ens

GAS SENSOR ARRAY AND METHOD

The invention relates to a method for analyzing the composition of a gaseous stream comprising at least two gaseous components, one of which is methane; and to a sensor array and a gas sensor comprising such sensor array. The method comprises contacting the gaseous mixture with a sensor, wherein the sensor comprises a sensor array comprising at least two sensor elements, wherein each of said sensor elements comprises a transducer coated with a coating comprising a polymeric material having at least one property that is responsive to one or more of said gaseous components when exposed thereto, wherein said sensor elements differ at least in the composition of the coating, providing an energy input to said transducers that is converted to output signals based on said property, and obtaining said output signals.




ens

WHEEL SPEED SENSOR

A wheel speed sensor for a motor vehicle can be supplied with an operating voltage by a control device. The control device has a load resistance with a load resistance value. An operating voltage can be at a voltage input by the control device. An electrical circuit is designed to determine a turn-on or a turn-off voltage value according to the load resistance value. An operation control is designed to transfer the wheel speed sensor into a normal operation using the operating voltage, when the turn-on voltage value is exceeded, and to transfer the wheel speed sensor into an emergency operation using the operating voltage, when a turn-off voltage value is not met. In emergency operation only a low constant signal level is emitted.




ens

SENSORED ELECTRICAL JUMPER

A sensored electrical jumper comprises a conductor having a first end and a second end, the first end including a first connection interface and the second end including a second connection interface, a sensor section including at least one sensor disposed over the conductor between the first and second ends, the sensor section sensing at least one of current and voltage of the conductor, and a sensor output conduit extending from the sensor and oriented substantially perpendicular to the conductor axis to protect at least one sensor output wire from leakage current or other potential electrical damage.




ens

SENSING APPARATUS FOR SENSING CURRENT THROUGH A CONDUCTOR AND METHODS THEREFOR

A sensing apparatus for characterizing current flow through a conductor includes a plurality of magnetic sensors. In some embodiments, the sensors are grouped in pairs to achieve common mode rejection of signals generated in response to magnetic fields not resulting from current flow through the conductor. Sensors having different levels of sensitivity are used to collect information regarding the magnetic field generated by the current flowing through the conductor, where such information is processed in order to characterize the magnetic field. In some cases the sensors are included on or in flexible material that can be wrapped around the conductor.




ens

Method of making a current sensor and current sensor

A method of making a current sensor comprises providing a leadframe having a current conductor portion comprising two sections shaped such that a current to be measured flows in directions oriented obliquely or oppositely with respect to each other,deforming the leadframe to lower the current conductor portion,mounting an isolator on the current conductor portion,mounting a semiconductor chip having a thickness of at least 0.2 mm and comprising two magnetic field sensors composed of four Hall sensors and magnetic field concentrators on the isolator,connecting the semiconductor chip and sensor terminal leads by wire bonds,packaging the semiconductor chip and parts of the leadframe in a plastic housing, andcutting a frame of the leadframe from current terminal leads and the sensor terminal leads.




ens

METHOD FOR PREPARING AN OBJECT TO BE TESTED AND METHOD FOR IMPROVING THE UNIFORMITY AND INTENSITY OF AN ELECTRIC FIELD INDUCED IN SAID OBJECT ILLUMINATED BY AN INCIDENT ELECTROMAGNETIC WAVE

A method for preparing an object to be tested, having a given relative permittivity, intended to be illuminated by an incident electromagnetic wave. The method includes: providing a part including a cavity for housing the object and at least one extension element made from a material having a relative permittivity that is preferably equal to that of the object, the extension element at least partially delimiting the cavity and extending to either side of the cavity in a passage direction of the cavity, over a length at least equal, on either side of the cavity, to one third of the length of the cavity in the passage direction, and placing the object in the cavity, such that the object is in contact with the extension element in the passage direction.




ens

MONITORING OF INSULATION CONDITIONS DURING ELECTRICAL SYSTEM EVENTS USING DIFFERENTIAL CURRENT SENSOR

Systems and methods are disclosed for on-line monitoring of the condition of insulation in electrical devices employing a differential current sensor. In certain embodiments a monitor that can be fitted to existing electrical devices by attachment of the sensor to a pair of phase cables is provided. In other embodiments, an electrical device configured with an insulation monitor is provided.




ens

BATTERY SENSING METHOD AND APPARATUS

A method and apparatus is provided the battery sensor for a large-scale battery system. More specifically, the present disclosure relates to the architecture and measurement scheme for a high-accuracy battery voltage sensor based on a calibration scheme. The present disclosure also related to the architecture and measurement method for a cell-level current sensor to effectively and reliably manage a battery pack.




ens

Sensor

A sensor is disclosed. In an embodiment, the sensor includes a fixed structure, a movable structure movable relative to the fixed structure, a magnet configured to generate a magnetic field and a first magnetically sensitive element configured to determine the magnetic field at a position of the first magnetically sensitive element. The magnet is fastened to the fixed structure and the first magnetically sensitive element is fastened to the movable structure. Alternatively, the magnet is fastened to the movable structure and the first magnetically sensitive element is fastened to the fixed structure.




ens

MAGNETIC SENSOR APPARATUS AND CURRENT SENSOR APPARATUS

A sensor apparatus adjusts output timings of a detection signal and a sensing signal for sensing an abnormality in the detection signal. Provided is a magnetic sensor apparatus comprising a magnetic sensor element, an amplifying section that amplifies and outputs an output of the magnetic sensor element, a plurality of comparing sections that compare the output of the magnetic sensor element or an output of the amplifying section to a threshold value, and a plurality of delaying sections that each delay and output a comparison result output by a corresponding comparing section among the plurality of comparing sections. Also provided is a current sensor apparatus including a current path through which a current serving as a measurement target flows and a magnetic sensor apparatus that is arranged corresponding to the current path and detects a magnetic field generated according to the current serving as the measurement target.




ens

LOW FLY HEIGHT IN-PLANE MAGNETIC IMAGE SENSOR CHIP

Disclosed is a low fly height in-plane magnetic image sensor chip. This sensor chip comprises a Si substrate with a pit on the surface, a magnetoresistive sensor, and an insulating layer. The magnetoresistive sensor is located on the bottom surface of the pit in the Si substrate. The insulating layer is located above the magnetoresistive sensor. The magnetic image surface detected during operation is coplaner or parallel with the surface of the Si substrate surface. The input and output ends of the magnetoresistive sensor are connected with leads directly, or bonded with leads through pads, or through a conducting post and pads to form connections. And the flying height of the leads is lower than the height of the surface of the Si substrate. This technical solution has several advantages, such as compact structure, high output signal, and direct contact with the magnetic image.




ens

MAGNETIC FIELD SENSING APPARATUS AND DETECTION METHOD THEREOF

A magnetic field sensing apparatus and detection method thereof are provided. The magnetic field sensing apparatus includes an anisotropic magneto-resistive (AMR) magnetic field detector, a reference magnetic field detector, and a controller. The AMR magnetic field detector generates a first output voltage according to a detected magnetic field. The reference magnetic field detector generates a second output voltage according to the detected magnetic field. The controller identifies whether an absolute value of a field density of the detected magnetic field is larger or smaller than a predetermined value or not, and selects the first output voltage or a saturation voltage to be a magnetic field detection result accordingly.




ens

SENSOR DEVICE

A sensor device includes a power line and a semiconductor device. The semiconductor device includes an inductor. The inductor is formed using an interconnect layer (to be described later using FIG. 3). The power line and the semiconductor device overlap each other when viewed from a direction perpendicular to the semiconductor device. The semiconductor device includes two inductors. The power line extends between the two inductors when viewed from a direction perpendicular to the semiconductor device.




ens

MICROELECTROMECHANICAL GYROSCOPE WITH REJECTION OF DISTURBANCES AND METHOD OF SENSING AN ANGULAR RATE

A gyroscope includes a substrate, a first structure, a second structure and a third structure elastically coupled to the substrate and movable along a first axis. The first and second structure are arranged at opposite sides of the third structure with respect to the first axis A driving system is configured to oscillate the first and second structure along the first axis in phase with one another and in phase opposition with the third structure. The first, second and third structure are provided with respective sets of sensing electrodes, configured to be displaced along a second axis perpendicular to the first axis in response to rotations of the substrate about a third axis perpendicular to the first axis and to the second axis.




ens

FLOW SENSOR

The invention relates to a flow sensor (1), comprising: a semiconductor module (2) on which a temperature sensing means (13a, 13b) and a heat source (12) are arranged, a flow channel (6) for guiding the fluid medium in a flow direction (D), and a wall (W) delimiting the flow channel, wherein said heat source (12) and said temperature sensing means (13a, 13b) are configured such that they are in thermal contact with said wall (W). According to the invention, said wall (W) comprises a glass member (4) and a metal member (3a), wherein the glass member (4) is connected to the metal member (3a).




ens

METHOD OF OPERATING A SENSOR ASSEMBLY FOR A FLUID TANK OF A MOTOR VEHICLE, AND CORRESPONDING SENSOR ASSEMBLY

In a method of operating a sensor assembly for a fluid tank of a motor vehicle, plural sensor elements of the sensor assembly are electrically connected to a sensor controller. The sensor controller determines measuring data from the sensor elements, and transmits the measuring data from at least some of the sensor elements separately and at least in part sequentially to a reprogrammable control unit.




ens

SENSOR DEVICE

A sensor device includes: a cylindrical casing; a vibration detecting unit including a detection probe, a bottomed cylindrical holder having a bottom in which a rear end of the detection probe is inserted and fixed, piezoelectric elements disposed rearward of the detection probe in the holder and configured to contact the rear end of the detection probe, and a push member held in the holder and configured to push the piezoelectric elements against the rear end of the detection probe, the vibration detecting unit being disposed in the casing; and a coil spring that is disposed rearward of the vibration detecting unit, is configured to contact the holder to bias the holder forward, and causes a tip of the detection probe to project from the casing, wherein the tip of the detection probe is pushed against a measurement object to detect vibration of the measurement object.




ens

Pre-Loaded Force Sensors

Pre-loaded force sensitive input devices, force sensing resistors (FSR), are formed as a multiple membrane assembly that is capable of detecting low intensity pressure inputs and quantifying varying applications of pressure to the sensor surface. Pre-loading the force sensor elements results in controlled amount of force between the two substrates causing a constant state of pre-load and eliminating the low-end or minimal pressure signal noise associated with unloaded sensors. Pre-loading the force sensing resistor sensors also enables the sensor to detect removal of low intensity pressure input such as might occur during theft of light weight articles placed in contact with the pre-loaded force sensor. Using an FSR or FSR Matrix Array will enable any handling of protected retail packaging to be detected and identified. A library of “touches” can be established that will yield cutting, ripping, twisting, etc. making the detection of a theft in progress more accurate.




ens

TORQUE SENSOR TERMINAL BLOCK STRUCTURE

Provided is a torque sensor terminal block structure including an electric motor (1) which outputs driving force for driving a load (8), a strain body (3) interposed on a way of a power transmission system from the electric motor (1) to the load (8), a power detector (4) which outputs a detection signal according to a strain of the strain body (3) as a signal indicating a driving force transmitted from the electric motor (1) to the load (8), and a terminal block (6) which acquires the detection signal of the power detector (4) and transmits the output result to a signal processing circuit section. The terminal block (6) is set parallel to a magnetic flux output from the electric motor (1).




ens

TORQUE SENSOR TERMINAL BLOCK STRUCTURE

Provided is a torque sensor terminal block structure including an electric motor (1) which outputs driving force for driving a load (8), a strain body (3) interposed on a way of a power transmission system from the electric motor (1) to the load (8), a plurality of power detectors (4) which output a detection signal according to strain of the strain body (3) as a signal indicating the driving force, and a terminal block (6) which acquires the detection signal of the power detectors (4) and transmits the output result to a signal processing circuit section (10). The wirings to the signal processing circuit section (10) are twisted spirally as a single stranded wire, and an opening degree between single wirings when the stranded wire extending from the power detectors (4) to the terminal block (6) is unwound, is set to be same for each of the power detectors (4).




ens

TRANSDUCER SENSOR BODY

A transducer sensor body includes a first support structure and a second support structure. A tubular element has a center bore along a longitudinal axis. An elongated first flexure joins the tubular element to the first support structure parallel to the longitudinal axis. The first flexure is rigid to transfer a longitudinal force therethrough along the longitudinal axis and is rigid to transfer an axial force therethrough along an axial axis that is orthogonal to the longitudinal axis. An elongated second flexure joins the tubular element to the second support structure parallel to the longitudinal axis. The second flexure is rigid to transfer a longitudinal force therethrough along the longitudinal axis and is to transfer the axial force therethrough along the axial axis.




ens

SENSOR FOR DETECTING A PRESSURE OF A FLUID MEDIUM

A sensor for detecting a pressure of a fluid medium is provided. The sensor includes a sensor element for detecting the pressure of the fluid medium, a supply duct for supplying the fluid medium to the sensor element and a control and/or evaluation circuit for processing signals of the sensor element. The control and/or evaluation circuit is situated on the sensor element.




ens

SENSOR ARRANGEMENT AND MEASUREMENT METHOD FOR A TURBOMACHINE

A sensor arrangement with a sensor element for measuring at least one physical and/or chemical fluid characteristic in a turbomachine is provided. The sensor element detects the at least one fluid characteristic inside a non-contact seal, in particular a labyrinth seal, between a rotor stage and a stator stage, wherein during operation the sensor element is in contact with the fluid flow along the flow path inside the labyrinth seal.




ens

AEROSOL PARTICLE MASS SENSOR AND SENSING METHOD

A mass sensor is provided for measuring a particle mass within an aerosol. The duration of a sensing cycle is set such that a pre-set change in mass resulting from particles deposited is caused. In the absence of cleaning, the lifetime of the sensor is dependent on the total mass deposited. As a result, the lifetime is made essentially constant by this approach, because each sensing operation is made to give rise to a constant amount of deposited particle mass. This means the lifetime can be predicted more accurately.




ens

Volumetric Flow Regulation in Multi-Dimensional Liquid Analysis Systems

A multi-dimensional liquid analysis system includes a first dimension system and a second dimension system, wherein outflow from the first dimension system is separated at a flow splitter under controlled conditions. The flow splitter separates the first dimension outflow into first and second split outlet flows, with one of the split outlet flows being metered to a designated flow rate with a flow metering device disposed downstream from the flow splitter. The flow metering device selectively closes or opens an outlet flow path to define a volumetric flow rate along that outlet flow path, so that the other split outlet flow is correspondingly controlled.




ens

MULTI-PARAMETRIC ENVIRONMENTAL DIAGNOSTICS AND MONITORING SENSOR NODE

The multi-parametric environmental diagnostics and monitoring sensor node (10) provides monitoring and diagnostics of a variety of different ambient environmental factors and is powered by multiple sources of renewable energy. The multi-parametric environmental diagnostics and monitoring sensor node (10) includes a base (38) and a plurality of environmental condition sensors (36a, 36b, 36c, 36d, 36e, 36f) mounted thereon. A controller (47) is also mounted on the base (38), the plurality of environmental condition sensors (36a, 36b, 36c, 36d, 36e, 36f) being in communication therewith. An external photovoltaic cell (18) is mounted to the base and an internal photovoltaic cell (34) is mounted in an opposed orientation on a cover (32). The external photovoltaic cell (18) and the internal photovoltaic cell (34) charge a power storage module (52), which powers the plurality of environmental condition sensors (36a, 36b, 36c, 36d, 36e, 36f) and the controller (47).




ens

Technologies for controlling degradation of sensing circuits

Technologies for controlling degradation of a sensor mote including detecting a trigger event and initiating degradation of at least a portion of the sensor mote in response to the trigger event. The trigger event may be embodied as any type of event detectable by the sensor mote such as a trigger signal, particular sensed data, expiration of a reference time period, completion of a task, and so forth. The sensor mote may imitate the degradation by, for example, controlling a valve to release a chemical stored in the sensor mote or allow a substance into the sensor mote.




ens

Sensor and Method for Producing a Sensor

A sensor includes a sensor core, a deviating component, and an aligning component. The sensor core has a cable that leaves the sensor core in essentially an exit direction, and a counter-structure. The aligning component has an aligning structure adapted to the counter-structure. The deviating component and aligning component define a final alignment of the cable in a direction different than the exit direction. The deviating component is pushed onto the sensor core. The aligning component is pushed laterally onto the sensor core in a mounting direction relative to the sensor core, and is engaged with the counter-structure of the sensor core.




ens

SUBSTRATE FOR SENSOR, PHYSICAL QUANTITY DETECTION SENSOR, ACCELERATION SENSOR, ELECTRONIC APPARATUS, AND MOVING OBJECT

A substrate for a sensor includes: a base section; a movable section connected to the base section; an arm portion as a support portion extending along the movable section from the base section; a first gap portion having a protrusion portion in which one of the movable section and the arm portion protrudes toward the other of the movable section and the arm portion, and having a predetermined gap between the protrusion portion on one side and the other of the movable section and the support portion; and a second gap portion which is located further toward the base section side than the first gap portion has a gap wider than the predetermined gap, in which in the first gap portion, one of the movable section and the arm portion has a ridge portion on the side facing the first gap portion.




ens

SYSTEMS AND METHODS FOR THERMALLY REGULATING SENSOR OPERATION

Systems and methods are provided for calibrating and regulating the temperature of a sensor. One or more temperature adjusting devices can be provided to regulate the temperature of the sensor. One or more of the temperature adjusting devices can be provided to perform a calibration to determine a relationship between sensor bias and sensor temperature. The one or more temperature adjusting devices can be built into the sensor.




ens

PROCESS FOR CONTROLLING, UNDER VOID, A JET OF PARTICLES WITH AN AERODYNAMIC LENS AND ASSOCIATED AERODYNAMIC LENS

The invention relates to a method for controlling the divergence of a jet of particles in vacuo with an aerodynamic lens, the aerodynamic lens including at least one chamber; a diaphragm, a so-called inlet diaphragm, intended to form an inlet of the aerodynamic lens for a jet of particles, the inlet diaphragm having a given diameter (d1); and another diaphragm, a so-called outlet diaphragm, intended to form an outlet of the aerodynamic lens for this jet of particles; the method including: a step for generating the jet of particles from the inlet to the outlet, in vacuo, of the aerodynamic lens; and a step for adjusting the diameter (ds) of the outlet diaphragm for controlling the divergence of the jet of particles.




ens

LENS PLATE

In a lens plate (18) for an optical sensor device in a vehicle, in particular for a rain sensor, with a transmitter-side lens structure (28) and a receiver-side lens structure (32), the transmitter-side lens structure (26) partially is provided with anti-transmission features which In individual regions of the lens plate (18) partially or completely prevent the passage of the light emitted by a light transmitter (14).




ens

Optical Fibre Sensor System

An optical fibre sensor system and a method for determining a location of a disturbance having a signal processor with a plurality of activation cells adapted to react to components of a back-scattered signal and label the disturbance.




ens

PROXIMITY SENSING DEVICE AND LIGHT GUIDING METHOD THEREOF

A proximity sensing device includes: a light source, a sensing unit, a light guide unit, and a window. The light source emits light, which is guided by the light guide unit to the window. The emitted light reflected by an object is received by the same window. The light guide unit includes a partial-transmissive-partial-reflective (PTPR) optical element, whereby the light emitted from the light source is reflected by the PTPR optical element, while the light reflected by the object passes through the PTPR optical element. There is only one window required.




ens

SENSOR CAP FOR OPTOCHEMICAL SENSOR

The present disclosure relates to a sensor cap for an optochemical sensor for determining or monitoring at least one analyte present in a medium having a substantially cylindrical plug-in component and a sleeve-shaped outer component. The plug-in component has an optical component with a convex-shaped surface region for optimal flow, and the optical component at least partially consists of a material transparent to measuring radiation. On the surface region of the optical component is an analyte-sensitive matrix having at least one functional layer. The plug-in component and the sleeve-shaped component are designed such that the connecting region coming into contact with the medium is between the plug-in component and the sleeve-shaped outer component in the edge region of the optical component or is at a radial distance from the edge region of the optical component, and is sealed, without a gap, facing the medium.




ens

METHODS FOR INCREASING SENSITIVITY OF DETECTION AND/OR QUANTIFICATION OF NEGATIVELY CHARGED ANALYTES

The present technology provides methods for increasing sensitivity of detection and/or quantification of a negatively charged analyte, e.g., an oligonucleotide, using an analytical system that comprises liquid chromatography and mass spectrometry. The methods comprise passing an acidic solution through the analytical system, i.e., through a fluidic path from the mobile phase reservoir to the detector to remove or displace, at least in part, metal ions adsorbed to charged sites in the fluidic path.




ens

METHOD OF FABRICATING AN INTEGRATED CIRCUIT WITH A PATTERN DENSITY-OUTLIER-TREATMENT FOR OPTIMIZED PATTERN DENSITY UNIFORMITY

The present disclosure provides one embodiment of an IC method. First pattern densities (PDs) of a plurality of templates of an IC design layout are received. Then a high PD outlier template and a low PD outlier template from the plurality of templates are identified. The high PD outlier template is split into multiple subsets of template and each subset of template carries a portion of PD of the high PD outlier template. A PD uniformity (PDU) optimization is performed to the low PD outlier template and multiple individual exposure processes are applied by using respective subset of templates.




ens

Methods for producing and using densified biomass products containing pretreated biomass fibers

A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.




ens

ELECTRICAL SENSOR FOR FLUIDS

An electrical sensor for sensing electromagnetic properties of process fluids in a dialysis machine or a similar medical device can include a probe for interfacing with the fluids that is made from electronic fabric materials. The electronic fabric probe can include one or more conductors embedded in a non-conductive fabric layer. The electronic fabric probe is accommodated an enclosure which establishes a flow path with respect to the probe to establish fluid contact between the process fluids and the conductors. The conductors can apply or sense current and/or voltage with respect to the fluid. A portion of the electronic fabric probe can be disposed externally of the enclosure to provide electronic communication externally of the enclosure.




ens

THERMO-SENSITIVE WATER ABSORBENT, METHOD OF WATER TREATMENT, AND WATER TREATMENT APPARATUS

A thermo-sensitive water absorbent is used as a draw material in production of fresh water by a forward osmosis process. The thermo-sensitive water absorbent has a cloud point, and coagulates when heated, the thermo-sensitive water absorbent being a block copolymer containing at least a hydrophobic part and a hydrophilic part, having a glycerin structure as a basic structure, and including an ethylene oxide group and a group consisting of propylene oxide and/or butylene oxide.




ens

METHODS OF DETERMINING CELLULAR CHEMOSENSITIVITY

The present invention provides methods of determining cell sensitivity to a therapeutic agent.




ens

SENSING SENSOR AND SENSING DEVICE

A sensing sensor includes a wiring board, a piezoelectric resonator, a channel forming member, a case body, and a regulating portion. The case body houses the wiring board, the piezoelectric resonator, and the channel forming member. The case body includes a window faced to a region including the output terminal on the another surface side of the wiring board and an injection port supplying a supply liquid to the one end side of the channel. The regulating portion is disposed in the case body. The regulating portion regulates the wiring board from the one surface side when the wiring board is pressed from the another surface side. The piezoelectric resonator is pressed against the surrounding portion by the output terminal being pressed from the another surface side.




ens

DETECTION OF BIOAGENTS USING A SHEAR HORIZONTAL SURFACE ACOUSTIC WAVE BIOSENSOR

Viruses and other bioagents are of high medical and biodefense concern and their detection at concentrations well below the threshold necessary to cause health hazards continues to be a challenge with respect to sensitivity, specificity, and selectivity. Ideally, assays for accurate and real time detection of viral agents and other bioagents would not necessitate any pre-processing of the analyte, which would make them applicable for example to bodily fluids (blood, sputum) and man-made as well as naturally occurring bodies of water (pools, rivers). We describe herein a robust biosensor that combines the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In preferred embodiments, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV), a member of the genus Hantavirus, family Bunyaviridae, negative-stranded RNA viruses. Rapid detection (within seconds) of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, although the sensor was approximately 50×104-fold more sensitive for the detection of SNV. For both pathogens, the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1. The biosensor was able to detect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS). Further, in a proof-of-principle real world application, the SAW biosensor was capable of selectively detecting SNV agents in complex solutions, such as naturally occurring bodies of water (river, sewage effluent) without analyte pre-processing.




ens

SENSING APPARATUS

In one aspect, a modular sensing apparatus will be described. The modular sensing apparatus includes a flexible substrate and multiple sensors. The flexible substrate is reconfigurable into different shapes that conform to differently shaped structures. The multiple sensors are positioned on the substrate. Various embodiments relate to software, devices and/or systems that involve or communicate with the modular sensing apparatus.




ens

CONDENSED CYCLIC COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE INCLUDING THE SAME

A condensed cyclic compound represented by Formula 1: Ar1-L1-L2-Ar2 Formula 1 wherein in Formula 1, Ar1, Ar2, L1, and L2 are the same as described in the specification.




ens

SENSOR TABLE FOR SINGLE UNIT AFTERTREATMENT SYSTEM

A sensor mounting table for mounting sensors to an aftertreatment system may include a sensor mounting plate having a substantially flat mounting surface for mounting one or more sensors associated with the aftertreatment system. The substantially flat mounting surface may be offset from a heat shield of the aftertreatment system. The sensor mounting table may further include an insulative material disposed between at least a portion of the substantially flat mounting surface of the sensor mounting plate and the heat shield. The sensor mounting plate may be configured to be attached to the aftertreatment system to secure the insulative material between the substantially flat mounting surface of the sensor mounting plate and the heat shield.




ens

Tasoptic Lens - Solar Energy

A system for harnessing solar energy using heating applications to generate intense heat for steam boilers and all other water heating applications. Electricity is generated using a steam turbine engine that employs a bank of four biconvex octave lenses, with each having specific sizes, radii, arc convexity and distances from one another in mathematical orderliness in compliance with the Geometry of Space and the Law of Octave of Elements of Matter. The focal points of these lenses are positioned onto a boiler tank consisting of a pair of flat steel sheets in which water runs through from one side and comes out as steam on the other side of it. The steam is then fed into a steam turbine engine to generate electricity. A dual axle sun tracker is adjusted beneath the boiler plate to track the sun's movement from both east to west and north to south at all times. A system of highly conductive carbon rods is assembled on top of the Tasoptic lenses to be activated and subsequently produce an intense arc of hot white light to simulate the sun's parallel rays during the night and cloudy days for the continuity of operation at all times.




ens

BUILDING MEMBRANE WITH POROUS PRESSURE SENSITIVE ADHESIVE

A breatheable multilayer spun bonded polypropylene membrane having a coated pressure sensitive adhesive capable of allowing air and moisture vapor to pass through it. The adhesive is formed of a copolymer comprising a backbone of n-butyl acrylate, 2-ethylhexyl acrylate, and vinyl acetate which is mixed with a surfactant and emulsified to produce bubbles which form pores when the copolymer is set with about 80% to about 90% of the pore sizes ranging from about 200 microns to about 300 microns and a pore density in the cured pressure sensitive adhesive ranging from about 4200 per inch2 to about 4600 per inch2, said pores being uniformly distributed to form a flow path through adhesive.




ens

CONDENSER WITH EXTERNAL SUBCOOLER

Embodiments of the present disclosure relate to a vapor compression system that includes a refrigerant loop, a compressor disposed along the refrigerant loop and configured to circulate refrigerant through the refrigerant loop, a condenser disposed downstream of the compressor along the refrigerant loop and configured to condense vapor refrigerant to liquid refrigerant, a subcooler coupled to the condenser, where the subcooler is external of a shell of the condenser, and where the subcooler is configured to receive the liquid refrigerant from the condenser and to cool the liquid refrigerant to sub cooled refrigerant, and an evaporator disposed downstream of the subcooler along the refrigerant loop and configured to evaporate the subcooled refrigerant to the vapor refrigerant.




ens

Review of Isango Ensemble in SS Mendi at Nuffield Theatres Southampton

As shocking fact is laid upon shocking fact, it becomes hard to judge SS Mendi- Dancing The Drill Of Death at NST City as a piece of theatre, such is one’s outrage at how the British behaved towards black people from the Empire a hundred years ago. But Isango Ensemble have created a powerful musical to tell the human story behind the appalling facts.