ca Spatio-temporal short-term wind forecast: A calibrated regime-switching method By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Ahmed Aziz Ezzat, Mikyoung Jun, Yu Ding. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1484--1510.Abstract: Accurate short-term forecasts are indispensable for the integration of wind energy in power grids. On a wind farm, local wind conditions exhibit sizeable variations at a fine temporal resolution. Existing statistical models may capture the in-sample variations in wind behavior, but are often shortsighted to those occurring in the near future, that is, in the forecast horizon. The calibrated regime-switching method proposed in this paper introduces an action of regime dependent calibration on the predictand (here the wind speed variable), which helps correct the bias resulting from out-of-sample variations in wind behavior. This is achieved by modeling the calibration as a function of two elements: the wind regime at the time of the forecast (and the calibration is therefore regime dependent), and the runlength, which is the time elapsed since the last observed regime change. In addition to regime-switching dynamics, the proposed model also accounts for other features of wind fields: spatio-temporal dependencies, transport effect of wind and nonstationarity. Using one year of turbine-specific wind data, we show that the calibrated regime-switching method can offer a wide margin of improvement over existing forecasting methods in terms of both wind speed and power. Full Article
ca The classification permutation test: A flexible approach to testing for covariate imbalance in observational studies By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Johann Gagnon-Bartsch, Yotam Shem-Tov. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1464--1483.Abstract: The gold standard for identifying causal relationships is a randomized controlled experiment. In many applications in the social sciences and medicine, the researcher does not control the assignment mechanism and instead may rely upon natural experiments or matching methods as a substitute to experimental randomization. The standard testable implication of random assignment is covariate balance between the treated and control units. Covariate balance is commonly used to validate the claim of as good as random assignment. We propose a new nonparametric test of covariate balance. Our Classification Permutation Test (CPT) is based on a combination of classification methods (e.g., random forests) with Fisherian permutation inference. We revisit four real data examples and present Monte Carlo power simulations to demonstrate the applicability of the CPT relative to other nonparametric tests of equality of multivariate distributions. Full Article
ca Identifying multiple changes for a functional data sequence with application to freeway traffic segmentation By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Jeng-Min Chiou, Yu-Ting Chen, Tailen Hsing. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1430--1463.Abstract: Motivated by the study of road segmentation partitioned by shifts in traffic conditions along a freeway, we introduce a two-stage procedure, Dynamic Segmentation and Backward Elimination (DSBE), for identifying multiple changes in the mean functions for a sequence of functional data. The Dynamic Segmentation procedure searches for all possible changepoints using the derived global optimality criterion coupled with the local strategy of at-most-one-changepoint by dividing the entire sequence into individual subsequences that are recursively adjusted until convergence. Then, the Backward Elimination procedure verifies these changepoints by iteratively testing the unlikely changes to ensure their significance until no more changepoints can be removed. By combining the local strategy with the global optimal changepoint criterion, the DSBE algorithm is conceptually simple and easy to implement and performs better than the binary segmentation-based approach at detecting small multiple changes. The consistency property of the changepoint estimators and the convergence of the algorithm are proved. We apply DSBE to detect changes in traffic streams through real freeway traffic data. The practical performance of DSBE is also investigated through intensive simulation studies for various scenarios. Full Article
ca Imputation and post-selection inference in models with missing data: An application to colorectal cancer surveillance guidelines By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Lin Liu, Yuqi Qiu, Loki Natarajan, Karen Messer. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1370--1396.Abstract: It is common to encounter missing data among the potential predictor variables in the setting of model selection. For example, in a recent study we attempted to improve the US guidelines for risk stratification after screening colonoscopy ( Cancer Causes Control 27 (2016) 1175–1185), with the aim to help reduce both overuse and underuse of follow-on surveillance colonoscopy. The goal was to incorporate selected additional informative variables into a neoplasia risk-prediction model, going beyond the three currently established risk factors, using a large dataset pooled from seven different prospective studies in North America. Unfortunately, not all candidate variables were collected in all studies, so that one or more important potential predictors were missing on over half of the subjects. Thus, while variable selection was a main focus of the study, it was necessary to address the substantial amount of missing data. Multiple imputation can effectively address missing data, and there are also good approaches to incorporate the variable selection process into model-based confidence intervals. However, there is not consensus on appropriate methods of inference which address both issues simultaneously. Our goal here is to study the properties of model-based confidence intervals in the setting of imputation for missing data followed by variable selection. We use both simulation and theory to compare three approaches to such post-imputation-selection inference: a multiple-imputation approach based on Rubin’s Rules for variance estimation ( Comput. Statist. Data Anal. 71 (2014) 758–770); a single imputation-selection followed by bootstrap percentile confidence intervals; and a new bootstrap model-averaging approach presented here, following Efron ( J. Amer. Statist. Assoc. 109 (2014) 991–1007). We investigate relative strengths and weaknesses of each method. The “Rubin’s Rules” multiple imputation estimator can have severe undercoverage, and is not recommended. The imputation-selection estimator with bootstrap percentile confidence intervals works well. The bootstrap-model-averaged estimator, with the “Efron’s Rules” estimated variance, may be preferred if the true effect sizes are moderate. We apply these results to the colorectal neoplasia risk-prediction problem which motivated the present work. Full Article
ca Local law and Tracy–Widom limit for sparse stochastic block models By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Jong Yun Hwang, Ji Oon Lee, Wooseok Yang. Source: Bernoulli, Volume 26, Number 3, 2400--2435.Abstract: We consider the spectral properties of sparse stochastic block models, where $N$ vertices are partitioned into $K$ balanced communities. Under an assumption that the intra-community probability and inter-community probability are of similar order, we prove a local semicircle law up to the spectral edges, with an explicit formula on the deterministic shift of the spectral edge. We also prove that the fluctuation of the extremal eigenvalues is given by the GOE Tracy–Widom law after rescaling and centering the entries of sparse stochastic block models. Applying the result to sparse stochastic block models, we rigorously prove that there is a large gap between the outliers and the spectral edge without centering. Full Article
ca A refined Cramér-type moderate deviation for sums of local statistics By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Xiao Fang, Li Luo, Qi-Man Shao. Source: Bernoulli, Volume 26, Number 3, 2319--2352.Abstract: We prove a refined Cramér-type moderate deviation result by taking into account of the skewness in normal approximation for sums of local statistics of independent random variables. We apply the main result to $k$-runs, U-statistics and subgraph counts in the Erdős–Rényi random graph. To prove our main result, we develop exponential concentration inequalities and higher-order tail probability expansions via Stein’s method. Full Article
ca Convergence of persistence diagrams for topological crackle By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Takashi Owada, Omer Bobrowski. Source: Bernoulli, Volume 26, Number 3, 2275--2310.Abstract: In this paper, we study the persistent homology associated with topological crackle generated by distributions with an unbounded support. Persistent homology is a topological and algebraic structure that tracks the creation and destruction of topological cycles (generalizations of loops or holes) in different dimensions. Topological crackle is a term that refers to topological cycles generated by random points far away from the bulk of other points, when the support is unbounded. We establish weak convergence results for persistence diagrams – a point process representation for persistent homology, where each topological cycle is represented by its $({mathit{birth},mathit{death}})$ coordinates. In this work, we treat persistence diagrams as random closed sets, so that the resulting weak convergence is defined in terms of the Fell topology. Using this framework, we show that the limiting persistence diagrams can be divided into two parts. The first part is a deterministic limit containing a densely-growing number of persistence pairs with a shorter lifespan. The second part is a two-dimensional Poisson process, representing persistence pairs with a longer lifespan. Full Article
ca Scaling limits for super-replication with transient price impact By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Peter Bank, Yan Dolinsky. Source: Bernoulli, Volume 26, Number 3, 2176--2201.Abstract: We prove a scaling limit theorem for the super-replication cost of options in a Cox–Ross–Rubinstein binomial model with transient price impact. The correct scaling turns out to keep the market depth parameter constant while resilience over fixed periods of time grows in inverse proportion with the duration between trading times. For vanilla options, the scaling limit is found to coincide with the one obtained by PDE-methods in ( Math. Finance 22 (2012) 250–276) for models with purely temporary price impact. These models are a special case of our framework and so our probabilistic scaling limit argument allows one to expand the scope of the scaling limit result to path-dependent options. Full Article
ca Directional differentiability for supremum-type functionals: Statistical applications By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Javier Cárcamo, Antonio Cuevas, Luis-Alberto Rodríguez. Source: Bernoulli, Volume 26, Number 3, 2143--2175.Abstract: We show that various functionals related to the supremum of a real function defined on an arbitrary set or a measure space are Hadamard directionally differentiable. We specifically consider the supremum norm, the supremum, the infimum, and the amplitude of a function. The (usually non-linear) derivatives of these maps adopt simple expressions under suitable assumptions on the underlying space. As an application, we improve and extend to the multidimensional case the results in Raghavachari ( Ann. Statist. 1 (1973) 67–73) regarding the limiting distributions of Kolmogorov–Smirnov type statistics under the alternative hypothesis. Similar results are obtained for analogous statistics associated with copulas. We additionally solve an open problem about the Berk–Jones statistic proposed by Jager and Wellner (In A Festschrift for Herman Rubin (2004) 319–331 IMS). Finally, the asymptotic distribution of maximum mean discrepancies over Donsker classes of functions is derived. Full Article
ca Noncommutative Lebesgue decomposition and contiguity with applications in quantum statistics By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Akio Fujiwara, Koichi Yamagata. Source: Bernoulli, Volume 26, Number 3, 2105--2142.Abstract: We herein develop a theory of contiguity in the quantum domain based upon a novel quantum analogue of the Lebesgue decomposition. The theory thus formulated is pertinent to the weak quantum local asymptotic normality introduced in the previous paper [Yamagata, Fujiwara, and Gill, Ann. Statist. 41 (2013) 2197–2217], yielding substantial enlargement of the scope of quantum statistics. Full Article
ca On sampling from a log-concave density using kinetic Langevin diffusions By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Arnak S. Dalalyan, Lionel Riou-Durand. Source: Bernoulli, Volume 26, Number 3, 1956--1988.Abstract: Langevin diffusion processes and their discretizations are often used for sampling from a target density. The most convenient framework for assessing the quality of such a sampling scheme corresponds to smooth and strongly log-concave densities defined on $mathbb{R}^{p}$. The present work focuses on this framework and studies the behavior of the Monte Carlo algorithm based on discretizations of the kinetic Langevin diffusion. We first prove the geometric mixing property of the kinetic Langevin diffusion with a mixing rate that is optimal in terms of its dependence on the condition number. We then use this result for obtaining improved guarantees of sampling using the kinetic Langevin Monte Carlo method, when the quality of sampling is measured by the Wasserstein distance. We also consider the situation where the Hessian of the log-density of the target distribution is Lipschitz-continuous. In this case, we introduce a new discretization of the kinetic Langevin diffusion and prove that this leads to a substantial improvement of the upper bound on the sampling error measured in Wasserstein distance. Full Article
ca Functional weak limit theorem for a local empirical process of non-stationary time series and its application By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Ulrike Mayer, Henryk Zähle, Zhou Zhou. Source: Bernoulli, Volume 26, Number 3, 1891--1911.Abstract: We derive a functional weak limit theorem for a local empirical process of a wide class of piece-wise locally stationary (PLS) time series. The latter result is applied to derive the asymptotics of weighted empirical quantiles and weighted V-statistics of non-stationary time series. The class of admissible underlying time series is illustrated by means of PLS linear processes and PLS ARCH processes. Full Article
ca Logarithmic Sobolev inequalities for finite spin systems and applications By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Holger Sambale, Arthur Sinulis. Source: Bernoulli, Volume 26, Number 3, 1863--1890.Abstract: We derive sufficient conditions for a probability measure on a finite product space (a spin system ) to satisfy a (modified) logarithmic Sobolev inequality. We establish these conditions for various examples, such as the (vertex-weighted) exponential random graph model, the random coloring and the hard-core model with fugacity. This leads to two separate branches of applications. The first branch is given by mixing time estimates of the Glauber dynamics. The proofs do not rely on coupling arguments, but instead use functional inequalities. As a byproduct, this also yields exponential decay of the relative entropy along the Glauber semigroup. Secondly, we investigate the concentration of measure phenomenon (particularly of higher order) for these spin systems. We show the effect of better concentration properties by centering not around the mean, but around a stochastic term in the exponential random graph model. From there, one can deduce a central limit theorem for the number of triangles from the CLT of the edge count. In the Erdős–Rényi model the first-order approximation leads to a quantification and a proof of a central limit theorem for subgraph counts. Full Article
ca Optimal functional supervised classification with separation condition By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Sébastien Gadat, Sébastien Gerchinovitz, Clément Marteau. Source: Bernoulli, Volume 26, Number 3, 1797--1831.Abstract: We consider the binary supervised classification problem with the Gaussian functional model introduced in ( Math. Methods Statist. 22 (2013) 213–225). Taking advantage of the Gaussian structure, we design a natural plug-in classifier and derive a family of upper bounds on its worst-case excess risk over Sobolev spaces. These bounds are parametrized by a separation distance quantifying the difficulty of the problem, and are proved to be optimal (up to logarithmic factors) through matching minimax lower bounds. Using the recent works of (In Advances in Neural Information Processing Systems (2014) 3437–3445 Curran Associates) and ( Ann. Statist. 44 (2016) 982–1009), we also derive a logarithmic lower bound showing that the popular $k$-nearest neighbors classifier is far from optimality in this specific functional setting. Full Article
ca Local differential privacy: Elbow effect in optimal density estimation and adaptation over Besov ellipsoids By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Cristina Butucea, Amandine Dubois, Martin Kroll, Adrien Saumard. Source: Bernoulli, Volume 26, Number 3, 1727--1764.Abstract: We address the problem of non-parametric density estimation under the additional constraint that only privatised data are allowed to be published and available for inference. For this purpose, we adopt a recent generalisation of classical minimax theory to the framework of local $alpha$-differential privacy and provide a lower bound on the rate of convergence over Besov spaces $mathcal{B}^{s}_{pq}$ under mean integrated $mathbb{L}^{r}$-risk. This lower bound is deteriorated compared to the standard setup without privacy, and reveals a twofold elbow effect. In order to fulfill the privacy requirement, we suggest adding suitably scaled Laplace noise to empirical wavelet coefficients. Upper bounds within (at most) a logarithmic factor are derived under the assumption that $alpha$ stays bounded as $n$ increases: A linear but non-adaptive wavelet estimator is shown to attain the lower bound whenever $pgeq r$ but provides a slower rate of convergence otherwise. An adaptive non-linear wavelet estimator with appropriately chosen smoothing parameters and thresholding is shown to attain the lower bound within a logarithmic factor for all cases. Full Article
ca Random orthogonal matrices and the Cayley transform By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Michael Jauch, Peter D. Hoff, David B. Dunson. Source: Bernoulli, Volume 26, Number 2, 1560--1586.Abstract: Random orthogonal matrices play an important role in probability and statistics, arising in multivariate analysis, directional statistics, and models of physical systems, among other areas. Calculations involving random orthogonal matrices are complicated by their constrained support. Accordingly, we parametrize the Stiefel and Grassmann manifolds, represented as subsets of orthogonal matrices, in terms of Euclidean parameters using the Cayley transform. We derive the necessary Jacobian terms for change of variables formulas. Given a density defined on the Stiefel or Grassmann manifold, these allow us to specify the corresponding density for the Euclidean parameters, and vice versa. As an application, we present a Markov chain Monte Carlo approach to simulating from distributions on the Stiefel and Grassmann manifolds. Finally, we establish that the Euclidean parameters corresponding to a uniform orthogonal matrix can be approximated asymptotically by independent normals. This result contributes to the growing literature on normal approximations to the entries of random orthogonal matrices or transformations thereof. Full Article
ca On the probability distribution of the local times of diagonally operator-self-similar Gaussian fields with stationary increments By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Kamran Kalbasi, Thomas Mountford. Source: Bernoulli, Volume 26, Number 2, 1504--1534.Abstract: In this paper, we study the local times of vector-valued Gaussian fields that are ‘diagonally operator-self-similar’ and whose increments are stationary. Denoting the local time of such a Gaussian field around the spatial origin and over the temporal unit hypercube by $Z$, we show that there exists $lambdain(0,1)$ such that under some quite weak conditions, $lim_{n ightarrow+infty}frac{sqrt[n]{mathbb{E}(Z^{n})}}{n^{lambda}}$ and $lim_{x ightarrow+infty}frac{-logmathbb{P}(Z>x)}{x^{frac{1}{lambda}}}$ both exist and are strictly positive (possibly $+infty$). Moreover, we show that if the underlying Gaussian field is ‘strongly locally nondeterministic’, the above limits will be finite as well. These results are then applied to establish similar statements for the intersection local times of diagonally operator-self-similar Gaussian fields with stationary increments. Full Article
ca A new McKean–Vlasov stochastic interpretation of the parabolic–parabolic Keller–Segel model: The one-dimensional case By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Denis Talay, Milica Tomašević. Source: Bernoulli, Volume 26, Number 2, 1323--1353.Abstract: In this paper, we analyze a stochastic interpretation of the one-dimensional parabolic–parabolic Keller–Segel system without cut-off. It involves an original type of McKean–Vlasov interaction kernel. At the particle level, each particle interacts with all the past of each other particle by means of a time integrated functional involving a singular kernel. At the mean-field level studied here, the McKean–Vlasov limit process interacts with all the past time marginals of its probability distribution in a similarly singular way. We prove that the parabolic–parabolic Keller–Segel system in the whole Euclidean space and the corresponding McKean–Vlasov stochastic differential equation are well-posed for any values of the parameters of the model. Full Article
ca Interacting reinforced stochastic processes: Statistical inference based on the weighted empirical means By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Giacomo Aletti, Irene Crimaldi, Andrea Ghiglietti. Source: Bernoulli, Volume 26, Number 2, 1098--1138.Abstract: This work deals with a system of interacting reinforced stochastic processes , where each process $X^{j}=(X_{n,j})_{n}$ is located at a vertex $j$ of a finite weighted directed graph, and it can be interpreted as the sequence of “actions” adopted by an agent $j$ of the network. The interaction among the dynamics of these processes depends on the weighted adjacency matrix $W$ associated to the underlying graph: indeed, the probability that an agent $j$ chooses a certain action depends on its personal “inclination” $Z_{n,j}$ and on the inclinations $Z_{n,h}$, with $h eq j$, of the other agents according to the entries of $W$. The best known example of reinforced stochastic process is the Pólya urn. The present paper focuses on the weighted empirical means $N_{n,j}=sum_{k=1}^{n}q_{n,k}X_{k,j}$, since, for example, the current experience is more important than the past one in reinforced learning. Their almost sure synchronization and some central limit theorems in the sense of stable convergence are proven. The new approach with weighted means highlights the key points in proving some recent results for the personal inclinations $Z^{j}=(Z_{n,j})_{n}$ and for the empirical means $overline{X}^{j}=(sum_{k=1}^{n}X_{k,j}/n)_{n}$ given in recent papers (e.g. Aletti, Crimaldi and Ghiglietti (2019), Ann. Appl. Probab. 27 (2017) 3787–3844, Crimaldi et al. Stochastic Process. Appl. 129 (2019) 70–101). In fact, with a more sophisticated decomposition of the considered processes, we can understand how the different convergence rates of the involved stochastic processes combine. From an application point of view, we provide confidence intervals for the common limit inclination of the agents and a test statistics to make inference on the matrix $W$, based on the weighted empirical means. In particular, we answer a research question posed in Aletti, Crimaldi and Ghiglietti (2019). Full Article
ca A Bayesian nonparametric approach to log-concave density estimation By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Ester Mariucci, Kolyan Ray, Botond Szabó. Source: Bernoulli, Volume 26, Number 2, 1070--1097.Abstract: The estimation of a log-concave density on $mathbb{R}$ is a canonical problem in the area of shape-constrained nonparametric inference. We present a Bayesian nonparametric approach to this problem based on an exponentiated Dirichlet process mixture prior and show that the posterior distribution converges to the log-concave truth at the (near-) minimax rate in Hellinger distance. Our proof proceeds by establishing a general contraction result based on the log-concave maximum likelihood estimator that prevents the need for further metric entropy calculations. We further present computationally more feasible approximations and both an empirical and hierarchical Bayes approach. All priors are illustrated numerically via simulations. Full Article
ca Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Jing Lei. Source: Bernoulli, Volume 26, Number 1, 767--798.Abstract: We provide upper bounds of the expected Wasserstein distance between a probability measure and its empirical version, generalizing recent results for finite dimensional Euclidean spaces and bounded functional spaces. Such a generalization can cover Euclidean spaces with large dimensionality, with the optimal dependence on the dimensionality. Our method also covers the important case of Gaussian processes in separable Hilbert spaces, with rate-optimal upper bounds for functional data distributions whose coordinates decay geometrically or polynomially. Moreover, our bounds of the expected value can be combined with mean-concentration results to yield improved exponential tail probability bounds for the Wasserstein error of empirical measures under Bernstein-type or log Sobolev-type conditions. Full Article
ca Robust modifications of U-statistics and applications to covariance estimation problems By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Stanislav Minsker, Xiaohan Wei. Source: Bernoulli, Volume 26, Number 1, 694--727.Abstract: Let $Y$ be a $d$-dimensional random vector with unknown mean $mu $ and covariance matrix $Sigma $. This paper is motivated by the problem of designing an estimator of $Sigma $ that admits exponential deviation bounds in the operator norm under minimal assumptions on the underlying distribution, such as existence of only 4th moments of the coordinates of $Y$. To address this problem, we propose robust modifications of the operator-valued U-statistics, obtain non-asymptotic guarantees for their performance, and demonstrate the implications of these results to the covariance estimation problem under various structural assumptions. Full Article
ca A unified approach to coupling SDEs driven by Lévy noise and some applications By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Mingjie Liang, René L. Schilling, Jian Wang. Source: Bernoulli, Volume 26, Number 1, 664--693.Abstract: We present a general method to construct couplings of stochastic differential equations driven by Lévy noise in terms of coupling operators. This approach covers both coupling by reflection and refined basic coupling which are often discussed in the literature. As applications, we prove regularity results for the transition semigroups and obtain successful couplings for the solutions to stochastic differential equations driven by additive Lévy noise. Full Article
ca Normal approximation for sums of weighted $U$-statistics – application to Kolmogorov bounds in random subgraph counting By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Nicolas Privault, Grzegorz Serafin. Source: Bernoulli, Volume 26, Number 1, 587--615.Abstract: We derive normal approximation bounds in the Kolmogorov distance for sums of discrete multiple integrals and weighted $U$-statistics made of independent Bernoulli random variables. Such bounds are applied to normal approximation for the renormalized subgraph counts in the Erdős–Rényi random graph. This approach completely solves a long-standing conjecture in the general setting of arbitrary graph counting, while recovering recent results obtained for triangles and improving other bounds in the Wasserstein distance. Full Article
ca Consistent semiparametric estimators for recurrent event times models with application to virtual age models By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Eric Beutner, Laurent Bordes, Laurent Doyen. Source: Bernoulli, Volume 26, Number 1, 557--586.Abstract: Virtual age models are very useful to analyse recurrent events. Among the strengths of these models is their ability to account for treatment (or intervention) effects after an event occurrence. Despite their flexibility for modeling recurrent events, the number of applications is limited. This seems to be a result of the fact that in the semiparametric setting all the existing results assume the virtual age function that describes the treatment (or intervention) effects to be known. This shortcoming can be overcome by considering semiparametric virtual age models with parametrically specified virtual age functions. Yet, fitting such a model is a difficult task. Indeed, it has recently been shown that for these models the standard profile likelihood method fails to lead to consistent estimators. Here we show that consistent estimators can be constructed by smoothing the profile log-likelihood function appropriately. We show that our general result can be applied to most of the relevant virtual age models of the literature. Our approach shows that empirical process techniques may be a worthwhile alternative to martingale methods for studying asymptotic properties of these inference methods. A simulation study is provided to illustrate our consistency results together with an application to real data. Full Article
ca Operator-scaling Gaussian random fields via aggregation By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Yi Shen, Yizao Wang. Source: Bernoulli, Volume 26, Number 1, 500--530.Abstract: We propose an aggregated random-field model, and investigate the scaling limits of the aggregated partial-sum random fields. In this model, each copy in the aggregation is a $pm 1$-valued random field built from two correlated one-dimensional random walks, the law of each determined by a random persistence parameter. A flexible joint distribution of the two parameters is introduced, and given the parameters the two correlated random walks are conditionally independent. For the aggregated random field, when the persistence parameters are independent, the scaling limit is a fractional Brownian sheet. When the persistence parameters are tail-dependent, characterized in the framework of multivariate regular variation, the scaling limit is more delicate, and in particular depends on the growth rates of the underlying rectangular region along two directions: at different rates different operator-scaling Gaussian random fields appear as the region area tends to infinity. In particular, at the so-called critical speed, a large family of Gaussian random fields with long-range dependence arise in the limit. We also identify four different regimes at non-critical speed where fractional Brownian sheets arise in the limit. Full Article
ca Subspace perspective on canonical correlation analysis: Dimension reduction and minimax rates By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Zhuang Ma, Xiaodong Li. Source: Bernoulli, Volume 26, Number 1, 432--470.Abstract: Canonical correlation analysis (CCA) is a fundamental statistical tool for exploring the correlation structure between two sets of random variables. In this paper, motivated by the recent success of applying CCA to learn low dimensional representations of high dimensional objects, we propose two losses based on the principal angles between the model spaces spanned by the sample canonical variates and their population correspondents, respectively. We further characterize the non-asymptotic error bounds for the estimation risks under the proposed error metrics, which reveal how the performance of sample CCA depends adaptively on key quantities including the dimensions, the sample size, the condition number of the covariance matrices and particularly the population canonical correlation coefficients. The optimality of our uniform upper bounds is also justified by lower-bound analysis based on stringent and localized parameter spaces. To the best of our knowledge, for the first time our paper separates $p_{1}$ and $p_{2}$ for the first order term in the upper bounds without assuming the residual correlations are zeros. More significantly, our paper derives $(1-lambda_{k}^{2})(1-lambda_{k+1}^{2})/(lambda_{k}-lambda_{k+1})^{2}$ for the first time in the non-asymptotic CCA estimation convergence rates, which is essential to understand the behavior of CCA when the leading canonical correlation coefficients are close to $1$. Full Article
ca High dimensional deformed rectangular matrices with applications in matrix denoising By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Xiucai Ding. Source: Bernoulli, Volume 26, Number 1, 387--417.Abstract: We consider the recovery of a low rank $M imes N$ matrix $S$ from its noisy observation $ ilde{S}$ in the high dimensional framework when $M$ is comparable to $N$. We propose two efficient estimators for $S$ under two different regimes. Our analysis relies on the local asymptotics of the eigenstructure of large dimensional rectangular matrices with finite rank perturbation. We derive the convergent limits and rates for the singular values and vectors for such matrices. Full Article
ca A new method for obtaining sharp compound Poisson approximation error estimates for sums of locally dependent random variables By projecteuclid.org Published On :: Thu, 05 Aug 2010 15:41 EDT Michael V. Boutsikas, Eutichia VaggelatouSource: Bernoulli, Volume 16, Number 2, 301--330.Abstract: Let X 1 , X 2 , …, X n be a sequence of independent or locally dependent random variables taking values in ℤ + . In this paper, we derive sharp bounds, via a new probabilistic method, for the total variation distance between the distribution of the sum ∑ i =1 n X i and an appropriate Poisson or compound Poisson distribution. These bounds include a factor which depends on the smoothness of the approximating Poisson or compound Poisson distribution. This “smoothness factor” is of order O( σ −2 ), according to a heuristic argument, where σ 2 denotes the variance of the approximating distribution. In this way, we offer sharp error estimates for a large range of values of the parameters. Finally, specific examples concerning appearances of rare runs in sequences of Bernoulli trials are presented by way of illustration. Full Article
ca English given names : popularity, spelling variants, diminutives and abbreviations / by Carol Baxter. By www.catalog.slsa.sa.gov.au Published On :: Names, Personal -- England. Full Article
ca Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm. By www.catalog.slsa.sa.gov.au Published On :: Fuhlbohm (Family) Full Article
ca With a bottle of whisky in my hand : the family of James Grant and Isabella Masson / by Carolyn Cowgill. By www.catalog.slsa.sa.gov.au Published On :: Grant (Family) Full Article
ca Gordon of Huntly : heraldic heritage : cadets to South Australia / Robin Gregory Gordon. By www.catalog.slsa.sa.gov.au Published On :: South Australia -- Genealogy. Full Article
ca Welsh given names : popularity, spelling variants, diminutives and abbreviations / by Carol Baxter. By www.catalog.slsa.sa.gov.au Published On :: Names, Personal -- Welsh. Full Article
ca Scottish given names : popularity, spelling variants, diminutives and abbreviations / by Carol Baxter. By www.catalog.slsa.sa.gov.au Published On :: Names, Personal -- Scottish. Full Article
ca Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm. By www.catalog.slsa.sa.gov.au Published On :: Fuhlbohm (Family) Full Article
ca From Wends we came : the story of Johann and Maria Huppatz & their descendants / compiled by Frank Huppatz and Rone McDonnell. By www.catalog.slsa.sa.gov.au Published On :: Huppatz (Family). Full Article
ca How States, Assessment Companies Can Work Together Amid Coronavirus Testing Cancellations By marketbrief.edweek.org Published On :: Fri, 01 May 2020 15:17:53 +0000 Scott Marion, who consults states on testing, talks about why it's important for vendors and public officials to work cooperatively in renegotiating contracts amid assessment cancellations caused by COVID-19. The post How States, Assessment Companies Can Work Together Amid Coronavirus Testing Cancellations appeared first on Market Brief. Full Article Marketplace K-12 Assessments / Testing Business Strategy COVID-19 Procurement / Purchasing / RFPs
ca Calif. Ed-Tech Consortium Seeks Media Repository Solutions; Saint Paul District Needs Background Check Services By marketbrief.edweek.org Published On :: Fri, 08 May 2020 13:52:21 +0000 Saint Paul schools are in the market for a vendor to provide background checks, while the Education Technology Joint Powers Authority is seeking media repositories. A Texas district wants quotes on technology for new campuses. The post Calif. Ed-Tech Consortium Seeks Media Repository Solutions; Saint Paul District Needs Background Check Services appeared first on Market Brief. Full Article Purchasing Alert Background Checks Media Repository Procurement / Purchasing / RFPs Software / Hardware
ca Item 01: Captain Vernon Sturdee diary, 25 April, 1915 to 2 July, 1915 By feedproxy.google.com Published On :: 24/03/2015 9:27:01 AM Full Article
ca Item 02: Captain Vernon Sturdee diary, 3 September, 1915- 31 December, 1915 By feedproxy.google.com Published On :: 24/03/2015 9:46:43 AM Full Article
ca Item 03: Captain Vernon Sturdee diary, 22 September, 1915- 23 January, 1916 By feedproxy.google.com Published On :: 24/03/2015 9:49:53 AM Full Article
ca Item 07: A Journal of ye [the] Proceedings of his Majesty's Sloop Swallow, Captain Phillip [Philip] Carteret Commander, Commencing ye [the] 23 of July 1766 and ended [4 July 1767] By feedproxy.google.com Published On :: 5/05/2015 9:51:13 AM Full Article
ca Item 08: A Logg [Log] Book of the proceedings on Board His Majesty's Ship Swallow, Captain Philip Carteret Commander Commencing from the 20th August 1766 and Ending [21st May 1768] By feedproxy.google.com Published On :: 5/05/2015 12:19:15 PM Full Article
ca Item 10: Log book of the Swallow from 22 August 1767 to 4 June 1768 / by Philip Carteret By feedproxy.google.com Published On :: 5/05/2015 4:20:18 PM Full Article
ca Box 3: Children's book illustrations by various artists, Peg Maltby and Dorothy Wall, , ca. 1932-1975 By feedproxy.google.com Published On :: 8/05/2015 2:13:13 PM Full Article
ca Box 4: Children's book illustrations by various artists, Dorothy Wall, ca. 1932 By feedproxy.google.com Published On :: 8/05/2015 2:26:30 PM Full Article
ca Box 6: Children's book illustrations by various artists, Dorothy Wall and Noela Young, ca. 1932-1964 By feedproxy.google.com Published On :: 8/05/2015 2:37:07 PM Full Article
ca Volume 24 Item 04: William Thomas Manners and customs of Aborigines - Miscellaneous scraps, ca. 1858 By feedproxy.google.com Published On :: 27/05/2015 2:16:55 PM Full Article
ca Item 01: Notebooks (2) containing hand written copies of 123 letters from Major William Alan Audsley to his parents, ca. 1916-ca. 1919, transcribed by his father. Also includes original letters (2) written by Major Audsley. By feedproxy.google.com Published On :: 28/05/2015 11:00:09 AM Full Article