 and HIBAG, respectively. A joint test of genotype and genotype-by-treatment interaction in a logistic regression model was used to screen genetic variants associated with response to bezlotoxumab. The SNP rs2516513 and the HLA alleles HLA-DRB1*07:01 and HLA-DQA1*02:01, located in the extended major histocompatibility complex on chromosome 6, were associated with the reduction of rCDI in bezlotoxumab-treated participants. Carriage of a minor allele (homozygous or heterozygous) at any of the identified loci was related to a larger difference in the proportion of participants experiencing rCDI versus placebo; the effect was most prominent in the subgroup at high baseline risk for rCDI. Genotypes associated with an improved bezlotoxumab response showed no association with rCDI in the placebo cohort. These data suggest that a host-driven, immunological mechanism may impact bezlotoxumab response. Trial registration numbers are as follows: NCT01241552 (MODIFY I) and NCT01513239 (MODIFY II).

IMPORTANCE Clostridium difficile infection is associated with significant clinical morbidity and mortality; antibacterial treatments are effective, but recurrence of C. difficile infection is common. In this genome-wide association study, we explored whether host genetic variability affected treatment responses to bezlotoxumab, a human monoclonal antibody that binds C. difficile toxin B and is indicated for the prevention of recurrent C. difficile infection. Using data from the MODIFY I/II phase 3 clinical trials, we identified three genetic variants associated with reduced rates of C. difficile infection recurrence in bezlotoxumab-treated participants. The effects were most pronounced in participants at high risk of C. difficile infection recurrence. All three variants are located in the extended major histocompatibility complex on chromosome 6, suggesting the involvement of a host-driven immunological mechanism in the prevention of C. difficile infection recurrence.




los

Diagnostic Utility and Impact on Clinical Decision Making of Focused Assessment With Sonography for HIV-Associated Tuberculosis in Malawi: A Prospective Cohort Study

ABSTRACTBackground:The focused assessment with sonography for HIV-associated tuberculosis (TB) (FASH) ultrasound protocol has been increasingly used to help clinicians diagnose TB. We sought to quantify the diagnostic utility of FASH for TB among individuals with HIV in Malawi.Methods:Between March 2016 and August 2017, 210 adults with HIV who had 2 or more signs and symptoms that were concerning for TB (fever, cough, night sweats, weight loss) were enrolled from a public HIV clinic in Lilongwe, Malawi. The treating clinicians conducted a history, physical exam, FASH protocol, and additional TB evaluation (laboratory diagnostics and chest radiography) on all participants. The clinician made a final treatment decision based on all available information. At the 6-month follow-up visit, we categorized participants based on clinical outcomes and diagnostic tests as having probable/confirmed TB or unlikely TB; association of FASH with probable/confirmed TB was calculated using Fisher's exact tests. The impact of FASH on empiric TB treatment was determined by asking the clinicians prospectively about whether they would start treatment at 2 time points in the baseline visit: (1) after the initial history and physical exam; and (2) after history, physical exam, and FASH protocol.Results:A total of 181 participants underwent final analysis, of whom 56 were categorized as probable/confirmed TB and 125 were categorized as unlikely TB. The FASH protocol was positive in 71% (40/56) of participants with probable/confirmed TB compared to 24% (30/125) of participants with unlikely TB (odds ratio=7.9, 95% confidence interval=3.9,16.1; P<.001). Among those classified as confirmed/probable TB, FASH increased the likelihood of empiric TB treatment before obtaining any other diagnostic studies from 9% (5/56) to 46% (26/56) at the point-of-care. For those classified as unlikely TB, FASH increased the likelihood of empiric treatment from 2% to 4%.Conclusion:In the setting of HIV coinfection in Malawi, FASH can be a helpful tool that augments the clinician's ability to make a timely diagnosis of TB.




los

Long-term outcome of a randomized controlled study in patients with newly diagnosed severe aplastic anemia treated with antithymocyte globulin and cyclosporine, with or without granulocyte colony-stimulating factor: a Severe Aplastic Anemia Working Party

This follow-up study of a randomized, prospective trial included 192 patients with newly diagnosed severe aplastic anemia receiving antithymoglobulin and cyclosporine, with or without granulocyte colony-stimulating factor (G-CSF). We aimed to evaluate the long-term effect of G-CSF on overall survival, event-free survival, probability of secondary myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML), clinical paroxysmal nocturnal hemoglobinuria, relapse, avascular osteonecrosis and chronic kidney disease. The median follow-up was 11.7 years (95% CI, 10.9-12.5). The overall survival rate at 15 years was 57±12% in the group given G-CSF and 63±12% in the group not given G-CSF (P=0.92); the corresponding event-free survival rates were 24±10% and 23±10%, respectively (P=0.36). In total, 9 patients developed MDS or AML, 10 only a clonal cytogenetic abnormality, 7 a solid cancer, 18 clinical paroxysmal nocturnal hemoglobinuria, 8 osteonecrosis, and 12 chronic kidney disease, without any difference between patients treated with or without G-CSF. The cumulative incidence of MDS, AML or isolated cytogenetic abnormality at 15 years was 8.5±3% for the G-CSF group and 8.2±3% for the non-G-CSF group (P=0.90). The cumulative incidence of any late event including myelodysplastic syndrome or acute myeloid leukemia, isolated cytogenetic abnormalities, solid cancer, clinical paroxysmal nocturnal hemoglobinuria, aseptic osteonecrosis, chronic kidney disease and relapse was 50±12% for the G-CSF group and 49±12% for the non-G-CSF group (P=0.65). Our results demonstrate that it is unlikely that G-CSF has an impact on the outcome of severe aplastic anemia; nevertheless, very late events are common and eventually affect the prognosis of these patients, irrespectively of their age at the time of immunosuppressive therapy (NCT01163942).




los

Abnormal expression of GABAA receptor subunits and hypomotility upon loss of gabra1 in zebrafish [RESEARCH ARTICLE]

Nayeli G. Reyes-Nava, Hung-Chun Yu, Curtis R. Coughlin II, Tamim H. Shaikh, and Anita M. Quintana

We used whole-exome sequencing (WES) to determine the genetic etiology of a patient with a multi-system disorder characterized by a seizure phenotype. WES identified a heterozygous de novo missense mutation in the GABRA1 gene (c.875C>T). GABRA1 encodes the alpha subunit of the gamma-aminobutyric acid receptor A (GABAAR). The GABAAR is a ligand gated ion channel that mediates the fast inhibitory signals of the nervous system, and mutations in the subunits that compose the GABAAR have been previously associated with human disease. To understand the mechanisms by which GABRA1 regulates brain development, we developed a zebrafish model of gabra1 deficiency. gabra1 expression is restricted to the nervous system and behavioral analysis of morpholino injected larvae suggests that the knockdown of gabra1 results in hypoactivity and defects in the expression of other subunits of the GABAAR. Expression of the human GABRA1 protein in morphants partially restored the hypomotility phenotype. In contrast, the expression of the c.875C>T variant did not restore these behavioral deficits. Collectively, these results represent a functional approach to understand the mechanisms by which loss-of-function alleles cause disease.




los

Loss of cerebellar function selectively affects intrinsic rhythmicity of eupneic breathing [RESEARCH ARTICLE]

Yu Liu, Shuhua Qi, Fridtjof Thomas, Brittany L. Correia, Angela P. Taylor, Roy V. Sillitoe, and Detlef H. Heck

Respiration is controlled by central pattern generating circuits in the brain stem, whose activity can be modulated by inputs from other brain areas to adapt respiration to autonomic and behavioral demands. The cerebellum is known to be part of the neuronal circuitry activated during respiratory challenges, such as hunger for air, but has not been found to be involved in the control of spontaneous, unobstructed breathing (eupnea). Here we applied a measure of intrinsic rhythmicity, the CV2, which evaluates the similarity of subsequent intervals and is thus sensitive to changes in rhythmicity at the temporal resolution of individual respiratory intervals. The variability of intrinsic respiratory rhythmicity was reduced in a mouse model of cerebellar ataxia compared to their healthy littermates. Irrespective of that difference, the average respiratory rate and the average coefficient of variation (CV) were comparable between healthy and ataxic mice. We argue that these findings are consistent with a proposed role of the cerebellum in modulating the duration of individual respiratory intervals, which could serve the purpose of coordinating respiration with other rhythmic orofacial movements, such as fluid licking and swallowing.




los

Brief interventions for obesity when patients are asked to pay for weight loss treatment: an observational study in primary care with an embedded randomised trial

BackgroundA brief intervention whereby GPs opportunistically facilitate an NHS-funded referral to a weight loss programme is clinically and cost-effective.AimTo test the acceptability of a brief intervention and attendance at a weight loss programme when GPs facilitate a referral that requires patients to pay for the service.Design and settingAn observational study of the effect of a GP encouraging attendance at a weight loss programme requiring self-payment in the West Midlands from 16 October 2018 to 30 November 2018, to compare with a previous trial in England in which the service was NHS-funded.MethodSixty patients with obesity who consecutively attended primary care appointments received an opportunistic brief intervention by a GP to endorse and offer a referral to a weight loss programme at the patient’s own expense. Participants were randomised to GPs who either stated the weekly monetary cost of the programme (basic cost) or who compared the weekly cost to an everyday discretionary item (cost comparison). Participants were subsequently asked to report whether they had attended a weight loss programme.ResultsOverall, 47% of participants (n = 28) accepted the referral; 50% (n = 15) in the basic cost group and 43% (n = 13) in the cost comparison group. This was significantly less than in a previous study when the programme was NHS-funded (77%, n = 722/940; P<0.0001). Most participants reported the intervention to be helpful/very helpful and appropriate/very appropriate (78%, n = 46/59 and 85%, n = 50/59, respectively) but scores were significantly lower than when the programme was NHS-funded (92% n = 851/922 and 88% n = 813/922, respectively; P = 0.004). One person (2%) attended the weight loss programme, which is significantly lower than the 40% of participants who attended when the programme was NHS-funded (P<0.0001).ConclusionGP referral to a weight loss programme that requires patients to pay rather than offering an NHS-funded programme is acceptable; however, it results in almost no attendance.




los

What It Means to Live with Focal Segmental Glomerulosclerosis




los

Digging Deep in the Microbiome to Diagnose Clostridioides difficile Infection

Clostridioides difficileDiagnosticsMetabolomicsMicrobiome




los

Caseum: a Niche for Mycobacterium tuberculosis Drug-Tolerant Persisters [Reviews]

Caseum, the central necrotic material of tuberculous lesions, is a reservoir of drug-recalcitrant persisting mycobacteria. Caseum is found in closed nodules and in open cavities connecting with an airway. Several commonly accepted characteristics of caseum were established during the preantibiotic era, when autopsies of deceased tuberculosis (TB) patients were common but methodologies were limited. These pioneering studies generated concepts such as acidic pH, low oxygen tension, and paucity of nutrients being the drivers of nonreplication and persistence in caseum. Here we review widely accepted beliefs about the caseum-specific stress factors thought to trigger the shift of Mycobacterium tuberculosis to drug tolerance. Our current state of knowledge reveals that M. tuberculosis is faced with a lipid-rich diet rather than nutrient deprivation in caseum. Variable caseum pH is seen across lesions, possibly transiently acidic in young lesions but overall near neutral in most mature lesions. Oxygen tension is low in the avascular caseum of closed nodules and high at the cavity surface, and a gradient of decreasing oxygen tension likely forms toward the cavity wall. Since caseum is largely made of infected and necrotized macrophages filled with lipid droplets, the microenvironmental conditions encountered by M. tuberculosis in foamy macrophages and in caseum bear many similarities. While there remain a few knowledge gaps, these findings constitute a solid starting point to develop high-throughput drug discovery assays that combine the right balance of oxygen tension, pH, lipid abundance, and lipid species to model the profound drug tolerance of M. tuberculosis in caseum.




los

Systematic Review of Whole-Genome Sequencing Data To Predict Phenotypic Drug Resistance and Susceptibility in Swedish Mycobacterium tuberculosis Isolates, 2016 to 2018 [Mechanisms of Resistance]

In this retrospective study, whole-genome sequencing (WGS) data generated on an Ion Torrent platform was used to predict phenotypic drug resistance profiles for first- and second-line drugs among Swedish clinical Mycobacterium tuberculosis isolates from 2016 to 2018. The accuracy was ~99% for all first-line drugs and 100% for four second-line drugs. Our analysis supports the introduction of WGS into routine diagnostics, which might, at least in Sweden, replace phenotypic drug susceptibility testing in the future.




los

Tissue Distribution of Doxycycline in Animal Models of Tuberculosis [Pharmacology]

Doxycycline, an FDA-approved tetracycline, is used in tuberculosis in vivo models for the temporal control of mycobacterial gene expression. In these models, animals are infected with recombinant Mycobacterium tuberculosis carrying genes of interest under transcriptional control of the doxycycline-responsive TetR-tetO unit. To minimize fluctuations of plasma levels, doxycycline is usually administered in the diet. However, tissue penetration studies to identify the minimum doxycycline content in food achieving complete repression of TetR-controlled genes in tuberculosis (TB)-infected organs and lesions have not been conducted. Here, we first determined the tetracycline concentrations required to achieve silencing of M. tuberculosis target genes in vitro. Next, we measured doxycycline concentrations in plasma, major organs, and lung lesions in TB-infected mice and rabbits and compared these values to silencing concentrations measured in vitro. We found that 2,000 ppm doxycycline supplemented in mouse and rabbit feed is sufficient to reach target concentrations in TB lesions. In rabbit chow, the calcium content had to be reduced 5-fold to minimize chelation of doxycycline and deliver adequate oral bioavailability. Clearance kinetics from major organs and lung lesions revealed that doxycycline levels fall below concentrations that repress tet promoters within 7 to 14 days after doxycycline is removed from the diet. In summary, we have shown that 2,000 ppm doxycycline supplemented in standard mouse diet and in low-calcium rabbit diet delivers concentrations adequate to achieve full repression of tet promoters in infected tissues of mice and rabbits.




los

Early Bactericidal Activity Trial of Nitazoxanide for Pulmonary Tuberculosis [Clinical Therapeutics]

This study was conducted in treatment-naive adults with drug-susceptible pulmonary tuberculosis in Port-au-Prince, Haiti, to assess the safety, bactericidal activity, and pharmacokinetics of nitazoxanide (NTZ). This was a prospective phase II clinical trial in 30 adults with pulmonary tuberculosis. Twenty participants received 1 g of NTZ orally twice daily for 14 days. A control group of 10 participants received standard therapy over 14 days. The primary outcome was the change in time to culture positivity (TTP) in an automated liquid culture system. The most common adverse events seen in the NTZ group were gastrointestinal complaints and headache. The mean change in TTP in sputum over 14 days in the NTZ group was 3.2 h ± 22.6 h and was not statistically significant (P = 0.56). The mean change in TTP in the standard therapy group was significantly increased, at 134 h ± 45.2 h (P < 0.0001). The mean NTZ MIC for Mycobacterium tuberculosis isolates was 12.3 μg/ml; the mean NTZ maximum concentration (Cmax) in plasma was 10.2 μg/ml. Negligible NTZ levels were measured in sputum. At the doses used, NTZ did not show bactericidal activity against M. tuberculosis. Plasma concentrations of NTZ were below the MIC, and its negligible accumulation in pulmonary sites may explain the lack of bactericidal activity. (This study has been registered at ClinicalTrials.gov under identifier NCT02684240.)




los

Abacavir Exposure in Children Cotreated for Tuberculosis with Rifampin and Superboosted Lopinavir-Ritonavir [Pharmacology]

In children requiring lopinavir coformulated with ritonavir in a 4:1 ratio (lopinavir-ritonavir-4:1) and rifampin, adding ritonavir to achieve a 4:4 ratio with lopinavir (LPV/r-4:4) overcomes the drug-drug interaction. Possible drug-drug interactions within this regimen may affect abacavir concentrations, but this has never been studied. Children weighing <15 kg needing rifampin and LPV/r-4:4 were enrolled in a pharmacokinetic study and underwent intensive pharmacokinetic sampling on 3 visits: (i) during the intensive and (ii) continuation phases of antituberculosis treatment with LPV/r-4:4 and (iii) 1 month after antituberculosis treatment completion on LPV/r-4:1. Pharmacometric modeling and simulation were used to compare exposures across weight bands with adult target exposures. Eighty-seven children with a median (interquartile range) age and weight of 19 (4 to 64) months and 8.7 (3.9 to 14.9) kg, respectively, were included in the abacavir analysis. Abacavir pharmacokinetics were best described by a two-compartment model with first-order elimination and transit compartment absorption. After allometric scaling adjusted for the effect of body size, maturation could be identified: clearance was predicted to be fully mature at about 2 years of age and to reach half of this mature value at about 2 months of age. Abacavir bioavailability decreased 36% during treatment with rifampin and LPV/r-4:4 but remained within the median adult recommended exposure, except for children in the 3- to 4.9-kg weight band, in which the exposures were higher. The observed predose morning trough concentrations were higher than the evening values. Though abacavir exposure significantly decreased during concomitant administration of rifampin and LPV/r-4:4, it remained within acceptable ranges. (This study is registered in ClinicalTrials.gov under identifier NCT02348177.)




los

ISEcp1-Mediated Transposition Leads to Fosfomycin and Broad-Spectrum Cephalosporin Resistance in Klebsiella pneumoniae [Mechanisms of Resistance]

A fosfomycin-resistant and carbapenemase (OXA-48)-producing Klebsiella pneumoniae isolate was recovered, and whole-genome sequencing revealed ISEcp1-blaCTX-M-14b tandemly inserted upstream of the chromosomally encoded lysR-fosA locus. Quantitative evaluation of the expression of lysR and fosA genes showed that this insertion brought a strong hybrid promoter leading to overexpression of the fosA gene, resulting in fosfomycin resistance. This work showed the concomitant acquisition of resistance to broad-spectrum cephalosporins and fosfomycin due to a single genetic event.




los

Distribution of Highly Prevalent Musculoskeletal Disorders and Their Association With Diabetes Complications in a Population of 140 Individuals With Type 1 Diabetes: A Retrospective Study in a French Diabetes Center

Although they are usually not considered to be diabetes complications, musculoskeletal disorders (MSKDs) are common in individuals with type 1 or type 2 diabetes and can strongly interfere with daily diabetes care, especially in people using diabetes technologies. The authors of this retrospective study in a population of 140 patients with type 1 diabetes report the distribution of subtypes of MSKDs and speculate about the mechanisms involved. The authors emphasize the need for multidisciplinary care involving not only the diabetes care team but also orthopedic surgeons. This report should lead to large, prospective studies to increase knowledge about these under-studied complications.




los

Assessing Cancer Treatment Information Using Medicare and Hospital Discharge Data among Women with Non-Hodgkin Lymphoma in a Los Angeles County Case-Control Study

Background:

We assessed the ability to supplement existing epidemiologic/etiologic studies with data on treatment and clinical outcomes by linking to publicly available cancer registry and administrative databases.

Methods:

Medical records were retrieved and abstracted for cases enrolled in a Los Angeles County case–control study of non-Hodgkin lymphoma (NHL). Cases were linked to the Los Angeles County cancer registry (CSP), the California state hospitalization discharge database (OSHPD), and the SEER-Medicare database. We assessed sensitivity, specificity, and positive predictive value (PPV) of cancer treatment in linked databases, compared with medical record abstraction.

Results:

We successfully retrieved medical records for 918 of 1,004 participating NHL cases and abstracted treatment for 698. We linked 59% of cases (96% of cases >65 years old) to SEER-Medicare and 96% to OSHPD. Chemotherapy was the most common treatment and best captured, with the highest sensitivity in SEER-Medicare (80%) and CSP (74%); combining all three data sources together increased sensitivity (92%), at reduced specificity (56%). Sensitivity for radiotherapy was moderate: 77% with aggregated data. Sensitivity of BMT was low in the CSP (42%), but high for the administrative databases, especially OSHPD (98%). Sensitivity for surgery reached 83% when considering all three datasets in aggregate, but PPV was 60%. In general, sensitivity and PPV for chronic lymphocytic leukemia/small lymphocytic lymphoma were low.

Conclusions:

Chemotherapy was accurately captured by all data sources. Hospitalization data yielded the highest performance values for BMTs. Performance measures for radiotherapy and surgery were moderate.

Impact:

Various administrative databases can supplement epidemiologic studies, depending on treatment type and NHL subtype of interest.




los

Increased Notching of the Corpus Callosum in Fetal Alcohol Spectrum Disorder: A Callosal Misunderstanding? [PEDIATRICS]

BACKGROUND AND PURPOSE:

In the medicolegal literature, notching of the corpus callosum has been reported to be associated with fetal alcohol spectrum disorders. Our purpose was to analyze the prevalence of notching of the corpus callosum in a fetal alcohol spectrum disorders group and a healthy population to determine whether notching occurs with increased frequency in the fetal alcohol spectrum disorders population.

MATERIALS AND METHODS:

We performed a multicenter search for cases of fetal alcohol spectrum disorders and included all patients who had a sagittal T1-weighted brain MR imaging. Patients with concomitant intracranial pathology were excluded. The corpus callosum was examined for notches using previously published methods. A 2 test was used to compare the fetal alcohol spectrum disorders and healthy groups.

RESULTS:

Thirty-three of 59 patients with fetal alcohol spectrum disorders (0–44 years of age) identified across all centers had corpus callosum notching. Of these, 8 had an anterior corpus callosum notch (prevalence, 13.6%), 23 had a posterior corpus callosum notch (prevalence, 39%), and 2 patients demonstrated undulated morphology (prevalence, 3.4%). In the healthy population, the anterior notch prevalence was 139/875 (15.8%), posterior notch prevalence was 378/875 (43.2%), and undulating prevalence was 37/875 (4.2%). There was no significant difference among the anterior (P = .635), posterior (P = .526), and undulating (P = .755) notch prevalence in the fetal alcohol spectrum disorders and healthy groups.

CONCLUSIONS:

There was no significant difference in notching of the corpus callosum between patients with fetal alcohol spectrum disorders and the healthy population. Although reported to be a marker of fetal alcohol spectrum disorders, notching of the corpus callosum should not be viewed as a specific finding associated with fetal alcohol spectrum disorders.