ies

Crohn's, Colitis Tied to Higher-Risk Pregnancies

Title: Crohn's, Colitis Tied to Higher-Risk Pregnancies
Category: Health News
Created: 8/9/2022 12:00:00 AM
Last Editorial Review: 8/9/2022 12:00:00 AM




ies

When Do Babies Start Teething?

Title: When Do Babies Start Teething?
Category: Diseases and Conditions
Created: 12/2/2021 12:00:00 AM
Last Editorial Review: 8/23/2022 12:00:00 AM




ies

U.S. Government Extends Baby Formula Waivers, Rebates for WIC Families

Title: U.S. Government Extends Baby Formula Waivers, Rebates for WIC Families
Category: Health News
Created: 8/25/2022 12:00:00 AM
Last Editorial Review: 8/26/2022 12:00:00 AM




ies

Mental Health Issues Can Plague Families of Kids With Type 1 Diabetes

Title: Mental Health Issues Can Plague Families of Kids With Type 1 Diabetes
Category: Health News
Created: 8/5/2022 12:00:00 AM
Last Editorial Review: 8/5/2022 12:00:00 AM




ies

Everyday Activities That Can Cut Your Odds for Dementia

Title: Everyday Activities That Can Cut Your Odds for Dementia
Category: Health News
Created: 8/12/2022 12:00:00 AM
Last Editorial Review: 8/15/2022 12:00:00 AM




ies

3 Big Pharmacy Chains Must Pay $650 Million to Ohio Counties for Role in Opioid Crisis

Title: 3 Big Pharmacy Chains Must Pay $650 Million to Ohio Counties for Role in Opioid Crisis
Category: Health News
Created: 8/18/2022 12:00:00 AM
Last Editorial Review: 8/18/2022 12:00:00 AM




ies

FDA Issues Warning to Maker of Illegal Nicotine Gummies

Title: FDA Issues Warning to Maker of Illegal Nicotine Gummies
Category: Health News
Created: 8/19/2022 12:00:00 AM
Last Editorial Review: 8/19/2022 12:00:00 AM




ies

Too Few U.S. Cities Have Good Hurricane Evacuation Plans

Title: Too Few U.S. Cities Have Good Hurricane Evacuation Plans
Category: Health News
Created: 8/26/2022 12:00:00 AM
Last Editorial Review: 8/26/2022 12:00:00 AM




ies

There's More MS in Northern Countries. Now, Researchers Find New Reason Why

Title: There's More MS in Northern Countries. Now, Researchers Find New Reason Why
Category: Health News
Created: 8/25/2022 12:00:00 AM
Last Editorial Review: 8/25/2022 12:00:00 AM




ies

Stay Independent of Asthma, Allergies This July 4th

Title: Stay Independent of Asthma, Allergies This July 4th
Category: Health News
Created: 7/1/2022 12:00:00 AM
Last Editorial Review: 7/1/2022 12:00:00 AM




ies

The 8 Most Common Food Allergies

Title: The 8 Most Common Food Allergies
Category: Health and Living
Created: 7/13/2022 12:00:00 AM
Last Editorial Review: 7/13/2022 12:00:00 AM




ies

Noninvasive diagnostic modalities and prediction models for detecting pulmonary hypertension associated with interstitial lung disease: a narrative review

Pulmonary hypertension (PH) is highly prevalent in patients with interstitial lung disease (ILD) and is associated with increased morbidity and mortality. Widely available noninvasive screening tools are warranted to identify patients at risk for PH, especially severe PH, that could be managed at expert centres. This review summarises current evidence on noninvasive diagnostic modalities and prediction models for the timely detection of PH in patients with ILD. It critically evaluates these approaches and discusses future perspectives in the field. A comprehensive literature search was carried out in PubMed and Scopus, identifying 39 articles that fulfilled inclusion criteria. There is currently no single noninvasive test capable of accurately detecting and diagnosing PH in ILD patients. Estimated right ventricular pressure (RVSP) on Doppler echocardiography remains the single most predictive factor of PH, with other indirect echocardiographic markers increasing its diagnostic accuracy. However, RVSP can be difficult to estimate in patients due to suboptimal views from extensive lung disease. The majority of existing composite scores, including variables obtained from chest computed tomography, pulmonary function tests and cardiopulmonary exercise tests, were derived from retrospective studies, whilst lacking validation in external cohorts. Only two available scores, one based on a stepwise echocardiographic approach and the other on functional parameters, predicted the presence of PH with sufficient accuracy and used a validation cohort. Although several methodological limitations prohibit their generalisability, their use may help physicians to detect PH earlier. Further research on the potential of artificial intelligence may guide a more tailored approach, for timely PH diagnosis.




ies

Systematic identification of interchromosomal interaction networks supports the existence of specialized RNA factories [METHODS]

Most studies of genome organization have focused on intrachromosomal (cis) contacts because they harbor key features such as DNA loops and topologically associating domains. Interchromosomal (trans) contacts have received much less attention, and tools for interrogating potential biologically relevant trans structures are lacking. Here, we develop a computational framework that uses Hi-C data to identify sets of loci that jointly interact in trans. This method, trans-C, initiates probabilistic random walks with restarts from a set of seed loci to traverse an input Hi-C contact network, thereby identifying sets of trans-contacting loci. We validate trans-C in three increasingly complex models of established trans contacts: the Plasmodium falciparum var genes, the mouse olfactory receptor "Greek islands," and the human RBM20 cardiac splicing factory. We then apply trans-C to systematically test the hypothesis that genes coregulated by the same trans-acting element (i.e., a transcription or splicing factor) colocalize in three dimensions to form "RNA factories" that maximize the efficiency and accuracy of RNA biogenesis. We find that many loci with multiple binding sites of the same DNA-binding proteins interact with one another in trans, especially those bound by factors with intrinsically disordered domains. Similarly, clustered binding of a subset of RNA-binding proteins correlates with trans interaction of the encoding loci. We observe that these trans-interacting loci are close to nuclear speckles. These findings support the existence of trans-interacting chromatin domains (TIDs) driven by RNA biogenesis. Trans-C provides an efficient computational framework for studying these and other types of trans interactions, empowering studies of a poorly understood aspect of genome architecture.




ies

Global characterization of somatic mutations and DNA methylation changes during vegetative propagation in strawberries [RESEARCH]

Somatic mutations arise and accumulate during tissue culture and vegetative propagation, potentially affecting various traits in horticultural crops, but their characteristics are still unclear. Here, somatic mutations in regenerated woodland strawberry derived from tissue culture of shoot tips under different conditions and 12 cultivated strawberry individuals are analyzed by whole genome sequencing. The mutation frequency of single nucleotide variants is significantly increased with increased hormone levels or prolonged culture time in the range of 3.3 x 10–8–3.0 x 10–6 mutations per site. CG methylation shows a stable reduction (0.71%–8.03%) in regenerated plants, and hypoCG-DMRs are more heritable after sexual reproduction. A high-quality haplotype-resolved genome is assembled for the strawberry cultivar "Beni hoppe." The 12 "Beni hoppe" individuals randomly selected from different locations show 4731–6005 mutations relative to the reference genome, and the mutation frequency varies among the subgenomes. Our study has systematically characterized the genetic and epigenetic variants in regenerated woodland strawberry plants and different individuals of the same strawberry cultivar, providing an accurate assessment of somatic mutations at the genomic scale and nucleotide resolution in plants.




ies

Evolutionary dynamics of polyadenylation signals and their recognition strategies in protists [RESEARCH]

The poly(A) signal, together with auxiliary elements, directs cleavage of a pre-mRNA and thus determines the 3' end of the mature transcript. In many species, including humans, the poly(A) signal is an AAUAAA hexamer, but we recently found that the deeply branching eukaryote Giardia lamblia uses a distinct hexamer (AGURAA) and lacks any known auxiliary elements. Our discovery prompted us to explore the evolutionary dynamics of poly(A) signals and auxiliary elements in the eukaryotic kingdom. We use direct RNA sequencing to determine poly(A) signals for four protists within the Metamonada clade (which also contains G. lamblia) and two outgroup protists. These experiments reveal that the AAUAAA hexamer serves as the poly(A) signal in at least four different eukaryotic clades, indicating that it is likely the ancestral signal, whereas the unusual Giardia version is derived. We find that the use and relative strengths of auxiliary elements are also plastic; in fact, within Metamonada, species like G. lamblia make use of a previously unrecognized auxiliary element where nucleotides flanking the poly(A) signal itself specify genuine cleavage sites. Thus, despite the fundamental nature of pre-mRNA cleavage for the expression of all protein-coding genes, the motifs controlling this process are dynamic on evolutionary timescales, providing motivation for future biochemical and structural studies as well as new therapeutic angles to target eukaryotic pathogens.




ies

De novo genome assemblies of two cryptodiran turtles with ZZ/ZW and XX/XY sex chromosomes provide insights into patterns of genome reshuffling and uncover novel 3D genome folding in amniotes [RESEARCH]

Understanding the evolution of chromatin conformation among species is fundamental to elucidate the architecture and plasticity of genomes. Nonrandom interactions of linearly distant loci regulate gene function in species-specific patterns, affecting genome function, evolution, and, ultimately, speciation. Yet, data from nonmodel organisms are scarce. To capture the macroevolutionary diversity of vertebrate chromatin conformation, here we generate de novo genome assemblies for two cryptodiran (hidden-neck) turtles via Illumina sequencing, chromosome conformation capture, and RNA-seq: Apalone spinifera (ZZ/ZW, 2n = 66) and Staurotypus triporcatus (XX/XY, 2n = 54). We detected differences in the three-dimensional (3D) chromatin structure in turtles compared to other amniotes beyond the fusion/fission events detected in the linear genomes. Namely, whole-genome comparisons revealed distinct trends of chromosome rearrangements in turtles: (1) a low rate of genome reshuffling in Apalone (Trionychidae) whose karyotype is highly conserved when compared to chicken (likely ancestral for turtles), and (2) a moderate rate of fusions/fissions in Staurotypus (Kinosternidae) and Trachemys scripta (Emydidae). Furthermore, we identified a chromosome folding pattern that enables "centromere–telomere interactions" previously undetected in turtles. The combined turtle pattern of "centromere–telomere interactions" (discovered here) plus "centromere clustering" (previously reported in sauropsids) is novel for amniotes and it counters previous hypotheses about amniote 3D chromatin structure. We hypothesize that the divergent pattern found in turtles originated from an amniote ancestral state defined by a nuclear configuration with extensive associations among microchromosomes that were preserved upon the reshuffling of the linear genome.




ies

Mutational scanning of CRX classifies clinical variants and reveals biochemical properties of the transcriptional effector domain [RESEARCH]

The transcription factor (TF) cone-rod homeobox (CRX) is essential for the differentiation and maintenance of photoreceptor cell identity. Several human CRX variants cause degenerative retinopathies, but most are variants of uncertain significance. We performed a deep mutational scan (DMS) of nearly all possible single amino acid substitutions in CRX using a cell-based transcriptional reporter assay, curating a high-confidence list of nearly 2000 variants with altered transcriptional activity. In the structured homeodomain, activity scores closely aligned to a predicted structure and demonstrated position-specific constraints on amino acid substitution. In contrast, the intrinsically disordered transcriptional effector domain displayed a qualitatively different pattern of substitution effects, following compositional constraints without specific residue position requirements in the peptide chain. These compositional constraints were consistent with the acidic exposure model of transcriptional activation. We evaluated the performance of the DMS assay as a clinical variant classification tool using gold-standard classified human variants from ClinVar, identifying pathogenic variants with high specificity and moderate sensitivity. That this performance could be achieved using a synthetic reporter assay in a foreign cell type, even for a highly cell type-specific TF like CRX, suggests that this approach shows promise for DMS of other TFs that function in cell types that are not easily accessible. Together, the results of the CRX DMS identify molecular features of the CRX effector domain and demonstrate utility for integration into the clinical variant classification pipeline.




ies

Home Respiratory Strategies in Patients With COPD With Chronic Hypercapnic Respiratory Failure

BACKGROUND:Home noninvasive ventilation (NIV) may improve chronic hypercarbia in COPD and patient-important outcomes. The efficacy of home high-flow nasal cannula (HFNC) as an alternative is unclear.METHODS:We searched MEDLINE, Embase, Cochrane CENTRAL, Scopus, and ClinicalTrials.gov for randomized trials of subjects from inception to March 31, 2023, and updated the search on July 14, 2023. We performed a frequentist network meta-analysis and assessed the certainty of the evidence using the Grading of Recommendations Assessment, Development, and Evaluation approach. We analyzed randomized controlled trials (RCTs) comparing NIV, HFNC, or standard care in adult subjects with COPD with chronic hypercapnic respiratory failure. Outcomes included mortality, COPD exacerbations, hospitalizations, and quality of life (St George Respiratory Questionnaire [SGRQ]).RESULTS:We analyzed 24 RCTs (1,850 subjects). We found that NIV may reduce the risk of death compared to standard care (relative risk 0.82 [95% CI 0.66–1.00]) and probably reduces exacerbations (relative risk 0.71 [95% CI 0.58–0.87]). HFNC probably reduces exacerbations compared to standard care (relative risk 0.77 [0.68–0.88]), but its effect on mortality is uncertain (relative risk 1.20 [95% CI 0.63–2.28]). HFNC probably improves SGRQ scores (mean difference −7.01 [95% CI −12.27 to −1.77]) and may reduce hospitalizations (relative risk 0.87 [0.69–1.09]) compared to standard care. No significant difference was observed between HFNC and NIV in reducing exacerbations.CONCLUSIONS:Both NIV and HFNC reduce exacerbation risks in subjects with COPD compared to standard care. HFNC may offer advantages in improving quality of life.




ies

Prevalence of Dental Caries and Utilization of Dental Services among WIC-participating Children: A scoping review

Purpose Low-income children experience disproportionately high rates of dental caries and challenges in accessing dental care compared to their higher-income peers. The purpose of this scoping review was to examine the prevalence of dental caries and dental service utilization among Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) enrolled children.Methods The literature search and review were conducted between September 2023 and February 2024. The review followed the PRISMA-ScR reporting guidelines and included three databases: PubMed, CINAHL, and Dentistry & Oral Sciences Source. The study focused on children aged one to five participating in WIC within the United States (US) and aimed to determine the prevalence of dental service utilization and dental caries in the targeted population.Results This review includes twelve articles that are quantitative observational studies conducted from February 2001 to February 2023. Most of the studies were conducted in WIC programs in the Southern and Midwest regions of the US. Dental caries rates decreased by 61.8% from 2004 to 2016, with the highest prevalence in 2004, and the lowest prevalence in 2016. Dental service utilization among WIC children increased by 56.9% from 1992 to 2020.Conclusion There has been an increase in dental service utilization among WIC-enrolled children, with an overall decrease in dental caries over the last two decades. However, the prevalence of dental caries remains disproportionately high for children enrolled in WIC when compared to non-participants. To develop effective dental interventions for children enrolled in WIC, it is fundamental to identify the unique determinants of dental caries in this population.




ies

Characterization and implementation of the MarathonRT template-switching reaction to expand the capabilities of RNA-seq [ARTICLE]

End-to-end RNA-sequencing methods that capture 5'-sequence content without cumbersome library manipulations are of great interest, particularly for analysis of long RNAs. While template-switching methods have been developed for RNA sequencing by distributive short-read RTs, such as the MMLV RTs used in SMART-Seq methods, they have not been adapted to leverage the power of ultraprocessive RTs, such as those derived from group II introns. To facilitate this transition, we dissected the individual processes that guide the enzymatic specificity and efficiency of the multistep template-switching reaction carried out by RTs, in this case, by MarathonRT. Remarkably, this is the first study of its kind, for any RT. First, we characterized the nucleotide specificity of nontemplated addition (NTA) reaction that occurs when the RT extends past the RNA 5'-terminus. We then evaluated the binding specificity of specialized template-switching oligonucleotides, optimizing their sequences and chemical properties to guide efficient template-switching reaction. Having dissected and optimized these individual steps, we then unified them into a procedure for performing RNA sequencing with MarathonRT enzymes, using a well-characterized RNA reference set. The resulting reads span a six-log range in transcript concentration and accurately represent the input RNA identities in both length and composition. We also performed RNA-seq from total human RNA and poly(A)-enriched RNA, with short- and long-read sequencing demonstrating that MarathonRT enhances the discovery of unseen RNA molecules by conventional RT. Altogether, we have generated a new pipeline for rapid, accurate sequencing of complex RNA libraries containing mixtures of long RNA transcripts.




ies

Roles of the ABCG2 Transporter in Protoporphyrin IX Distribution and Toxicity [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II-Minireview]

ATP-binding cassette transporter subfamily G member 2 (ABCG2) is a membrane-bound transporter responsible for the efflux of various xenobiotics and endobiotics, including protoporphyrin IX (PPIX), an intermediate in the heme biosynthesis pathway. Certain genetic mutations and chemicals impair the conversion of PPIX to heme and/or increase PPIX production, leading to PPIX accumulation and toxicity. In mice, deficiency of ABCG2 protects against PPIX-mediated phototoxicity and hepatotoxicity by modulating PPIX distribution. In addition, in vitro studies revealed that ABCG2 inhibition increases the efficacy of PPIX-based photodynamic therapy by retaining PPIX inside target cells. In this review, we discuss the roles of ABCG2 in modulating the tissue distribution of PPIX, PPIX-mediated toxicity, and PPIX-based photodynamic therapy.

SIGNIFICANCE STATEMENT

This review summarized the roles of ABCG2 in modulating PPIX distribution and highlighted the therapeutic potential of ABCG2 inhibitors for the management of PPIX-mediated toxicity.




ies

Assessing Trends in Cytokine-CYP Drug Interactions and Relevance to Drug Dosing [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II-Minireview]

The regulation of drug-metabolizing enzymes and transporters by cytokines has been extensively studied in vitro and in clinic. Cytokine-mediated suppression of cytochrome P450 (CYP) or drug transporters may increase or decrease the systemic clearance of drug substrates that are primarily cleared via these pathways; neutralization of cytokines by therapeutic proteins may thereby alter systemic exposures of such drug substrates. The Food and Drug Administration recommends evaluating such clinical drug interactions during clinical development and has provided labeling recommendations for therapeutic proteins. To determine the clinical relevance of these drug interactions to dose adjustments, trends in steady-state exposures of CYP-sensitive substrates coadministered with cytokine modulators as reported in the University of Washington Drug Interaction Database were extracted and examined for each of the CYPs. Coadministration of cytochrome P450 family 3 subfamily A (CYP3A) (midazolam/simvastatin), cytochrome P450 subfamily 2C19 (omeprazole), or cytochrome P450 subfamily 1A2 (caffeine/tizanidine) substrates with anti-interleukin-6 and with anti-interleukin-23 therapeutics led to changes in systemic exposures of CYP substrates ranging from ~ –58% to ~35%; no significant trends were observed for cytochrome P450 subfamily 2D6 (dextromethorphan) and cytochrome P450 subfamily 2C9 (warfarin) substrates. Although none of these changes in systemic exposures have been reported as clinically meaningful, dose adjustment of midazolam for optimal sedation in acute care settings has been reported. Simulated concentration-time profiles of midazolam under conditions of elevated cytokine levels when coadministered with tocilizumab, suggest a ~six- to sevenfold increase in midazolam clearance, suggesting potential implications of cytokine–CYP drug interactions on dose adjustments of sensitive CYP3A substrates in acute care settings. Additionally, this article also provides a brief overview of nonclinical and clinical assessments of cytokine–CYP drug interactions in drug discovery and development.

SIGNIFICANCE STATEMENT

There has been significant progress in understanding cytokine-mediated drug interactions for CYP-sensitive substrates. This article provides an overview of the progress in this field, including a trend analysis of systemic exposures of CYP-sensitive substrates coadministered with anti-interleukin therapeutics. In addition, the review also provides a perspective of current methods used to assess these drug interactions during drug development and a focus on individualized medicine, particularly in acute care settings.




ies

Pharmacometabolomics in Drug Disposition, Toxicity, and Precision Medicine [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II-Minireview]

The precision medicine initiative has driven a substantial change in the way scientists and health care practitioners think about diagnosing and treating disease. While it has long been recognized that drug response is determined by the intersection of genetic, environmental, and disease factors, improvements in technology have afforded precision medicine guided dosing of drugs to improve efficacy and reduce toxicity. Pharmacometabolomics aims to evaluate small molecule metabolites in plasma and/or urine to help evaluate mechanisms that predict and/or reflect drug efficacy and toxicity. In this mini review, we provide an overview of pharmacometabolomic approaches and methodologies. Relevant examples where metabolomic techniques have been used to better understand drug efficacy and toxicity in major depressive disorder and cancer chemotherapy are discussed. In addition, the utility of metabolomics in drug development and understanding drug metabolism, transport, and pharmacokinetics is reviewed. Pharmacometabolomic approaches can help describe factors mediating drug disposition, efficacy, and toxicity. While important advancements in this area have been made, there remain several challenges that must be overcome before this approach can be fully implemented into clinical drug therapy.

SIGNIFICANCE STATEMENT

Pharmacometabolomics has emerged as an approach to identify metabolites that allow for implementation of precision medicine approaches to pharmacotherapy. This review article provides an overview of pharmacometabolomics including highlights of important examples.




ies

Characterizing the Distribution of a Stimulator of Interferon Genes Agonist and Its Metabolites in Mouse Liver by Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry [Special Section on New and Emerging Areas and Technologies in Drug Met

A STING (stimulator of interferon genes) agonist GSK3996915 under investigation in early discovery for hepatitis B was orally dosed to a mouse model for understanding the parent drug distribution in liver, the target organ. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was used to quantify the distribution of GSK3996915 in liver collected from mice administered a single oral dose at 90 mg/kg. GSK3996915 was detected with a zonal distribution localized in the portal triad and highly concentrated in the main bile ducts, indicating clearance through biliary excretion. High spatial resolution imaging showed the distribution of the parent drug localized to the cellular populations in the sinusoids, including the Kupffer cells. Additionally, a series of drug-related metabolites were observed to be localized in the central zones of the liver. These results exemplify the potential of utilizing MALDI IMS for measuring not only quantitative drug distribution and target exposure but also drug metabolism and elimination in a single suite of experiments.

SIGNIFICANCE STATEMENT

An integrated imaging approach utilizing matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) complemented with immunohistochemistry (IHC) and histology was used to address the question of target exposure at the cellular level. Localized quantification of the parent drug in the target organ and identification of potential metabolites in the context of tissue histology were also achieved in one experimental suite to support characterization of pharmacokinetic properties of the drug in the early discovery stage.:




ies

Evaluating Drug-Drug Interaction Risk Associated with Peptide Analogs Using advanced In Vitro Systems [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II]

Drug–drug interaction (DDI) assessment of therapeutic peptides is an evolving area. The industry generally follows DDI guidelines for small molecules, but the translation of data generated with commonly used in vitro systems to in vivo is sparse. In the current study, we investigated the ability of advanced human hepatocyte in vitro systems, namely HepatoPac, spheroids, and Liver-on-a-chip, to assess potential changes in regulation of CYP1A2, CYP2B6, CYP3A4, SLCO1B1, and ABCC2 in the presence of selected therapeutic peptides, proteins, and small molecules. The peptide NN1177, a glucagon and GLP-1 receptor co-agonist, did not suppress mRNA expression or activity of CYP1A2, CYP2B6, and CYP3A4 in HepatoPac, spheroids, or Liver-on-a-chip; these findings were in contrast to the data obtained in sandwich cultured hepatocytes. No effect of NN1177 on SLCO1B1 and ABCC2 mRNA was observed in any of the complex systems. The induction magnitude differed across the systems (e.g., rifampicin induction of CYP3A4 mRNA ranged from 2.8-fold in spheroids to 81.2-fold in Liver-on-a-chip). Small molecules, obeticholic acid and abemaciclib, showed varying responses in HepatoPac, spheroids, and Liver-on-a-chip, indicating a need for EC50 determinations to fully assess translatability data. HepatoPac, the most extensively investigated in this study (3 donors), showed high potential to investigate DDIs associated with CYP regulation by therapeutic peptides. Spheroids and Liver-on-a-chip were only assessed in one hepatocyte donor and further evaluations are required to confirm their potential. This study establishes an excellent foundation toward the establishment of more clinically-relevant in vitro tools for evaluation of potential DDIs with therapeutic peptides.

SIGNIFICANT STATEMENT

At present, there are no guidelines for drug–drug interaction (DDI) assessment of therapeutic peptides. Existing in vitro methods recommended for assessing small molecule DDIs do not appear to translate well for peptide drugs, complicating drug development for these moieties. Here, we establish evidence that complex cellular systems have potential to be used as more clinically-relevant tools for the in vitro DDI evaluation of therapeutic peptides.




ies

Exogenous Pregnane X Receptor Does Not Undergo Liquid-Liquid Phase Separation in Nucleus under Cell-Based In Vitro Conditions [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II]

Pregnane X receptor (PXR) belongs to the nuclear receptor superfamily that plays a crucial role in hepatic physiologic and pathologic conditions. Phase separation is a process in which biomacromolecules aggregate and condense into a dense phase as liquid condensates and coexist with a dilute phase, contributing to various cellular and biologic functions. Until now, whether PXR could undergo phase separation remains unclear. This study aimed to investigate whether PXR undergoes phase separation. Analysis of the intrinsically disordered regions (IDRs) using algorithm tools indicated a low propensity of PXR to undergo phase separation. Experimental assays such as hyperosmotic stress, agonist treatment, and optoDroplets assay demonstrated the absence of phase separation for PXR. OptoDroplets assay revealed the inability of the fusion protein of Cry2 with PXR to form condensates upon blue light stimulation. Moreover, phase separation of PXR did not occur even though the mRNA and protein expression levels of PXR target, cytochrome P450 3A4, changed after sorbitol treatment. In conclusion, for the first time, these findings suggested that exogenous PXR does not undergo phase separation following activation or under hyperosmotic stress in nucleus of cells.

SIGNIFICANCE STATEMENT

PXR plays a critical role in hepatic physiological and pathological processes. The present study clearly demonstrated that exogenous PXR does not undergo phase separation after activation by agonist or under hyperosmotic stress in nucleus. These findings may help understand PXR biology.




ies

Differential Tissue Abundance of Membrane-Bound Drug Metabolizing Enzymes and Transporter Proteins by Global Proteomics [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II]

Protein abundance data of drug-metabolizing enzymes and transporters (DMETs) are useful for scaling in vitro and animal data to humans for accurate prediction and interpretation of drug clearance and toxicity. Targeted DMET proteomics that relies on synthetic stable isotope-labeled surrogate peptides as calibrators is routinely used for the quantification of selected proteins; however, the technique is limited to the quantification of a small number of proteins. Although the global proteomics-based total protein approach (TPA) is emerging as a better alternative for large-scale protein quantification, the conventional TPA does not consider differential sequence coverage by identifying unique peptides across proteins. Here, we optimized the TPA approach by correcting protein abundance data by the sequence coverage, which was applied to quantify 54 DMETs for characterization of 1) differential tissue DMET abundance in the human liver, kidney, and intestine, and 2) interindividual variability of DMET proteins in individual intestinal samples (n = 13). Uridine diphosphate-glucuronosyltransferase 2B7 (UGT2B7), microsomal glutathione S-transferases (MGST1, MGST2, and MGST3) carboxylesterase 2 (CES2), and multidrug resistance-associated protein 2 (MRP2) were expressed in all three tissues, whereas, as expected, four cytochrome P450s (CYP3A4, CYP3A5, CYP2C9, and CYP4F2), UGT1A1, UGT2B17, CES1, flavin-containing monooxygenase 5, MRP3, and P-glycoprotein were present in the liver and intestine. The top three DMET proteins in individual tissues were: CES1>CYP2E1>UGT2B7 (liver), CES2>UGT2B17>CYP3A4 (intestine), and MGST1>UGT1A6>MGST2 (kidney). CYP3A4, CYP3A5, UGT2B17, CES2, and MGST2 showed high interindividual variability in the intestine. These data are relevant for enhancing in vitro to in vivo extrapolation of drug absorption and disposition and can be used to enhance the accuracy of physiologically based pharmacokinetic prediction of systemic and tissue concentration of drugs.

SIGNIFICANCE STATEMENT

This study quantified the abundance and compositions of drug-metabolizing enzymes and transporters in pooled human liver, intestine, and kidney microsomes as well as individual intestinal microsomes using an optimized global proteomics approach. The data revealed large intertissue differences in the abundance of these proteins and high intestinal interindividual variability in the levels of cytochrome P450s (e.g., CYP3A4 and CYP3A5), uridine diphosphate-glucuronosyltransferase 2B17, carboxylesterase 2, and microsomal glutathione S-transferase 2. These data are applicable for the prediction of first-pass metabolism and tissue-specific drug clearance.




ies

Regulation of Human Hydrolases and Its Implications in Pharmacokinetics and Pharmacodynamics [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II]

Hydrolases represent an essential class of enzymes indispensable for the metabolism of various clinically essential medications. Individuals exhibit marked differences in the expression and activation of hydrolases, resulting in significant variability in the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs metabolized by these enzymes. The regulation of hydrolase expression and activity involves both genetic polymorphisms and nongenetic factors. This review examines the current understanding of genetic and nongenetic regulators of six clinically significant hydrolases, including carboxylesterase (CES)-1 CES2, arylacetamide deacetylase (AADAC), paraoxonase (PON)-1 PON3, and cathepsin A (CTSA). We explore genetic variants linked to the expression and activity of the hydrolases and their effects on the PK and PD of their substrate drugs. Regarding nongenetic regulators, we focus on the inhibitors and inducers of these enzymes. Additionally, we examine the developmental expression patterns and gender differences in the hydrolases when pertinent information was available. Many genetic and nongenetic regulators were found to be associated with the expression and activity of the hydrolases and PK and PD. However, hydrolases remain generally understudied compared with other drug-metabolizing enzymes, such as cytochrome P450s. The clinical significance of genetic and nongenetic regulators has not yet been firmly established for the majority of hydrolases. Comprehending the mechanisms that underpin the regulation of these enzymes holds the potential to refine therapeutic regimens, thereby enhancing the efficacy and safety of drugs metabolized by the hydrolases.

SIGNIFICANCE STATEMENT

Hydrolases play a crucial role in the metabolism of numerous clinically important medications. Genetic polymorphisms and nongenetic regulators can affect hydrolases’ expression and activity, consequently influencing the exposure and clinical outcomes of hydrolase substrate drugs. A comprehensive understanding of hydrolase regulation can refine therapeutic regimens, ultimately enhancing the efficacy and safety of drugs metabolized by the enzymes.




ies

50th Anniversary Celebration Collection Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part II--Editorial [Special Section on New and Emerging Areas and Technologies in Drug Metabolism and Disposition, Part




ies

Antenatal Care Interventions to Increase Contraceptive Use Following Birth in Low- and Middle-Income Countries: Systematic Review and Narrative Synthesis

ABSTRACTIntroduction:Health risks associated with short interpregnancy intervals, coupled with women’s desires to avoid pregnancy following childbirth, underscore the need for effective postpartum family planning programs. The antenatal period provides an opportunity to intervene; however, evidence is limited on the effectiveness of interventions aimed at reaching women in the antenatal period to increase voluntary postpartum family planning in low- and middle-income countries (LMICs). This systematic review aimed to identify and describe interventions in LMICs that attempted to increase postpartum contraceptive use via contacts with pregnant women in the antenatal period.Methods:Studies published from January 2012 to July 2022 were considered if they were conducted in LMICs, evaluated an intervention delivered during the antenatal period, were designed to affect postpartum contraceptive use, were experimental or quasi-experimental, and were published in French or English. The main outcome of interest was postpartum contraceptive use within 1 year after birth, defined as the use of any method of contraception at the time of data collection. We searched EMBASE, Global Health, and Medline and manually searched the reference lists from studies included in the full-text screening.Results:We double-screened 771 records and included 34 reports on 31 unique interventions in the review. Twenty-three studies were published from 2018 on, with 21 studies conducted in sub-Saharan Africa. Approximately half of the study designs (n=16) were randomized controlled trials, and half (n=15) were quasi-experimental. Interventions were heterogeneous. Among the 24 studies that reported on the main outcome of interest, 18 reported a positive intervention effect, with intervention recipients having greater contraceptive use in the first year postpartum.Conclusion:While the studies in this systematic review were heterogeneous, the findings suggest that interventions that included a multifaceted package of initiatives appeared to be most likely to have a positive effect.




ies

Development and Piloting of Implementation Strategies to Support Delivery of a Clinical Intervention for Postpartum Hemorrhage in Four sub-Saharan Africa Countries

ABSTRACTIntroduction:Postpartum hemorrhage (PPH) remains the leading cause of maternal mortality. A new clinical intervention (E-MOTIVE) holds the potential to improve early PPH detection and management. We aimed to develop and pilot implementation strategies to support uptake of this intervention in Kenya, Nigeria, South Africa, and Tanzania.Methods:Implementation strategy development: We triangulated findings from qualitative interviews, surveys and a qualitative evidence synthesis to identify current PPH care practices and influences on future intervention implementation. We mapped influences using implementation science frameworks to identify candidate implementation strategies before presenting these at stakeholder consultation and design workshops to discuss feasibility, acceptability, and local adaptations. Piloting: The intervention and implementation strategies were piloted in 12 health facilities (3 per country) over 3 months. Interviews (n=58), case report forms (n=1,269), and direct observations (18 vaginal births, 7 PPHs) were used to assess feasibility, acceptability, and fidelity.Results:Implementation strategy development: Key influences included shortages of drugs, supplies, and staff, limited in-service training, and perceived benefits of the intervention (e.g., more accurate PPH detection and reduced PPH mortality). Proposed implementation strategies included a PPH trolley, on-site simulation-based training, champions, and audit and feedback. Country-specific adaptations included merging the E-MOTIVE intervention with national maternal health trainings, adapting local PPH protocols, and PPH trollies depending on staff needs. Piloting: Intervention and implementation strategy fidelity differed within and across countries. Calibrated drapes resulted in earlier and more accurate PPH detection but were not consistently used at the start. Implementation strategies were feasible to deliver; however, some instances of limited use were observed (e.g., PPH trolley and skills practice after training).Conclusion:Systematic intervention development, piloting, and process evaluation helped identify initial challenges related to intervention fidelity, which were addressed ahead of a larger-scale effectiveness evaluation. This has helped maximize the internal validity of the trial.




ies

Analgesic Properties of Next-Generation Modulators of Endocannabinoid Signaling: Leveraging Modern Tools for the Development of Novel Therapeutics [Special Section: Cannabinoid Signaling in Human Health and Disease-Minireview]

Targeting the endocannabinoid (eCB) signaling system for pain relief is an important treatment option that is only now beginning to be mechanistically explored. In this review, we focus on two recently appreciated cannabinoid-based targeting strategies, treatments with cannabidiol (CBD) and α/β-hydrolase domain containing 6 (ABHD6) inhibitors, which have the exciting potential to produce pain relief through distinct mechanisms of action and without intoxication. We review evidence on plant-derived cannabinoids for pain, with an emphasis on CBD and its multiple molecular targets expressed in pain pathways. We also discuss the function of eCB signaling in regulating pain responses and the therapeutic promises of inhibitors targeting ABHD6, a 2-arachidonoylglycerol (2-AG)-hydrolyzing enzyme. Finally, we discuss how the novel cannabinoid biosensor GRABeCB2.0 may be leveraged to enable the discovery of targets modulated by cannabinoids at a circuit-specific level.

SIGNIFICANCE STATEMENT

Cannabis has been used by humans as an effective medicine for millennia, including for pain management. Recent evidence emphasizes the therapeutic potential of compounds that modulate endocannabinoid signaling. Specifically, cannabidiol and inhibitors of the enzyme ABHD6 represent promising strategies to achieve pain relief by modulating endocannabinoid signaling in pain pathways via distinct, nonintoxicating mechanisms of action.




ies

The National Center for Complementary and Integrative Health: Priorities for Cannabis and Cannabinoid Research [Special Section: Cannabinoid Signaling in Human Health and Disease-Commentary]

The National Center for Complementary and Integrative Health (NCCIH), which is part of the US National Institutes of Health (NIH), has a broad interest in studying the biologic activities of natural products, especially those for which compelling evidence from preclinical research suggests biologic activities that may be beneficial to health or have a potential role in disease treatment, as well as products used extensively by the American public. As of 2023, use of cannabis for medical purposes is legal in 38 states and Washington, D.C. Such use continues to climb generally without sufficient knowledge regarding risks and benefits. In keeping with NCCIH’s natural product research priorities and recognizing this gap in knowledge, NCCIH formally launched a research program in 2019 to expand research on the possible benefits for pain management of certain substances found in cannabis: minor cannabinoids and terpenes. This Viewpoint provides additional details and the rationale for this research priority at NCCIH. In addition, NCCIH’s efforts and initiatives to facilitate and coordinate an NIH research agenda focused on cannabis and cannabinoid research are described.

SIGNIFICANCE STATEMENT

Use of cannabis for purported medical purposes continues to increase despite insufficient knowledge regarding risks and benefits. Research is needed to help health professionals and patients make knowledgeable decisions about using cannabis and cannabinoids for medical purposes. The National Center for Complementary and Integrative Health, along with other NIH Institutes, Centers, and Offices, is expanding study on the safety, efficacy, and harms of cannabis—a complex mixture of phytochemicals that needs to be studied alone and in combination.




ies

Cannabis and Cannabinoid Signaling: Research Gaps and Opportunities [Special Section: Cannabinoid Signaling in Human Health and Disease-Commentary]

Cannabis and its products have been used for centuries for both medicinal and recreational purposes. The recent widespread legalization of cannabis has vastly expanded its use in the United States across all demographics except for adolescents. Meanwhile, decades of research have advanced our knowledge of cannabis pharmacology and particularly of the endocannabinoid system with which the components of cannabis interact. This research has revealed multiple targets and approaches for manipulating the system for therapeutic use and to ameliorate cannabis toxicity or cannabis use disorder. Research has also led to new questions that underscore the potential risks of its widespread use, particularly the enduring consequences of exposure during critical windows of brain development or for consumption of large daily doses of cannabis with high content 9-tetrahydrocannabinol. This article highlights current neuroscience research on cannabis that has shed light on therapeutic opportunities and potential adverse consequences of misuse and points to gaps in knowledge that can guide future research.

SIGNIFICANCE STATEMENT

Cannabis use has escalated with its increased availability. Here, the authors highlight the challenges of cannabis research and the gaps in our knowledge of cannabis pharmacology and of the endocannabinoid system that it targets. Future research that addresses these gaps is needed so that the endocannabinoid system can be leveraged for safe and effective use.




ies

Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities [75th Anniversary Celebration Collection Special Section]

Both preclinical and clinical studies implicate functional impairments of several neuroactive metabolites of the kynurenine pathway (KP), the major degradative cascade of the essential amino acid tryptophan in mammals, in the pathophysiology of neurologic and psychiatric diseases. A number of KP enzymes, such as tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenases (IDO1 and IDO2), kynurenine aminotransferases (KATs), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3-HAO), and quinolinic acid phosphoribosyltransferase (QPRT), control brain KP metabolism in health and disease and are therefore increasingly considered to be promising targets for the treatment of disorders of the nervous system. Understanding the distribution, cellular expression, and regulation of KP enzymes and KP metabolites in the brain is therefore critical for the conceptualization and implementation of successful therapeutic strategies.

Significance Statement

Studies have implicated the kynurenine pathway of tryptophan in the pathophysiology of neurologic and psychiatric diseases. Key enzymes of the kynurenine pathway regulate brain metabolism in both health and disease, making them promising targets for treating these disorders. Therefore, understanding the distribution, cellular expression, and regulation of these enzymes and metabolites in the brain is critical for developing effective therapeutic strategies. This review endeavors to describe these processes in detail.:




ies

Distribution and Disparities of Industry Payments to Neuroradiologists [CLINICAL PRACTICE]

BACKGROUND AND PURPOSE:

Physician-industry relationships can be useful for driving innovation and technologic progress, though little is known about the scale or impact of industry involvement in neuroradiology. The purpose of this study was to assess the trends and distributions of industry payments to neuroradiologists.

MATERIALS AND METHODS:

Neuroradiologists were identified using a previously-validated method based on Work Relative Value Units and Neiman Imaging Types of Service classification. Data on payments from industry were obtained from the Open Payments database from the Centers for Medicare & Medicaid Services, from 2016 to 2021. Payments were grouped into 7 categories, including consulting fees, education, gifts, medical supplies, research, royalties/ownership, and speaker fees. Descriptive statistics were calculated.

RESULTS:

A total of 3019 neuroradiologists were identified in this study. Between 2016 and 2021, 48% (1440/3019) received at least 1 payment from industry, amounting to a total number of 21,967 payments. Each year, among those receiving payments from industry, each unique neuroradiologist received between a mean of 5.49–7.42 payments and a median of 2 payments, indicating a strong rightward skew to the distribution of payments. Gifts were the most frequent payment type made (60%, 13,285/21,967) but accounted for only 4.1% ($689,859/$17,010,546) of payment value. The greatest aggregate payment value came from speaker fees, which made up 36% ($6,127,484/$17,010,546) of the total payment value. The top 5% highest paid neuroradiologists received 42% (9133/21,967) of payments, which accounted for 84% ($14,284,120/$17,010,546) of the total dollar value. Since the start of the coronavirus 2019 (COVID-19) pandemic, the number of neuroradiologists receiving industry payments decreased from a mean of 671 neuroradiologists per year prepandemic (2016–2019) to 411 in the postpandemic (2020–2021) era (P = .030). The total number of payments to neuroradiologists decreased from 4177 per year prepandemic versus 2631 per year postpandemic (P = .011).

CONCLUSIONS:

Industry payments to neuroradiologists are highly concentrated among top earners, particularly among the top 5% of payment recipients. The number of payments decreased during the COVID-19 pandemic, though the dollar value of payments was offset by coincidental increases in royalty payments. Further investigation is needed in subsequent years to determine if the postpandemic changes in industry payment trends continue.




ies

Academic Neuroradiology: 2023 Update on Turnaround Time, Financial Recruitment, and Retention Strategies [CLINICAL PRACTICE]

SUMMARY:

The ASNR Neuroradiology Division Chief Working Group's 2023 survey, with responses from 62 division chiefs, provides insights into turnaround times, faculty recruitment, moonlighting opportunities, and academic funds. In emergency cases, 61% aim for a turnaround time of less than 45–60 minutes, with two-thirds meeting this expectation more than 75% of the time. For inpatient CT and MR imaging scans, 54% achieve a turnaround time of 4–8 hours, with three-quarters meeting this expectation at least 50% of the time. Outpatient scans have an expected turnaround time of 24–48 hours, which is met in 50% of cases. Faculty recruitment strategies included 35% offering sign-on bonuses, with a median of $30,000. Additionally, 23% provided bonuses to fellows during fellowship to retain them in the practice upon completion of their fellowship. Internal moonlighting opportunities for faculty were offered by 70% of divisions, with a median pay of $250 per hour. The median annual academic fund for a full-time neuroradiology faculty member was $6000, typically excluding license fees but including American College of Radiology and American Board of Radiology membership, leaving $4000 for professional expenses. This survey calls for further dialogue on adapting and innovating academic institutions to meet evolving needs in neuroradiology.




ies

Cloning of Affibody Libraries for Display Methods

Affibody molecules are small (6-kDa) affinity proteins folded in a three-helical bundle and generated by directed evolution for specific binding to various target molecules. The most advanced affibody molecules are currently tested in the clinic, and data from more than 300 subjects show excellent activity and safety profiles. The generation of affibody molecules against a particular target starts with the generation of an affibody library, which can then be used for panning using multiple methods and selection systems. This protocol describes the molecular cloning of DNA-encoded affibody libraries to a display vector of choice, for either phage, Escherichia coli, or Staphylococcus carnosus display. The DNA library can come from different sources, such as error-prone polymerase chain reaction (PCR), molecular shuffling of mutations from previous selections, or, more commonly, from DNA synthesis using various methods. Restriction enzyme-based subcloning is the most common strategy for affibody libraries of higher diversity (e.g., >107 variants) and is described here.




ies

Neural Stimulation during Drosophila Activity Monitor (DAM)-Based Studies of Sleep and Circadian Rhythms in Drosophila melanogaster

Sleep is a fundamental feature of life for virtually all multicellular animals, but many questions remain about how sleep is regulated by circadian rhythms, homeostatic sleep drive that builds up with wakefulness, and modifying factors such as hunger or social interactions, as well as about the biological functions of sleep. Substantial headway has been made in the study of both circadian rhythms and sleep in the fruit fly Drosophila melanogaster, much of it through studies of individual fly activity using Drosophila activity monitors (DAMs). Here, we describe approaches for the activation of specific neurons of interest using optogenetics (involving genetic modifications that allow for light-based neuronal activation) and thermogenetics (involving genetic modifications that allow for temperature-based neuronal activation) so that researchers can evaluate the roles of those neurons in controlling rest and activity behavior. In this protocol, we describe how to set up a rig for simultaneous optogenetic or thermogenetic stimulation and activity monitoring for analysis of sleep and circadian rhythms in Drosophila, how to raise appropriate flies, and how to perform the experiment. This protocol will allow researchers to assess the causative role in the regulation of sleep and activity rhythms of any genetically tractable subset of cells.




ies

Geographic inequalities in need and provision of social prescribing link workers a retrospective study in primary care

BackgroundLong-term health conditions are major challenges for care systems. Social prescribing link workers have been introduced via primary care networks (PCNs) across England since 2019 to address the wider determinants of health by connecting individuals to activities, groups, or services within their local community.AimTo assess whether the rollout of social prescribing link workers was in areas with the highest need.Design and settingA retrospective study of social prescribing link workers in England from 2019 to 2023.MethodWorkforce, population, survey, and area-level data at the PCN-level from April 2020 to October 2023 were combined. Population need before the rollout of link workers was measured using reported lack of support from local services in the 2019 General Practice Patient Survey. To assess if rollout reflected need, linear regression was used to relate provision of link workers (measured by full-time equivalent [FTE] per 10 000 patients) in each quarter to population need for support.ResultsPopulations in urban, more deprived areas and with higher proportions of people from minority ethnic groups had the highest reported lack of support. Geographically these were in the North West and London. Initially, there was no association between need and provision; then from July 2022, this became negative and significant. By October 2023, a 10-percentage point higher need for support was associated with a 0.035 (95% confidence interval = −0.634 to −0.066) lower FTE per 10 000 patients.ConclusionRollout of link workers has not been sufficiently targeted at areas with the highest need. Future deployments should be targeted at those areas.




ies

Information needs for GPs on type 2 diabetes in Western countries: a systematic review

BackgroundMost people with type 2 diabetes receive treatment in primary care by GPs who are not specialised in diabetes. Thus, it is important to uncover the most essential information needs regarding type 2 diabetes in general practice.AimTo identify information needs related to type 2 diabetes for GPs.Design and settingSystematic review focused on literature relating to Western countries.MethodMEDLINE, Embase, PsycInfo and CINAHL were searched from inception to January 2024. Two researchers conducted the selection process, and citation searches were performed to identify any relevant articles missed by the database search. Quality appraisal was conducted with the Mixed Methods Appraisal Tool. Meaning units were coded individually, grouped into categories, and then studies were summarised within the context of these categories using narrative synthesis. An evidence map was created to highlight research gaps.ResultsThirty-nine included studies revealed eight main categories and 36 subcategories of information needs. Categories were organised into a comprehensive hierarchical model of information needs, suggesting ‘Knowledge of guidelines’ and ‘Reasons for referral’ as general information needs alongside more specific needs on ‘Medication’, ‘Management’, ‘Complications’, ‘Diagnosis’, ‘Risk factors’, and ‘Screening for diabetes’. The evidence map provides readers with the opportunity to explore the characteristics of the included studies in detail.ConclusionThis systematic review provides GPs, policymakers, and researchers with a hierarchical model of information and educational needs for GPs, and an evidence map showing gaps in the current literature. Information needs about clinical guidelines and reasons for referral to specialised care overlapped with needs for more specific information.




ies

General practice should tackle healthcare inequalities but not health inequalities




ies

A Few Doctors Will See Some of You: The Critical Role of Underrepresented in Medicine (URiM) Family Physicians in the Care of Medicaid Beneficiaries [Original Research]

PURPOSE

Despite being key to better health outcomes for patients from racial and ethnic minority groups, the proportion of underrepresented in medicine (URiM) physicians remains low in the US health care system. This study linked a nationally representative sample of family physicians (FPs) with Medicaid claims data to explore the relative contributions to care of Medicaid populations by FP race and ethnicity.

METHODS

This descriptive cross-sectional study used 2016 Medicaid claims data from the Transformed Medicaid Statistical Information System and from 2016-2017 American Board of Family Medicine certification questionnaire responses to examine the diversity and Medicaid participation of FPs. We explored the diversity of FP Medicaid patient panels and whether they saw ≥150 beneficiaries in 2016. Using logistic regression models, we controlled for FP demographics, practice characteristics, and characteristics of the communities in which they practiced.

RESULTS

Of 13,096 FPs, Latine, Hispanic, or of Spanish Origin (LHS) FPs and non-LHS Black FPs saw more Medicaid beneficiaries compared with non-LHS White and non-LHS Asian FPs. The patient panels of URiM FPs had a much greater proportion of Medicaid beneficiaries from racial and ethnic minority groups. Overall, non-LHS Black and LHS FPs had greater odds of seeing ≥150 Medicaid beneficiaries in 2016.

CONCLUSIONS

These findings clearly show the critical role URiM FPs play in caring for Medicaid beneficiaries, suggesting physician race and ethnicity are correlated with Medicaid participation. Diversity in the health care workforce is essential for addressing racial health inequities. Policies need to address problems in pathways to medical education, including failures to recruit, nurture, and retain URiM students.




ies

Correction to "Opioid-related emergency department visits and deaths after a harm-reduction intervention: a retrospective observational cohort time series analysis"




ies

A system on the brink [Humanities]




ies

Integration of lung function data: turning snapshots into stories

Missing or inaccessible lung function measurements, gathered over time, have the potential to stagnate or impair clinical care decisions being made. This jeopardises patient safety and often contributes to excessive resource utilisation. Data integration is fundamental to clinical decision-making and entails amalgamating lung function data from multiple sources in a user-friendly format. Despite this, current systems for recording lung function data are suboptimal, with copious gaps in the clinical picture arising from missing or inaccessible lung function measurements. This article discusses the importance of data integration for lung function, with a call to action for key stakeholders involved in the performance, management and interpretation of such tests.




ies

Controversies in the clinical management of chronic pulmonary aspergillosis

Chronic pulmonary aspergillosis has a range of manifestations from indolent nodules to semi-invasive infection. Patients may be asymptomatic or have chronic symptoms such as cough and weight loss or present with life-threatening haemoptysis. The physician can choose from a range of available therapies including medical therapy with antifungals, minimally invasive therapy with intracavitary antifungal therapy and surgery involving open thoracotomy or video-assisted thoracoscopic surgery. The patients with the most severe forms of pulmonary infection may not be surgical candidates due to their underlying pulmonary condition. The management of haemoptysis can include tranexamic acid, bronchial artery embolisation, antifungals or surgery. There are few controlled studies to inform clinicians managing complex cases, so a multidisciplinary approach may be helpful.




ies

What We Do in the Shadows Champions Found Families, No Matter How Dysfunctional



Season six's latest episode introduced Laszlo's father—and chaos inevitably followed.




ies

Students can be agents of change: Talking about activism in universities with Jade Ho

Jade Ho explains what is possible for university students when they are given opportunities to learn about –and get involved with– social justice and labour issues in their own communities.

The post Students can be agents of change: Talking about activism in universities with Jade Ho appeared first on rabble.ca.




ies

Libraries recognised for community contributions in annual award ceremony

Shetland Library and the National Library of Scotland have been praised for "providing optimist for the future."