max

Episode 102 - The Internet of Tennis Max (IoTM) Apple event special, new iPhones and Apple Watch

A quick-fire reaction Apple special, recorded the morning after new iPhones and an Apple Watch were announced at an event in California.


Henry Burrell joins David Price, Ashleigh Macro and Scott Carey to discuss which products we'll be buying, avoiding and coveting over the Christmas period.


Is the new iPhone named terribly? Is it an upgrade at all? What wasn't announced? And does Scott give the new Apple Watch any praise at all? It's all here.

 

See acast.com/privacy for privacy and opt-out information.




max

MaxQuant software for ion mobility enhanced shotgun proteomics [Technological Innovation and Resources]

Ion mobility can add a dimension to LC-MS based shotgun proteomics which has the potential to boost proteome coverage, quantification accuracy and dynamic range.  Required for this is suitable software that extracts the information contained in the four-dimensional (4D) data space spanned by m/z, retention time, ion mobility and signal intensity. Here we describe the ion mobility enhanced MaxQuant software, which utilizes the added data dimension. It offers an end to end computational workflow for the identification and quantification of peptides and proteins in LC-IMS-MS/MS shotgun proteomics data. We apply it to trapped ion mobility spectrometry (TIMS) coupled to a quadrupole time-of-flight (QTOF) analyzer. A highly parallelizable 4D feature detection algorithm extracts peaks which are assembled to isotope patterns. Masses are recalibrated with a non-linear m/z, retention time, ion mobility and signal intensity dependent model, based on peptides from the sample. A new matching between runs (MBR) algorithm that utilizes collisional cross section (CCS) values of MS1 features in the matching process significantly gains specificity from the extra dimension. Prerequisite for using CCS values in MBR is a relative alignment of the ion mobility values between the runs. The missing value problem in protein quantification over many samples is greatly reduced by CCS aware MBR.MS1 level label-free quantification is also implemented which proves to be highly precise and accurate on a benchmark dataset with known ground truth. MaxQuant for LC-IMS-MS/MS is part of the basic MaxQuant release and can be downloaded from http://maxquant.org.




max

Problem Notes for SAS®9 - 65572: The length of a string variable might be longer than specified with the MAX_CHAR_LEN= option

When you read in a BigQuery table, the length of string variables might be longer than the length specified with the MAX_CHAR_LEN= option when running your SAS software   with UTF-8. By




max

MAXIMUM POWERFUL OBAT KUAT PRIA TAHAN LAMA - Rahasia Pria

Maximum Powerful Obat Kuat Pria adalah ramuan herbal alami yang berkhasiat sebagai obat kuat tahan lama,serta mengatasi ejakulasi dini, impotensi dan dll



  • Sports and Health

max

How does maximizing shareholder value distort drug development?

With the emergence of sofobuvir, a new direct acting antiviral, treatment for Hepatitis C infection is currently undergoing it's greatest change since the discovery of the virus 25 years ago. However Gilead, who manufacture the treatment, are under fire for the cost of the druge - around $90 000 for a course of treatment. Victor Roy, doctoral...




max

Reduced Myocardial Perfusion Reserve in Type 2 Diabetes Is Caused by Increased Perfusion at Rest and Decreased Maximal Perfusion During Stress

OBJECTIVE

To examine differences in myocardial blood flow (MBF) at rest and during stress between patients with type 2 diabetes and controls, and to identify potential predictors of changes in MBF at rest and during stress.

RESEARCH DESIGN AND METHODS

A cross-sectional study of 193 patients with type 2 diabetes and 20 age- and sex-matched controls. Cardiovascular magnetic resonance was used in order to evaluate left ventricular structure and function, and MBF at rest and during adenosine-induced stress. MBF was derived as the mean of the flow within all segments of a midventricular slice.

RESULTS

Patients with type 2 diabetes had higher global MBF at rest (0.81 ± 0.19 mL/min/g) and lower global MBF during stress (2.4 ± 0.9 mL/min/g) than did controls (0.61 ± 0.11 at rest, 3.2 ± 0.8 mL/min/g under stress; both P < 0.01). Patients with macroalbuminuria had lower MBF during stress (1.6 ± 0.5 mL/min/g) than did patients with microalbuminuria (2.1 ± 0.7 mL/min/g; P = 0.04), who in turn had lower MBF during stress than did normoalbuminuric patients (2.7 ± 0.9 mL/min/g; P < 0.01). Patients with severe retinopathy had lower MBF during stress (1.8 ± 0.6 mL/min/g) than did patients with simplex retinopathy (2.3 ± 0.7 mL/min/g; P < 0.05) and those who did not have retinopathy (2.6 ± 1.0 mL/min/g; P < 0.05). Albuminuria and retinopathy were associated with reduced MBF during stress in a multiple regression analysis. Stress-related MBF inversely correlated with myocardial extracellular volume (P < 0.001; R2 = 0.37), a measure of diffuse myocardial fibrosis. A trend toward lower basal MBF was observed in patients treated with sodium–glucose cotransporter 2 inhibitors (P = 0.07).

CONCLUSIONS

Patients with type 2 diabetes have higher global MBF at rest and lower maximal MBF during vasodilator-induced stress than do controls. Reduced MBF during stress is associated with diabetes complications (albuminuria and retinopathy) and is inversely correlated with diffuse myocardial fibrosis.




max

Sarah Silverman, Seth Rogen animated series coming to HBO Max

HBO Max announced Friday that it has ordered "Santa Inc.," an adult-oriented animated series featuring the voices of Sarah Silverman and Seth Rogen.




max

Live and laugh with dementia : the essential guide to maximizing quality of life / Lee-Fay Low.

Dementia -- Treatment.




max

Die acute Pneumonie, und ihre sichere Heilung mit Quecksilberchlorür ohne Blutentziehung / eine Monographie von Max Wittich.

Erlangen : F. Enke, 1850.




max

Die historische Entwicklung der experimentellen Gehirn- und Rückenmarksphysiologie vor Flourens / von Max Neuburger.

Stuttgart : Enke, 1897.




max

Die Kehlkopf-Knorpel : Untersuchungen ueber deren physiologische und pathologische Textur-Veraenderungen / von Max Schottelius.

Wiesbaden : J.F. Bergmann, 1879.




max

Die Knochen und Muskeln der Extremitaten bei den schlangenähnlichen Sauriern : vergleichend-anatomische Abhandlung / von Max Fürbringer.

Leipzig : W. Engelmann, 1870.




max

Die Krankheiten der Affen / von Maximilian Schmidt.

Berlin : A. Hirschwald, 1870.




max

Die mystischen Erscheinungen der menschlichen Natur / dargestellt und gedeutet von Maximilian Perty.

Leipzig : C.F. Winter, 1861.




max

Die nervösen Krankheitserscheinungen der Lepra : mit besonderer Berücksichtigung ihrer Differential-Diagnose : nach eignen auf einer Studienreise in Sarajevo und Constantinopel gesammelten Erfahrungen / von Max Laehr.

Berlin : G. Reimer, 1899.




max

Die Nierenresection und ihre Folgen / von Max Wolff.

Berlin : A. Hirschwald, 1900.




max

Die Physiologischen Beziehungen der Traumvorgänge / von Carl Max Giessler.

Halle : Niemeyer, 1896.




max

Die Serum, Bakterientoxin- und Organ-Präparate : ihre Darstellung, Wirkungsweise und Anwendung / von Max v. Waldheim.

Wien : Hartleben, 1901.




max

Die tierischen Parasiten des Menschen : ein Handbuch für Studierende und Aerzte / von Max Braun.

Wurzburg : Verlagsbuchhandlung, 1895.




max

Die Traumen der Harnblase / von Max Bartels.

Berlin : A. Hirschwald, 1878.




max

Die Tuberculose / mit Beitr. von Max Scheimpflug et al.

Wien : Braumuller, 1898.




max

Dissertationes medicæ in Universitate Vindobonensi habitæ ad morbos chronicos pertinentes / Max. Stollii ; edidit et præfatus est Josephus Eyerel.

Viennæ : Typis Christiani Friderici Wappler, 1788-92.




max

Du molluscum : recherches critiques sur les formes, la nature et le traitement des affections cutanées de ce nom, suivies de la description détaillée d'une nouvelle variété / par Maximilien Maurice Jacobovics.

Londres : Paris, 1840.




max

Ein Fall von Ovarialschwangerschaft : Veranderungen bei Syphilis und Nephritis : Inaugural-Dissertation ... / vorgelegt von Max Baur.

Tubingen : H. Laupp, Jr, 1888.




max

Eine neue Behandlungsmethode der Tuberkulose besonders der chirurgischen Tuberkulosen / von Max Schuller.

Wiesbaden : J.F. Bergmann, 1891.




max

Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes

François Bachoc, José Betancourt, Reinhard Furrer, Thierry Klein.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1962--2008.

Abstract:
The asymptotic analysis of covariance parameter estimation of Gaussian processes has been subject to intensive investigation. However, this asymptotic analysis is very scarce for non-Gaussian processes. In this paper, we study a class of non-Gaussian processes obtained by regular non-linear transformations of Gaussian processes. We provide the increasing-domain asymptotic properties of the (Gaussian) maximum likelihood and cross validation estimators of the covariance parameters of a non-Gaussian process of this class. We show that these estimators are consistent and asymptotically normal, although they are defined as if the process was Gaussian. They do not need to model or estimate the non-linear transformation. Our results can thus be interpreted as a robustness of (Gaussian) maximum likelihood and cross validation towards non-Gaussianity. Our proofs rely on two technical results that are of independent interest for the increasing-domain asymptotic literature of spatial processes. First, we show that, under mild assumptions, coefficients of inverses of large covariance matrices decay at an inverse polynomial rate as a function of the corresponding observation location distances. Second, we provide a general central limit theorem for quadratic forms obtained from transformed Gaussian processes. Finally, our asymptotic results are illustrated by numerical simulations.




max

Perspective maximum likelihood-type estimation via proximal decomposition

Patrick L. Combettes, Christian L. Müller.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 207--238.

Abstract:
We introduce a flexible optimization model for maximum likelihood-type estimation (M-estimation) that encompasses and generalizes a large class of existing statistical models, including Huber’s concomitant M-estimator, Owen’s Huber/Berhu concomitant estimator, the scaled lasso, support vector machine regression, and penalized estimation with structured sparsity. The model, termed perspective M-estimation, leverages the observation that convex M-estimators with concomitant scale as well as various regularizers are instances of perspective functions, a construction that extends a convex function to a jointly convex one in terms of an additional scale variable. These nonsmooth functions are shown to be amenable to proximal analysis, which leads to principled and provably convergent optimization algorithms via proximal splitting. We derive novel proximity operators for several perspective functions of interest via a geometrical approach based on duality. We then devise a new proximal splitting algorithm to solve the proposed M-estimation problem and establish the convergence of both the scale and regression iterates it produces to a solution. Numerical experiments on synthetic and real-world data illustrate the broad applicability of the proposed framework.




max

Connecting Spectral Clustering to Maximum Margins and Level Sets

We study the connections between spectral clustering and the problems of maximum margin clustering, and estimation of the components of level sets of a density function. Specifically, we obtain bounds on the eigenvectors of graph Laplacian matrices in terms of the between cluster separation, and within cluster connectivity. These bounds ensure that the spectral clustering solution converges to the maximum margin clustering solution as the scaling parameter is reduced towards zero. The sensitivity of maximum margin clustering solutions to outlying points is well known, but can be mitigated by first removing such outliers, and applying maximum margin clustering to the remaining points. If outliers are identified using an estimate of the underlying probability density, then the remaining points may be seen as an estimate of a level set of this density function. We show that such an approach can be used to consistently estimate the components of the level sets of a density function under very mild assumptions.




max

The Maximum Separation Subspace in Sufficient Dimension Reduction with Categorical Response

Sufficient dimension reduction (SDR) is a very useful concept for exploratory analysis and data visualization in regression, especially when the number of covariates is large. Many SDR methods have been proposed for regression with a continuous response, where the central subspace (CS) is the target of estimation. Various conditions, such as the linearity condition and the constant covariance condition, are imposed so that these methods can estimate at least a portion of the CS. In this paper we study SDR for regression and discriminant analysis with categorical response. Motivated by the exploratory analysis and data visualization aspects of SDR, we propose a new geometric framework to reformulate the SDR problem in terms of manifold optimization and introduce a new concept called Maximum Separation Subspace (MASES). The MASES naturally preserves the “sufficiency” in SDR without imposing additional conditions on the predictor distribution, and directly inspires a semi-parametric estimator. Numerical studies show MASES exhibits superior performance as compared with competing SDR methods in specific settings.




max

Multivariate normal approximation of the maximum likelihood estimator via the delta method

Andreas Anastasiou, Robert E. Gaunt.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 136--149.

Abstract:
We use the delta method and Stein’s method to derive, under regularity conditions, explicit upper bounds for the distributional distance between the distribution of the maximum likelihood estimator (MLE) of a $d$-dimensional parameter and its asymptotic multivariate normal distribution. Our bounds apply in situations in which the MLE can be written as a function of a sum of i.i.d. $t$-dimensional random vectors. We apply our general bound to establish a bound for the multivariate normal approximation of the MLE of the normal distribution with unknown mean and variance.




max

Necessary and sufficient conditions for the convergence of the consistent maximal displacement of the branching random walk

Bastien Mallein.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 356--373.

Abstract:
Consider a supercritical branching random walk on the real line. The consistent maximal displacement is the smallest of the distances between the trajectories followed by individuals at the $n$th generation and the boundary of the process. Fang and Zeitouni, and Faraud, Hu and Shi proved that under some integrability conditions, the consistent maximal displacement grows almost surely at rate $lambda^{*}n^{1/3}$ for some explicit constant $lambda^{*}$. We obtain here a necessary and sufficient condition for this asymptotic behaviour to hold.




max

A unified treatment for non-asymptotic and asymptotic approaches to minimax signal detection

Clément Marteau, Theofanis Sapatinas.

Source: Statistics Surveys, Volume 9, 253--297.

Abstract:
We are concerned with minimax signal detection. In this setting, we discuss non-asymptotic and asymptotic approaches through a unified treatment. In particular, we consider a Gaussian sequence model that contains classical models as special cases, such as, direct, well-posed inverse and ill-posed inverse problems. Working with certain ellipsoids in the space of squared-summable sequences of real numbers, with a ball of positive radius removed, we compare the construction of lower and upper bounds for the minimax separation radius (non-asymptotic approach) and the minimax separation rate (asymptotic approach) that have been proposed in the literature. Some additional contributions, bringing to light links between non-asymptotic and asymptotic approaches to minimax signal, are also presented. An example of a mildly ill-posed inverse problem is used for illustrative purposes. In particular, it is shown that tools used to derive ‘asymptotic’ results can be exploited to draw ‘non-asymptotic’ conclusions, and vice-versa. In order to enhance our understanding of these two minimax signal detection paradigms, we bring into light hitherto unknown similarities and links between non-asymptotic and asymptotic approaches.




max

A Distributionally Robust Area Under Curve Maximization Model. (arXiv:2002.07345v2 [math.OC] UPDATED)

Area under ROC curve (AUC) is a widely used performance measure for classification models. We propose two new distributionally robust AUC maximization models (DR-AUC) that rely on the Kantorovich metric and approximate the AUC with the hinge loss function. We consider the two cases with respectively fixed and variable support for the worst-case distribution. We use duality theory to reformulate the DR-AUC models and derive tractable convex optimization problems. The numerical experiments show that the proposed DR-AUC models -- benchmarked with the standard deterministic AUC and the support vector machine models - perform better in general and in particular improve the worst-case out-of-sample performance over the majority of the considered datasets, thereby showing their robustness. The results are particularly encouraging since our numerical experiments are conducted with training sets of small size which have been known to be conducive to low out-of-sample performance.




max

Alternating Maximization: Unifying Framework for 8 Sparse PCA Formulations and Efficient Parallel Codes. (arXiv:1212.4137v2 [stat.ML] UPDATED)

Given a multivariate data set, sparse principal component analysis (SPCA) aims to extract several linear combinations of the variables that together explain the variance in the data as much as possible, while controlling the number of nonzero loadings in these combinations. In this paper we consider 8 different optimization formulations for computing a single sparse loading vector; these are obtained by combining the following factors: we employ two norms for measuring variance (L2, L1) and two sparsity-inducing norms (L0, L1), which are used in two different ways (constraint, penalty). Three of our formulations, notably the one with L0 constraint and L1 variance, have not been considered in the literature. We give a unifying reformulation which we propose to solve via a natural alternating maximization (AM) method. We show the the AM method is nontrivially equivalent to GPower (Journ'{e}e et al; JMLR 11:517--553, 2010) for all our formulations. Besides this, we provide 24 efficient parallel SPCA implementations: 3 codes (multi-core, GPU and cluster) for each of the 8 problems. Parallelism in the methods is aimed at i) speeding up computations (our GPU code can be 100 times faster than an efficient serial code written in C++), ii) obtaining solutions explaining more variance and iii) dealing with big data problems (our cluster code is able to solve a 357 GB problem in about a minute).




max

Phase Transitions of the Maximum Likelihood Estimates in the Tensor Curie-Weiss Model. (arXiv:2005.03631v1 [math.ST])

The $p$-tensor Curie-Weiss model is a two-parameter discrete exponential family for modeling dependent binary data, where the sufficient statistic has a linear term and a term with degree $p geq 2$. This is a special case of the tensor Ising model and the natural generalization of the matrix Curie-Weiss model, which provides a convenient mathematical abstraction for capturing, not just pairwise, but higher-order dependencies. In this paper we provide a complete description of the limiting properties of the maximum likelihood (ML) estimates of the natural parameters, given a single sample from the $p$-tensor Curie-Weiss model, for $p geq 3$, complementing the well-known results in the matrix ($p=2$) case (Comets and Gidas (1991)). Our results unearth various new phase transitions and surprising limit theorems, such as the existence of a 'critical' curve in the parameter space, where the limiting distribution of the ML estimates is a mixture with both continuous and discrete components. The number of mixture components is either two or three, depending on, among other things, the sign of one of the parameters and the parity of $p$. Another interesting revelation is the existence of certain 'special' points in the parameter space where the ML estimates exhibit a superefficiency phenomenon, converging to a non-Gaussian limiting distribution at rate $N^{frac{3}{4}}$. We discuss how these results can be used to construct confidence intervals for the model parameters and, as a byproduct of our analysis, obtain limit theorems for the sample mean, which provide key insights into the statistical properties of the model.




max

On a computationally-scalable sparse formulation of the multidimensional and non-stationary maximum entropy principle. (arXiv:2005.03253v1 [stat.CO])

Data-driven modelling and computational predictions based on maximum entropy principle (MaxEnt-principle) aim at finding as-simple-as-possible - but not simpler then necessary - models that allow to avoid the data overfitting problem. We derive a multivariate non-parametric and non-stationary formulation of the MaxEnt-principle and show that its solution can be approximated through a numerical maximisation of the sparse constrained optimization problem with regularization. Application of the resulting algorithm to popular financial benchmarks reveals memoryless models allowing for simple and qualitative descriptions of the major stock market indexes data. We compare the obtained MaxEnt-models to the heteroschedastic models from the computational econometrics (GARCH, GARCH-GJR, MS-GARCH, GARCH-PML4) in terms of the model fit, complexity and prediction quality. We compare the resulting model log-likelihoods, the values of the Bayesian Information Criterion, posterior model probabilities, the quality of the data autocorrelation function fits as well as the Value-at-Risk prediction quality. We show that all of the considered seven major financial benchmark time series (DJI, SPX, FTSE, STOXX, SMI, HSI and N225) are better described by conditionally memoryless MaxEnt-models with nonstationary regime-switching than by the common econometric models with finite memory. This analysis also reveals a sparse network of statistically-significant temporal relations for the positive and negative latent variance changes among different markets. The code is provided for open access.




max

On the Optimality of Randomization in Experimental Design: How to Randomize for Minimax Variance and Design-Based Inference. (arXiv:2005.03151v1 [stat.ME])

I study the minimax-optimal design for a two-arm controlled experiment where conditional mean outcomes may vary in a given set. When this set is permutation symmetric, the optimal design is complete randomization, and using a single partition (i.e., the design that only randomizes the treatment labels for each side of the partition) has minimax risk larger by a factor of $n-1$. More generally, the optimal design is shown to be the mixed-strategy optimal design (MSOD) of Kallus (2018). Notably, even when the set of conditional mean outcomes has structure (i.e., is not permutation symmetric), being minimax-optimal for variance still requires randomization beyond a single partition. Nonetheless, since this targets precision, it may still not ensure sufficient uniformity in randomization to enable randomization (i.e., design-based) inference by Fisher's exact test to appropriately detect violations of null. I therefore propose the inference-constrained MSOD, which is minimax-optimal among all designs subject to such uniformity constraints. On the way, I discuss Johansson et al. (2020) who recently compared rerandomization of Morgan and Rubin (2012) and the pure-strategy optimal design (PSOD) of Kallus (2018). I point out some errors therein and set straight that randomization is minimax-optimal and that the "no free lunch" theorem and example in Kallus (2018) are correct.




max

Maxillofacial cone beam computed tomography : principles, techniques and clinical applications

9783319620619 (electronic bk.)




max

Model assisted variable clustering: Minimax-optimal recovery and algorithms

Florentina Bunea, Christophe Giraud, Xi Luo, Martin Royer, Nicolas Verzelen.

Source: The Annals of Statistics, Volume 48, Number 1, 111--137.

Abstract:
The problem of variable clustering is that of estimating groups of similar components of a $p$-dimensional vector $X=(X_{1},ldots ,X_{p})$ from $n$ independent copies of $X$. There exists a large number of algorithms that return data-dependent groups of variables, but their interpretation is limited to the algorithm that produced them. An alternative is model-based clustering, in which one begins by defining population level clusters relative to a model that embeds notions of similarity. Algorithms tailored to such models yield estimated clusters with a clear statistical interpretation. We take this view here and introduce the class of $G$-block covariance models as a background model for variable clustering. In such models, two variables in a cluster are deemed similar if they have similar associations will all other variables. This can arise, for instance, when groups of variables are noise corrupted versions of the same latent factor. We quantify the difficulty of clustering data generated from a $G$-block covariance model in terms of cluster proximity, measured with respect to two related, but different, cluster separation metrics. We derive minimax cluster separation thresholds, which are the metric values below which no algorithm can recover the model-defined clusters exactly, and show that they are different for the two metrics. We therefore develop two algorithms, COD and PECOK, tailored to $G$-block covariance models, and study their minimax-optimality with respect to each metric. Of independent interest is the fact that the analysis of the PECOK algorithm, which is based on a corrected convex relaxation of the popular $K$-means algorithm, provides the first statistical analysis of such algorithms for variable clustering. Additionally, we compare our methods with another popular clustering method, spectral clustering. Extensive simulation studies, as well as our data analyses, confirm the applicability of our approach.




max

The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression

Emmanuel J. Candès, Pragya Sur.

Source: The Annals of Statistics, Volume 48, Number 1, 27--42.

Abstract:
This paper rigorously establishes that the existence of the maximum likelihood estimate (MLE) in high-dimensional logistic regression models with Gaussian covariates undergoes a sharp “phase transition.” We introduce an explicit boundary curve $h_{mathrm{MLE}}$, parameterized by two scalars measuring the overall magnitude of the unknown sequence of regression coefficients, with the following property: in the limit of large sample sizes $n$ and number of features $p$ proportioned in such a way that $p/n ightarrow kappa $, we show that if the problem is sufficiently high dimensional in the sense that $kappa >h_{mathrm{MLE}}$, then the MLE does not exist with probability one. Conversely, if $kappa <h_{mathrm{MLE}}$, the MLE asymptotically exists with probability one.




max

Minimax posterior convergence rates and model selection consistency in high-dimensional DAG models based on sparse Cholesky factors

Kyoungjae Lee, Jaeyong Lee, Lizhen Lin.

Source: The Annals of Statistics, Volume 47, Number 6, 3413--3437.

Abstract:
In this paper we study the high-dimensional sparse directed acyclic graph (DAG) models under the empirical sparse Cholesky prior. Among our results, strong model selection consistency or graph selection consistency is obtained under more general conditions than those in the existing literature. Compared to Cao, Khare and Ghosh [ Ann. Statist. (2019) 47 319–348], the required conditions are weakened in terms of the dimensionality, sparsity and lower bound of the nonzero elements in the Cholesky factor. Furthermore, our result does not require the irrepresentable condition, which is necessary for Lasso-type methods. We also derive the posterior convergence rates for precision matrices and Cholesky factors with respect to various matrix norms. The obtained posterior convergence rates are the fastest among those of the existing Bayesian approaches. In particular, we prove that our posterior convergence rates for Cholesky factors are the minimax or at least nearly minimax depending on the relative size of true sparseness for the entire dimension. The simulation study confirms that the proposed method outperforms the competing methods.




max

On partial-sum processes of ARMAX residuals

Steffen Grønneberg, Benjamin Holcblat.

Source: The Annals of Statistics, Volume 47, Number 6, 3216--3243.

Abstract:
We establish general and versatile results regarding the limit behavior of the partial-sum process of ARMAX residuals. Illustrations include ARMA with seasonal dummies, misspecified ARMAX models with autocorrelated errors, nonlinear ARMAX models, ARMA with a structural break, a wide range of ARMAX models with infinite-variance errors, weak GARCH models and the consistency of kernel estimation of the density of ARMAX errors. Our results identify the limit distributions, and provide a general algorithm to obtain pivot statistics for CUSUM tests.




max

A fast algorithm with minimax optimal guarantees for topic models with an unknown number of topics

Xin Bing, Florentina Bunea, Marten Wegkamp.

Source: Bernoulli, Volume 26, Number 3, 1765--1796.

Abstract:
Topic models have become popular for the analysis of data that consists in a collection of n independent multinomial observations, with parameters $N_{i}inmathbb{N}$ and $Pi_{i}in[0,1]^{p}$ for $i=1,ldots,n$. The model links all cell probabilities, collected in a $p imes n$ matrix $Pi$, via the assumption that $Pi$ can be factorized as the product of two nonnegative matrices $Ain[0,1]^{p imes K}$ and $Win[0,1]^{K imes n}$. Topic models have been originally developed in text mining, when one browses through $n$ documents, based on a dictionary of $p$ words, and covering $K$ topics. In this terminology, the matrix $A$ is called the word-topic matrix, and is the main target of estimation. It can be viewed as a matrix of conditional probabilities, and it is uniquely defined, under appropriate separability assumptions, discussed in detail in this work. Notably, the unique $A$ is required to satisfy what is commonly known as the anchor word assumption, under which $A$ has an unknown number of rows respectively proportional to the canonical basis vectors in $mathbb{R}^{K}$. The indices of such rows are referred to as anchor words. Recent computationally feasible algorithms, with theoretical guarantees, utilize constructively this assumption by linking the estimation of the set of anchor words with that of estimating the $K$ vertices of a simplex. This crucial step in the estimation of $A$ requires $K$ to be known, and cannot be easily extended to the more realistic set-up when $K$ is unknown. This work takes a different view on anchor word estimation, and on the estimation of $A$. We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates $K$ from the observed data. We derive new finite sample minimax lower bounds for the estimation of $A$, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any $n,N_{i},p$ and $K$, and both $p$ and $K$ are allowed to increase with $n$, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics $K$, while we provide the competing methods with the correct value in our simulations.




max

The maximal degree in a Poisson–Delaunay graph

Gilles Bonnet, Nicolas Chenavier.

Source: Bernoulli, Volume 26, Number 2, 948--979.

Abstract:
We investigate the maximal degree in a Poisson–Delaunay graph in $mathbf{R}^{d}$, $dgeq 2$, over all nodes in the window $mathbf{W}_{ ho }:= ho^{1/d}[0,1]^{d}$ as $ ho $ goes to infinity. The exact order of this maximum is provided in any dimension. In the particular setting $d=2$, we show that this quantity is concentrated on two consecutive integers with high probability. A weaker version of this result is discussed when $dgeq 3$.




max

Subspace perspective on canonical correlation analysis: Dimension reduction and minimax rates

Zhuang Ma, Xiaodong Li.

Source: Bernoulli, Volume 26, Number 1, 432--470.

Abstract:
Canonical correlation analysis (CCA) is a fundamental statistical tool for exploring the correlation structure between two sets of random variables. In this paper, motivated by the recent success of applying CCA to learn low dimensional representations of high dimensional objects, we propose two losses based on the principal angles between the model spaces spanned by the sample canonical variates and their population correspondents, respectively. We further characterize the non-asymptotic error bounds for the estimation risks under the proposed error metrics, which reveal how the performance of sample CCA depends adaptively on key quantities including the dimensions, the sample size, the condition number of the covariance matrices and particularly the population canonical correlation coefficients. The optimality of our uniform upper bounds is also justified by lower-bound analysis based on stringent and localized parameter spaces. To the best of our knowledge, for the first time our paper separates $p_{1}$ and $p_{2}$ for the first order term in the upper bounds without assuming the residual correlations are zeros. More significantly, our paper derives $(1-lambda_{k}^{2})(1-lambda_{k+1}^{2})/(lambda_{k}-lambda_{k+1})^{2}$ for the first time in the non-asymptotic CCA estimation convergence rates, which is essential to understand the behavior of CCA when the leading canonical correlation coefficients are close to $1$.




max

Boeing says it&#39;s about to start building the 737 Max plane again in the middle of the coronavirus pandemic, even though it already has more planes than it can deliver

Boeing CEO Dave Calhoun said the company was aiming to resume production this month, despite the ongoing grounding and coronavirus pandemic.





max

Analysis of the Maximal a Posteriori Partition in the Gaussian Dirichlet Process Mixture Model

Łukasz Rajkowski.

Source: Bayesian Analysis, Volume 14, Number 2, 477--494.

Abstract:
Mixture models are a natural choice in many applications, but it can be difficult to place an a priori upper bound on the number of components. To circumvent this, investigators are turning increasingly to Dirichlet process mixture models (DPMMs). It is therefore important to develop an understanding of the strengths and weaknesses of this approach. This work considers the MAP (maximum a posteriori) clustering for the Gaussian DPMM (where the cluster means have Gaussian distribution and, for each cluster, the observations within the cluster have Gaussian distribution). Some desirable properties of the MAP partition are proved: ‘almost disjointness’ of the convex hulls of clusters (they may have at most one point in common) and (with natural assumptions) the comparability of sizes of those clusters that intersect any fixed ball with the number of observations (as the latter goes to infinity). Consequently, the number of such clusters remains bounded. Furthermore, if the data arises from independent identically distributed sampling from a given distribution with bounded support then the asymptotic MAP partition of the observation space maximises a function which has a straightforward expression, which depends only on the within-group covariance parameter. As the operator norm of this covariance parameter decreases, the number of clusters in the MAP partition becomes arbitrarily large, which may lead to the overestimation of the number of mixture components.




max

Maximum Independent Component Analysis with Application to EEG Data

Ruosi Guo, Chunming Zhang, Zhengjun Zhang.

Source: Statistical Science, Volume 35, Number 1, 145--157.

Abstract:
In many scientific disciplines, finding hidden influential factors behind observational data is essential but challenging. The majority of existing approaches, such as the independent component analysis (${mathrm{ICA}}$), rely on linear transformation, that is, true signals are linear combinations of hidden components. Motivated from analyzing nonlinear temporal signals in neuroscience, genetics, and finance, this paper proposes the “maximum independent component analysis” (${mathrm{MaxICA}}$), based on max-linear combinations of components. In contrast to existing methods, ${mathrm{MaxICA}}$ benefits from focusing on significant major components while filtering out ignorable components. A major tool for parameter learning of ${mathrm{MaxICA}}$ is an augmented genetic algorithm, consisting of three schemes for the elite weighted sum selection, randomly combined crossover, and dynamic mutation. Extensive empirical evaluations demonstrate the effectiveness of ${mathrm{MaxICA}}$ in either extracting max-linearly combined essential sources in many applications or supplying a better approximation for nonlinearly combined source signals, such as $mathrm{EEG}$ recordings analyzed in this paper.




max

Gaussian Integrals and Rice Series in Crossing Distributions—to Compute the Distribution of Maxima and Other Features of Gaussian Processes

Georg Lindgren.

Source: Statistical Science, Volume 34, Number 1, 100--128.

Abstract:
We describe and compare how methods based on the classical Rice’s formula for the expected number, and higher moments, of level crossings by a Gaussian process stand up to contemporary numerical methods to accurately deal with crossing related characteristics of the sample paths. We illustrate the relative merits in accuracy and computing time of the Rice moment methods and the exact numerical method, developed since the late 1990s, on three groups of distribution problems, the maximum over a finite interval and the waiting time to first crossing, the length of excursions over a level, and the joint period/amplitude of oscillations. We also treat the notoriously difficult problem of dependence between successive zero crossing distances. The exact solution has been known since at least 2000, but it has remained largely unnoticed outside the ocean science community. Extensive simulation studies illustrate the accuracy of the numerical methods. As a historical introduction an attempt is made to illustrate the relation between Rice’s original formulation and arguments and the exact numerical methods.




max

MaxMara, the epitome of Italian style open Scottish store

Sponsored Editorial