de

Single-dose package for transdermal therapeutic system or sheet-like administration forms

In the case of a package (1) for single-dose films (2) containing active substances, comprising an upper packaging material element (3) and a lower packaging material element (4) which are connected together by a peripheral seal area or respectively sealing seam (5) such that a cavity (6) for holding the film (2) is formed, said cavity being enclosed on all sides, wherein the upper packaging material element (3) and the lower packaging material element (4) each have at least one cut (7, 8) in the region of the seal area or respectively, the sealing seam (5), said cuts being congruent, andat least one cut (7, 8) is crossed by a folding or bending line (10), the folding or bending line (10) is formed in a weakened manner.




de

Bag with detachable hanging accessory portion

In an embodiment of the disclosed technology, a bag is used for transporting and organizing items. The bag is generally formed of a removably attachable upper and a lower portion. The upper portion forms at least a portion of one side of the bag and is attached to the lower portion by a fastening mechanism. The lower portion forms the bottom and at least a portion of the sides of the bag. The upper portion is detachable to provide a hanging accessory organizer, having pockets and suspension device. In embodiments of the disclosed technology, access to the bag may be provided by an additional fastenable opening. Zippers may be used as the fasteners, and may run parallel to one another, completely or partially surrounding the perimeter of the upper portion.




de

Gift bag holder

An embodiment of the invention provides a device for holding an article, wherein the device includes a front panel including a first aperture positioned above a second aperture. The first aperture is dimensioned to receive a display hook; and, the second aperture is dimensioned to receive and retain the article. A rear panel is hingedly connected to the front panel, wherein the rear panel includes a third aperture positioned above at least one fourth aperture. The third aperture is dimensioned to receive the display hook; and, the fourth aperture is dimensioned to receive and retain a second article. The device further includes a card removably connected to the rear panel via perforations.




de

Environmentally sealed docking device and method, having a zipper and a slide

A closure having two profile strips for an at least partially flexible container for connecting a first container to a second container in a manner sealed against the environment in a such a way that a closed docking position can be obtained. Further the closure provides for conducting a flow in a sealed manner against the environment in a flow direction through the closure from the first container into the second container in such a way that an open docking position can be obtained. According to the described system, the second container facing the first container is designed with an identical closure that engages in the closure of the first container in the open docking position and forms a channel for the flow in the flow direction together with the closure.




de

Sterilization box seal device

A sterilization box seal device including a shaft capable of being slid into a closure device of a sterilization box, and a support part of the proximal end of shaft, which includes a locking element irreversibly capable of cooperating and attaching on the distal end of shaft so as to form therewith a closed loop preventing the closure device from opening, such that the support part includes an additional part to the support one necessary for the sole seal function, the additional part includes an area capable of receiving a readable identification label.




de

Machine main body and operating machine provided with same

A first panel includes an engaging section configured to engage with an engaged section so as to allow displacement of the engaged section according to swinging of a hood between a closed position and an open position and restrict the swinging of the hood in a state where an opening section is opened. The engaging section engages with the engaged section such that the engaged section is detachable by being displaced in a predetermined first direction. The machine main body further includes an auxiliary supporting section provided in a machine room and configured to restrict, by detachably supporting the engaged section detached from the engaging section, the swinging of the hood in a state where the opening section is opened.




de

Fixing device for a closing element

The invention relates to a fixing device for a vertically movable closing element (1) for the at least partial closing of an opening (2) of a room. According to the invention, the fixing device for fixing of the closing element (1) in a closed state comprises at least one first fixing unit (6), arranged on the closing element (1), and an engaging unit (7), corresponding to the first fixing unit (6), in an opening bottom (2.1) and at least one second fixing unit (11), which is arranged on a guide (3), arranged to the side of the opening (2), for the closing element (1) and has a tensioning hook (11.1), which in the closed state of the closing element (1) can be latched in the closing element (1) in the area of an upper side of the closing element (1).




de

Device for locking an opening part of a jet engine nacelle with respect to a fixed part, and nacelle equipped with such a device

This device for locking an opening part (9) of a jet engine nacelle with respect to a fixed part (7, 17) comprises: means (13, 16) for locking said opening part (9) with respect to said fixed part (7, 17), means for actuating (21) these locking means that are mounted such that they can move on said opening part (9) between a closed position, in which they enable said locking means (13, 16) to be immobilized, and an open position, in which they enable these locking means (13, 16) to be released. Said actuating means comprise gripping means (21). This device comprises means (41, 43) for immobilizing, in the open position, said gripping means (21) with respect to said opening part (9) at least in the direction of movement of said opening part (9).




de

Latchable or lockable device

A lockable or latchable device includes first and second members proximate to each other, at least one of which is movable with respect to the other. The device also includes a magnetorheological fluid disposed in the device such that the fluid is in simultaneous contact with at least a portion of each of the first and second members when the first and second members are in a position for locking or latching. A permanent magnet is disposed in the device to inhibit displacement of the magnetorheological fluid when the first and second members are in the locked or latched position. An electromagnet is disposed in the device such that magnetic flux from the electromagnet, when activated, disrupts the magnetic flux of the permanent magnet when the first and second members are in the locked or latched position to unlatch or unlock the device.




de

Closing device comprising a detent spring

Locking device (1) comprising at least one locking mechanism (2) having a catch (3) and a pivotal first pawl (4), the operating lever (7) being movable so that during its movement the operating lever (7) interacts with a drive pin (20) of the first pawl (4) and a lateral pawl spring (35) acts between the drive pin (20) and the operating lever (7).




de

Handle for an openable body section of a vehicle, including a safety device

The invention relates to a handle (2) for an openable body section of a vehicle, including: an actuator (20) such as a lever, which is movably mounted between an inoperative position of the actuator and a position for unlocking the openable body section, and a locking member (36), such as a lock bolt, which is designed to occupy an inoperative position in which same locks the actuator (20) in the inoperative position of the actuator.




de

Latch for securing a compute node in a component storage rack

A latch selectively secures a compute node enclosure into a chassis bay. The latch comprises a frame securable to a proximal end of the compute node enclosure. A handle is pivotally secured to the frame intermediate a proximal end of the handle and a distal end of the handle so that the handle can be pivoted between a closed position and an open position. A proximal end of a pawl is pivotally coupled at to the distal end of the handle, wherein the pawl includes a landing at a distal end of the pawl and a latch key intermediate proximal and distal ends of the pawl. Movement of the handle positions the pawl into engagement with a slot in chassis bay to assist installation and removal of the compute node enclosure.




de

Striker device for a motor vehicle door lock and a motor vehicle equipped with such striker device

A striker device for a motor vehicle door lock having a striker and an element made of a plastic material and equipped with a plate, which is suitable for being placed against a wall of the motor vehicle and is coupled to the striker in fixed relative position; the element has a plurality of tongues, which protrude from the plate in the opposite direction to the striker and are arranged in positions so as to engage, in use, the edges of two apertures in the wall of the motor vehicle, to keep the plate in a fixed reference position during a first fitting step; the tongues are breakable to enable changing the position of the striker device with respect to the wall of the motor vehicle in a possible second fitting step.




de

Delayed unlatching mechanism

In various embodiments an apparatus is presented for securing a structure such as a door, window, hatch, or gate that moves between an open and a closed position relative to a fixed structure to provide or deny access to a compartment, a room, an outdoor area, or a facility. Various embodiments provide a delay in opening the closure of sufficient duration to frustrate a rapid activation that might be desired by a person who is attempting to pass through the closure for some illicit purpose. Typically, hydraulics are used to activate the apparatus and no electrical energy or electronic signals are employed. In one embodiment, a plurality of actuations of a hand lever operates a hydraulic pump that moves a locking bolt from a first position in which a locking bolt is engaged with a recess in the fixed structure (preventing opening of a gate) to a second position in which the locking bolt is disengaged from the recess to permit opening of the gate.




de

Door handle device for vehicle

A door handle device for a vehicle includes a door handle configured to be supported by a door panel, the door handle including a first handle case arranged to have a void relative to the door panel, a second handle case fixed to the first handle case at a side opposite from the door panel, and a lock command detection sensor including a lock detection signal processing circuit fixed to an inner side of the first handle case, a circuit connection portion electrically connected to the lock detection signal processing circuit, and a lock detection electrode assembled on the second handle case in a state to be arranged along an inner surface of the second handle case, the lock detection electrode being electrically connected to the circuit connection portion in a state where the second handle case is fixed to the first handle case.




de

Push/pull operating device for driving a latch device

A push/pull operating device includes first and second operational devices mounted to two sides of a door. The first operating device includes a first bracket having a plurality of non-circular mounting holes. Two engaging rods extend through two of the mounting holes of the first bracket, the door, and a latch device mounted in the door. Each engaging rod has a limiting portion fixedly received in one of the mounting holes. A head of each engaging rod presses against the first bracket. The second operational device includes a second bracket having a plurality of non-circular mounting holes. A bolt is extended through one of the mounting holes of the second bracket and the door and engaged with one of the engaging rods. A head of each bolt presses against the second bracket. Thus, the first and second brackets are securely fixed to the sides of the door.




de

Apparatus for chamfering and/or deburring of gears

Gear processing machine (4), such as a gear cutting or grinding machine, wherein a chamfering and/or deburring apparatus (2) and auxiliary spindle (10) are included on the same machine. A transfer mechanism (8) loads, unloads and transfers workpieces between a machining spindle (6) and the auxiliary spindle (10) thereby enabling simultaneous cutting and chamfering and/or deburring processes to be carried out. Via the auxiliary spindle, completed workpieces may be removed from the machine and blank workpieces may be loaded into the machine while another gear is being processed on the machine spindle thereby enhancing machine output and creating a more efficient operation.




de

Path display apparatus considering correction data

A path display apparatus includes a first position command acquiring unit that acquires first position command for motors, a first position feedback acquiring unit that acquires first position feedback of each of the motors, a correction data acquiring unit that acquires correction data generated for each of the motors, a second position command calculating unit that subtracts the correction data from the first position command to calculate a second position command, a second position feedback calculating unit that subtracts the correction data from the first position feedback to calculate second position feedback, a command path display unit that displays a command path of the tip point of the tool, based on the second position command; and a feedback path display unit that displays a feedback path of the tip point of the tool, based on the second position feedback.




de

Pallet changing device for a machine tool and machine tool comprising a pallet changing device

A pallet changing device (40) for changing pallets on a machine tool comprises a changing device (15) including connecting elements (26, 28) for releasably connecting the pallet changing device (40) to pallets (7, 8), a rotational drive (19) for rotating the changing device (15) in a working plane (18), and a lifting device (20) for raising and lowering the changing device (15) and thus the working plane (18) within a workspace (21). The rotational drive (19) is arranged outside the workspace (21).




de

Multi-key duplication, identification and cutting machine with clamp

A key duplication system comprising a key duplication housing wherein at least one key receiving aperture on a first side of the housing sized to receive a key blade and at least one key clamp adjacent to the at least one key receiving aperture, the clamp comprising a first clamp arm with a surface topography corresponding to a first key blade surface topography and a second clamp arm with a surface topography corresponding to a second key blade different from the first key blade.




de

Retention knob for tool holder

A retention knob for use with a tool holder that is less prone to distorting a tapered tool holder surface, especially if it is over-tightened. The retention knob includes a knob head, a flange engageable with an end of a tool holder shank, a pilot segment receivable by the counter bore defined by said tool holder shank and a threaded segment spaced from said flange by an undercut segment. The threaded segment is configured so that it has a length that is substantially the minimum length required to achieve maximum thread holding strength. The undercut segment is configured to space the threaded segment from its head so that a distal end of the threaded segment is substantially near the bottom of the tapered bore forming part of the tool holder.




de

Rotary joint device, method of machining rotary joint device, and main shaft driving apparatus for machine tool including rotary joint device

A rotary joint device includes attachment grooves formed at positions in an outer peripheral surface of an outer cylinder, each attachment groove being formed so as to straddle a pair of adjacent cylindrical blocks and so as to be exposed from the outer peripheral surface of the outer cylinder, each attachment groove having a bottom surface that is machined to form a flat surface in a state in which the cylindrical blocks are combined, and positioning blocks corresponding to the attachment grooves on a one-to-one basis and each having an attachment phase that is uniquely set to a corresponding one of the attachment grooves in the axial direction and in a circumferential direction of the outer cylinder, each positioning block having an attachment surface corresponding to the bottom surface of a corresponding one of the attachment grooves, the attachment surface being machined so as to form a flat surface.




de

Machine tool comprising a machine spindle, a tool holder and a contact point for electric current or data transmission

A machine tool having a motor-driven machine spindle which can be rotated about a spindle axis. The machine spindle has a tool holder arranged at the face. A tool is exchangeably arranged on the machine spindle. The tool has a coupling element which is compatible with the tool holder of the machine spindle. The coupling element has a rear surface pointing toward the machine spindle. The machine tool has at least one galvanic contact point for the electric current or data transmission, the point being arranged between the machine spindle and the tool and rotating together with the machine spindle. The galvanic contact point has a contact element which is arranged at the face of the tool holder on the spindle side, and a contact element which is arranged on the rear surface of the coupling element on the tool side.




de

Machining apparatus for grinding, milling, polishing or the like of a dental workpiece

A machining apparatus for grinding, milling, polishing or the like of a dental workpiece. The machining apparatus contains a machining tool, a housing to which the machining tool is mounted rotatably about an axis of rotation relative to the housing, and a holding device to which the housing is fixed. The housing is mounted yieldingly movably to the holding device in dependence on forces exerted on the machining tool.




de

Vibration suppressing method and vibration suppressing device for us in machine tool

In a machine tool having a rotary shaft for use in rotating a tool or a workpiece, a plurality of stable rotation speeds at which the chatter vibrations are expected to be suppressed, and at least one switching rotation speed across which a dynamic characteristic of a rotary shaft system changes are stored. The plurality of stable rotation speeds may be determined from chatter vibrations detected using a vibration detection unit. Optimum rotation speed that is a rotation speed to which a rotation speed of the rotary shaft is changeable without crossing the switching rotation speed is selected from the plurality of stable rotation speeds, and the rotation speed of the rotary shaft is changed to the optimum rotation speed. Thus, chatter vibrations generated during rotation of the rotary shaft can be suppressed effectively.




de

Translocation-simulating loading apparatus for gear grinding machine with shaped grinding wheel and detection method for stiffness distribution

A translocation-simulating loading apparatus for the gear grinding machine with the shaped grinding wheel is provided. The apparatus includes a load-receiving test piece disposed on the gear grinding machine with the shaped grinding wheel and a load-exerting component for use in loading simulation. The gear grinding machine enables linear movements along the X, Y, and Z axes, a rotary movement around the Y axis, a rotary movement C around the Z axis, and a rotary movement A around the X axis. An angle α is formed between the axis L of a ball seat of the load-exerting component and the X axis direction of a Y axis component and an angle formed between the normal line of a load receiving face a and the X direction of the coordinate system of the machine tool is α. A detection method for static stiffness distribution is provided.




de

Tool holder

To provide a tool holder that is capable of exerting a vibration-minimizing effect in a reliable manner using a simple configuration and that is extremely useful for practical application. A tool holder comprising a vibration-minimizing part for minimizing vibration generated in a tool (1) when the tool (1) is used to perform machining, the vibration-minimizing part being provided, on a distal-end side, with tool-holding means for detachably securing the tool (1) and provided, on a proximal-end side, with a shank part (2) to be mounted on a spindle of a machine tool; wherein a plurality of reinforcing parts (4) extending in an axial direction of the tool holder (3) are provided to a peripheral section of the tool holder (3) in a radial direction; accommodating recesses (6) for accommodating a vibration-damping material (5) are provided between the reinforcing parts (4); the vibration-damping material (5) is accommodated in the accommodating recesses (6); and the vibration-damping material (5) and the reinforcing parts (4) form the vibration-minimizing part.




de

Method and device for preventing slip of work piece

A master servo motor and a slave servo motor that synchronously drive for rotation a master main spindle provided with a center that supports one end of a work piece and a slave main spindle provided with a center that supports the other end of the work piece are included. Before grinding, a slip detection cycle that detects a limit current value for the servo motors, at which the work piece and the centers slip, is executed and, during grinding, a grinding condition is changed to prevent a slip between the work piece and the centers in advance at the time when any one of current values of the servo motors has reached a slip threshold value set on the basis of the limit current value.




de

Tool adaptor having an integrated damping device

A tool adapter includes an adaptor body having a connection portion structured to be attached to a machine tool and a holder portion disposed opposite the connection portion and a tool receiver structured to receive and couple a portion of a rotary cutting tool therein. The tool receiver is mounted in the holder portion so as to be rotatable to a limited extent. The tool receiver is mounted in the holder so as to be elastically resilient in both the axial and circumferential directions.




de

Turbomachine blade

A turbomachine including securing means that extend between the pressure wall and the suction surface and which includes an energy absorbing portion for absorbing energy after impact to the blade by a foreign object. The energy absorbing portion has a catch that provides the blade with an improved resistance to bursting.




de

Methods of manufacturing wind turbine blades

An elongate web is attached to the root end of a spar of a wind turbine rotor blade to provide additional support along the width of the blade. The root end is formed by a winding operation, and a recess is then cut into the surface of the spar. The recess is defined by a relatively large first, cylindrical surface, which is coaxial with the longitudinal axis of the root end, and a relatively small second, conical surface. A tapered end of the elongate web is attached within the recess of the root end using a layer of suitable adhesive and an array of pins. Resilient spacer elements are arranged within the recess so as to surround the pins. The large area of the cylindrical surface causes the tensile and compressive stresses which arise along the elongate web in use to be transmitted to the spar as shear stresses.




de

Method and system for monitoring bending strains of wind turbine blades

The invention provides a method and system of monitoring bending strain on a wind turbine blade. The method in one aspect comprises: locating at least three strain sensors on the turbine blade, in use each strain sensor providing a strain measurement, the strain sensors located such that edgewise and flapwise bending can be determined from the strain measurements; calculating a plurality of resultant bending strains using the strain measurements; calculating an average resultant bending strain from the plurality of resultant bending strains; and calculating a confidence value for a first sensor based on a comparison of resultant bending strains derived from the strain measurement from the first sensor with the average resultant bending strain.




de

Method of manufacturing a wind turbine blade having predesigned segment

A blade for a rotor of a wind turbine is manufactured with a root region with a substantially circular or elliptical profile closest to the hub, an airfoil region with a lift generating profile furthest away from the hub and a transition region having a profile gradually changing the root region to the airfoil region. A first blade design is used for the first base part on a first longitudinal section of an airfoil region of a second blade, so that an induction factor of the first base part on the second blade deviates from a target induction factor. The first longitudinal section of the second blade is provided with flow altering devices so as to adjust the aerodynamic properties of the first longitudinal segment to substantially meet the target induction factor at the design point on the second blade.




de

Rotor blade assembly for wind turbine

A rotor blade assembly is disclosed. The rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge, and a trailing edge extending between a tip and a root. The rotor blade further defines a span and a chord. The rotor blade includes a skin layer that includes the exterior surfaces. The rotor blade assembly further includes a passive spoiler assembly operable to alter a flow past an exterior surface of the rotor blade. The spoiler assembly includes a spoiler feature movable between a non-deployed position and a deployed position. Movement of the spoiler feature from the non-deployed position to the deployed position is caused by a change in an applied force to the spoiler feature by the skin layer.




de

Wind turbine rotor and method of calibrating rotor blade pitch

A wind turbine rotor includes a hub with a rotor blade mounted to a bearing of the hub wherein the rotor blade has a longitudinal axis extending in a radial direction relative to an axis of rotation of the hub, and the rotor blade is rotatable about its longitudinal axis whereby the pitch of the rotor blade is adjustable. The rotor blade has a tag such as an RFID tag fixed on the rotor blade at a predetermined angular position about the longitudinal axis of the rotor blade; and a sensor is fixed on the hub for contactless sensing of the tag when the tag is in a predetermined angular position about the longitudinal axis of the rotor blade. Repeated and accurate calibration of rotor blade pitch is hereby made possible.




de

Blade for a turbine operating in water

A blade for use in water, the blade comprising an outer shell of fiber reinforced plastic defining a cavity. A substantial portion of the cavity is filled with a resin which adheres to the inner wall of the shell.




de

Propulsion device using fluid flow

A propulsion device using fluid flow quickly discharges the vortex flow generated on an upper surface of the propulsion device to the outside to improve the propulsion and thrust of transportation means provided with the propulsion device. For this purpose, the propulsion device includes a fluid storage unit in which a downwardly curved fluid storage surface is formed between a first inlet line and a first outlet line such that a fluid storage space is formed on the fluid storage surface. A fluid flow unit in which a downwardly curved fluid flow surface is formed between a second inlet line and a second outlet line which are outwardly and backwardly inclined such that a fluid flow space is formed on the fluid flow surface. The-fluid flow surface adjacent to the second outlet line becomes gradually flattened as it extends outwardly.




de

Wind turbines and wind turbine rotor blades with reduced radar cross sections

Wind turbine rotor blades include a shell having a leading edge opposite a trailing edge, a structural support member that supports the shell and is disposed internal the wind turbine rotor blade between the leading edge and the trailing edge and extends for at least a portion of a rotor blade span length, and a resistive cellular support structure disposed at least partially about the wind turbine rotor blade that physically supports at least a portion of the wind turbine rotor blade and at least partially absorbs radar energy.




de

Wind turbines and wind turbine rotor blades with reduced radar cross sections

Wind turbine rotor blades with a reduced radar cross sections include a shell having a leading edge opposite a trailing edge, a structural support member that supports the shell and is disposed internal the wind turbine rotor blade between the leading edge and the trailing edge and extends for at least a portion of a rotor blade span length, wherein the structural support member comprises fiberglass, one or more cavities internal the wind turbine rotor blade, and a lightweight broadband radar absorbing filler material disposed in at least one of the one or more cavities to provide the reduced radar cross section.




de

Turbomachine blade or vane having complementary asymmetrical geometry

A turbomachine blade or vane is made of composite material including fiber reinforcement obtained by three-dimensional weaving of yarns and densified by a matrix. The blade or vane includes a first portion constituting at least an airfoil exhibiting two faces each connecting a leading edge to a trailing edge, the first portion forming a single part with at least one second portion present only on one of the faces of the airfoil, the second portion constituting a portion of at least one of the following elements: a flowpath delimiting outer portion of an inner platform, an inner portion of an inner platform, a flowpath delimiting inner portion of an outer platform, and an outer portion of an outer platform, the portions of the fiber reinforcement corresponding to the first and the second portions of the blade being at least partially mutually imbricated, with yarns of the first portion of the fiber reinforcement penetrating into the second portion of the fiber reinforcement.




de

Seal assembly including grooves in a radially outwardly facing side of a platform in a gas turbine engine

A seal assembly between a disc cavity and a turbine section hot gas path includes a stationary vane assembly and a rotating blade assembly downstream from the vane assembly and including a plurality of blades that are supported on a platform and rotate with a turbine rotor and the platform during operation of the engine. The platform includes a radially outwardly facing first surface, a radially inwardly facing second surface, a third surface, and a plurality of grooves extending into the third surface. The grooves are arranged such that a space is defined between adjacent grooves. During operation of the engine, the grooves guide purge air out of the disc cavity toward the hot gas path such that the purge air flows in a desired direction with reference to a direction of hot gas flow through the hot gas path.




de

Control of wind turbine blade lift regulating means

The invention involves a wind turbine comprising at least one blade (5) in turn comprising a blade body (501), lift-regulating means (502) adapted for movement in relation to the blade body (501) so as to regulate the lift of the blade, and load sensing means (5022, 506) for determining a load acting on the lift-regulating means (502), the wind turbine further comprising an actuation control unit (6) adapted to control the movement of the lift-regulating means (502) based on output from the load sensing means (5022, 506). In addition to output from the load sensing means (5022, 506), the actuation control unit (6) is adapted to control the movement of the lift-regulating means (502) based on the movement of the lift-regulating means (502).




de

Wind turbine blade

The invention relates to a wind turbine blade with at least one control surface and an actuator inside the main body of the wind turbine blade for moving the control surface, wherein the actuator comprises a fluidic muscle, a controller and a pump, and wherein the fluidic muscle is adapted to change in length and width when the pressure of the fluid within the fluidic muscle is varied.




de

Blade-pitch control system with feedback lever

The present application includes a blade-pitch control system for controlling a pitch angle of each of a plurality of blades on an aircraft rotor. A feedback lever associated with each blade is pivotally mounted to the rotating portion of a swashplate assembly. A pitch link connects an output arm of a lever to a pitch horn of a corresponding blade, and a feedback link connects the input arm of the lever to a yoke. Flapping motion of the yoke causes motion of the feedback link, and this motion causes corresponding rotation of the lever. Rotation of the lever causes motion of the pitch link, which changes the pitch angle of the attached blade. This provides for selected pitch-flap coupling between flapping motion of the yoke and pitch motion of the blades.




de

Retention device for a composite blade of a gas turbine engine

A liner for a composite blade of a gas turbine engine includes a metallic shoe, operable substantially to encase a blade root of a composite blade and defining an inner surface and an outer surface. The liner also includes a retention lug formed on the shoe and has inner and outer keys that project from opposed portions of the inner and outer surfaces. The keys engage corresponding recesses on a dovetail slot and a blade root to resist axial displacement of the composite blade.




de

Winglet for a wind turbine rotor blade

A winglet for a rotor blade is disclosed. The winglet may generally include a winglet body extending between a first end and a second end. The winglet body may define a sweep and may have a curvature defined by a curve fit including a first radius of curvature and a second radius of curvature. The sweep between the first end and the second end may range from about 580 millimeters to about 970 millimeters. Additionally, the first radius of curvature may range from about 1500 millimeters to about 2500 millimeters and the second radius of curvature may range from about 1200 millimeters to about 2000 millimeters.




de

Wind turbine blade and method for manufacturing a wind turbine blade with vortex generators

A wind turbine for generating electrical energy may include a wind turbine blade including a plurality of vortex generators integrally formed in the outer surface of the blade. The vortex generator includes a first component that defines a portion of the outer surface of the blade and a second component defining the shape of the vortex generator and at least partially surrounded by the first component. A method of manufacturing the wind turbine blade includes disposing a first plurality of layers of structural material over a mold main body and a removable insert member with a shaped cavity. A shaped plug is then pressed into the shaped cavity, and a second plurality of layers of structural material is disposed over the plug and the mold main body to complete manufacture of a wind turbine blade with a vortex generator.




de

Blade skirt

A blade of a gas turbine engine is provided having an airfoil, a platform, a shank, a dovetail, and a skirt. The airfoil may extend distally from the platform, and the shank may extend proximally from the platform. The dovetail may also be provided to extend proximally from the shank. The skirt may be disposed on an aft side of the shank and may extend from the shank in a direction at least partially axially aft from the shank.




de

Wind turbine blade with lightning protection system

A wind turbine blade with a lightning protection for a blade with a shell body has at least one lightning receptor arranged freely accessible in or on a surface of the shell body surface, and a lightning down conductor electrically connected to the lightning receptor and comprising an inner conductor made of electrically conductive material imbedded in a bedding insulation made of an electrically non-conductive material. The lightning down conductor further includes a first conductive layer having a resistance in the range of 10 to 10,000 Mega Ohm per meter (MΩ/m). The first conductive layer is located in a transverse distance from the inner conductor and being electrically isolated from the inner conductor.




de

Cooled turbine blade and method for cooling a turbine blade

A cooled turbine blade comprises a root for fixing the blade to rotor, an airfoil extending along a radial axis from the root, and a tip shroud disposed at a radially outward end of the airfoil. The tip shroud extends in a circumferential direction from the airfoil and defines, within itself, a core plenum and a peripheral plenum. The airfoil defines an aft airfoil cooling passage that extends radially through the airfoil proximate a trailing edge portion of the airfoil. The airfoil also defines an aft cooling inlet for providing an aft stream of cooling fluid to the aft airfoil cooling passage. The airfoil also defines at least one aft cooling exit for discharging the aft stream of cooling fluid from the aft airflow cooling passage to the peripheral plenum. The tip shroud defines at least one peripheral plenum vent for discharging the aft stream of cooling fluid.