3

Peyronie's Disease (Curvature of the Penis)

Title: Peyronie's Disease (Curvature of the Penis)
Category: Diseases and Conditions
Created: 11/14/2002 12:00:00 AM
Last Editorial Review: 12/5/2019 12:00:00 AM




3

Testosterone Supplements Won't Help Most Men, Doctors' Group Says

Title: Testosterone Supplements Won't Help Most Men, Doctors' Group Says
Category: Health News
Created: 1/6/2020 12:00:00 AM
Last Editorial Review: 1/7/2020 12:00:00 AM




3

Don't Use Pricey New HIV PrEP Drug When Generics Available: Study

Title: Don't Use Pricey New HIV PrEP Drug When Generics Available: Study
Category: Health News
Created: 3/9/2020 12:00:00 AM
Last Editorial Review: 3/10/2020 12:00:00 AM




3

Second HIV Patient Reportedly 'Cured'

Title: Second HIV Patient Reportedly 'Cured'
Category: Health News
Created: 3/9/2020 12:00:00 AM
Last Editorial Review: 3/10/2020 12:00:00 AM




3

Vitamin D Might Aid Seniors' Recovery From Hip Fracture: Study

Title: Vitamin D Might Aid Seniors' Recovery From Hip Fracture: Study
Category: Health News
Created: 4/2/2020 12:00:00 AM
Last Editorial Review: 4/3/2020 12:00:00 AM




3

High-Tech Prosthetic Arm Melds With Patient's Anatomy

Title: High-Tech Prosthetic Arm Melds With Patient's Anatomy
Category: Health News
Created: 4/30/2020 12:00:00 AM
Last Editorial Review: 4/30/2020 12:00:00 AM




3

Did the Movie 'Joker' Reinforce Prejudice Against Mentally Ill?

Title: Did the Movie 'Joker' Reinforce Prejudice Against Mentally Ill?
Category: Health News
Created: 4/27/2020 12:00:00 AM
Last Editorial Review: 4/28/2020 12:00:00 AM




3

Religion Helps Protect Against 'Deaths of Despair': Study

Title: Religion Helps Protect Against 'Deaths of Despair': Study
Category: Health News
Created: 5/6/2020 12:00:00 AM
Last Editorial Review: 5/7/2020 12:00:00 AM




3

2 in 3 Women Unhappy With Their Breast Size. Could That Harm Their Health?

Title: 2 in 3 Women Unhappy With Their Breast Size. Could That Harm Their Health?
Category: Health News
Created: 2/6/2020 12:00:00 AM
Last Editorial Review: 2/6/2020 12:00:00 AM




3

AHA News: Being an African American 'Superwoman' Might Come With a Price

Title: AHA News: Being an African American 'Superwoman' Might Come With a Price
Category: Health News
Created: 2/11/2020 12:00:00 AM
Last Editorial Review: 2/12/2020 12:00:00 AM




3

'Couch Potato' Lifestyle Poses Danger to Women's Hearts

Title: 'Couch Potato' Lifestyle Poses Danger to Women's Hearts
Category: Health News
Created: 2/18/2020 12:00:00 AM
Last Editorial Review: 2/19/2020 12:00:00 AM




3

AHA News: Domestic Abuse May Do Long-Term Damage to Women's Health

Title: AHA News: Domestic Abuse May Do Long-Term Damage to Women's Health
Category: Health News
Created: 2/18/2020 12:00:00 AM
Last Editorial Review: 2/19/2020 12:00:00 AM




3

AHA News: Make Mother's Day Last All Year With Wellness and Appreciation

Title: AHA News: Make Mother's Day Last All Year With Wellness and Appreciation
Category: Health News
Created: 4/29/2020 12:00:00 AM
Last Editorial Review: 4/30/2020 12:00:00 AM




3

Could ED Drugs Threaten Men's Vision?

Title: Could ED Drugs Threaten Men's Vision?
Category: Health News
Created: 2/7/2020 12:00:00 AM
Last Editorial Review: 2/7/2020 12:00:00 AM




3

Allergy Med Singulair to Get 'Black Box' Warning Over Psych Side Effects: FDA

Title: Allergy Med Singulair to Get 'Black Box' Warning Over Psych Side Effects: FDA
Category: Health News
Created: 3/4/2020 12:00:00 AM
Last Editorial Review: 3/5/2020 12:00:00 AM




3

How Does Early Menopause Affect a Woman's Heart?

Title: How Does Early Menopause Affect a Woman's Heart?
Category: Health News
Created: 10/10/2019 12:00:00 AM
Last Editorial Review: 10/11/2019 12:00:00 AM




3

Pot Use Among U.S. Seniors Nearly Doubled in 3 Years

Title: Pot Use Among U.S. Seniors Nearly Doubled in 3 Years
Category: Health News
Created: 2/24/2020 12:00:00 AM
Last Editorial Review: 2/25/2020 12:00:00 AM




3

Therapy by Phone Helps Parkinson's Patients Manage Depression

Title: Therapy by Phone Helps Parkinson's Patients Manage Depression
Category: Health News
Created: 4/10/2020 12:00:00 AM
Last Editorial Review: 4/13/2020 12:00:00 AM




3

Long Periods in Space Alter Astronauts' Brains

Title: Long Periods in Space Alter Astronauts' Brains
Category: Health News
Created: 4/14/2020 12:00:00 AM
Last Editorial Review: 4/15/2020 12:00:00 AM




3

Welcome to the 'Smart Toilet' That Can Spot Disease

Title: Welcome to the 'Smart Toilet' That Can Spot Disease
Category: Health News
Created: 4/17/2020 12:00:00 AM
Last Editorial Review: 4/17/2020 12:00:00 AM




3

There's a Virus Spreading in U.S. That's Killed 10,000: The Flu

Title: There's a Virus Spreading in U.S. That's Killed 10,000: The Flu
Category: Health News
Created: 2/7/2020 12:00:00 AM
Last Editorial Review: 2/7/2020 12:00:00 AM




3

Were You Born in an H1N1 Flu Year or an H3N2? It Matters

Title: Were You Born in an H1N1 Flu Year or an H3N2? It Matters
Category: Health News
Created: 2/11/2020 12:00:00 AM
Last Editorial Review: 2/12/2020 12:00:00 AM




3

Flu Season That's Sickened 26 Million May Be at Its Peak

Title: Flu Season That's Sickened 26 Million May Be at Its Peak
Category: Health News
Created: 2/21/2020 12:00:00 AM
Last Editorial Review: 2/21/2020 12:00:00 AM




3

Is a 'Universal' Flu Vaccine on the Horizon?

Title: Is a 'Universal' Flu Vaccine on the Horizon?
Category: Health News
Created: 3/9/2020 12:00:00 AM
Last Editorial Review: 3/10/2020 12:00:00 AM




3

Is the 'Gratitude Movement' Overrated? Study Finds It Has Limits

Title: Is the 'Gratitude Movement' Overrated? Study Finds It Has Limits
Category: Health News
Created: 3/16/2020 12:00:00 AM
Last Editorial Review: 3/17/2020 12:00:00 AM




3

Magnetic Brain 'Zap' Shows Promise Against Severe Depression

Title: Magnetic Brain 'Zap' Shows Promise Against Severe Depression
Category: Health News
Created: 4/7/2020 12:00:00 AM
Last Editorial Review: 4/8/2020 12:00:00 AM




3

Unplugging From Social Media on Vacation? It's Tough at First

Title: Unplugging From Social Media on Vacation? It's Tough at First
Category: Health News
Created: 8/14/2019 12:00:00 AM
Last Editorial Review: 8/14/2019 12:00:00 AM




3

Some Cities' Smog Can Ruin Your Vacation

Title: Some Cities' Smog Can Ruin Your Vacation
Category: Health News
Created: 12/3/2019 12:00:00 AM
Last Editorial Review: 12/3/2019 12:00:00 AM




3

Restful Romance: Smelling Your Lover's Shirt Can Help You Sleep

Title: Restful Romance: Smelling Your Lover's Shirt Can Help You Sleep
Category: Health News
Created: 2/14/2020 12:00:00 AM
Last Editorial Review: 2/14/2020 12:00:00 AM




3

Get Ready for Clocks to 'Spring Ahead'

Title: Get Ready for Clocks to 'Spring Ahead'
Category: Health News
Created: 3/6/2020 12:00:00 AM
Last Editorial Review: 3/6/2020 12:00:00 AM




3

First Good Evidence That Brain Hits 'Replay' While You Sleep

Title: First Good Evidence That Brain Hits 'Replay' While You Sleep
Category: Health News
Created: 5/5/2020 12:00:00 AM
Last Editorial Review: 5/6/2020 12:00:00 AM




3

Identification of ALDH1A3 as a Viable Therapeutic Target in Breast Cancer Metastasis-Initiating Cells

The development of efficacious therapies targeting metastatic spread of breast cancer to the brain represents an unmet clinical need. Accordingly, an improved understanding of the molecular underpinnings of central nervous system spread and progression of breast cancer brain metastases (BCBM) is required. In this study, the clinical burden of disease in BCBM was investigated, as well as the role of aldehyde dehydrogenase 1A3 (ALDH1A3) in the metastatic cascade leading to BCBM development. Initial analysis of clinical survival trends for breast cancer and BCBM determined improvement of breast cancer survival rates; however, this has failed to positively affect the prognostic milestones of triple-negative breast cancer (TNBC) brain metastases (BM). ALDH1A3 and a representative epithelial–mesenchymal transition (EMT) gene signature (mesenchymal markers, CD44 or Vimentin) were compared in tumors derived from BM, lung metastases (LM), or bone metastases (BoM) of patients as well as mice after injection of TNBC cells. Selective elevation of the EMT signature and ALDH1A3 were observed in BM, unlike LM and BoM, especially in the tumor edge. Furthermore, ALDH1A3 was determined to play a role in BCBM establishment via regulation of circulating tumor cell adhesion and migration phases in the BCBM cascade. Validation through genetic and pharmacologic inhibition of ALDH1A3 via lentiviral shRNA knockdown and a novel small-molecule inhibitor demonstrated selective inhibition of BCBM formation with prolonged survival of tumor-bearing mice. Given the survival benefits via targeting ALDH1A3, it may prove an effective therapeutic strategy for BCBM prevention and/or treatment.




3

Pharmacologic Inhibitor of DNA-PK, M3814, Potentiates Radiotherapy and Regresses Human Tumors in Mouse Models

Physical and chemical DNA-damaging agents are used widely in the treatment of cancer. Double-strand break (DSB) lesions in DNA are the most deleterious form of damage and, if left unrepaired, can effectively kill cancer cells. DNA-dependent protein kinase (DNA-PK) is a critical component of nonhomologous end joining (NHEJ), one of the two major pathways for DSB repair. Although DNA-PK has been considered an attractive target for cancer therapy, the development of pharmacologic DNA-PK inhibitors for clinical use has been lagging. Here, we report the discovery and characterization of a potent, selective, and orally bioavailable DNA-PK inhibitor, M3814 (peposertib), and provide in vivo proof of principle for DNA-PK inhibition as a novel approach to combination radiotherapy. M3814 potently inhibits DNA-PK catalytic activity and sensitizes multiple cancer cell lines to ionizing radiation (IR) and DSB-inducing agents. Inhibition of DNA-PK autophosphorylation in cancer cells or xenograft tumors led to an increased number of persistent DSBs. Oral administration of M3814 to two xenograft models of human cancer, using a clinically established 6-week fractionated radiation schedule, strongly potentiated the antitumor activity of IR and led to complete tumor regression at nontoxic doses. Our results strongly support DNA-PK inhibition as a novel approach for the combination radiotherapy of cancer. M3814 is currently under investigation in combination with radiotherapy in clinical trials.




3

Erratum for 'The Chalk Group (Upper Cretaceous) of the Northern Province, eastern England - a review, Proceedings of the Yorkshire Geological Society, 62, 153-177




3

Subject Index to Volume 83 (2019)




3

Author Index to Volume 83 (2019)




3

3D Printed Teeth with Enamel and Dentin Layer for Educating Dental Students in Crown Preparation

Commonly used model teeth are so far uniform in color and hardness. There is no discrimination between enamel and dentin part of a tooth. This condition makes it difficult to train a preparation technique, which is adapted to real tooth substance. The aim of this study was to design and establish a 3D printed tooth with different layers for enamel and dentin for education in crown preparation. A printable tooth with different layers for enamel and dentin was designed, and all 38 fourth-year dental students in the first clinical course in prosthodontics and 30 experienced dentists were trained during a voluntary hands-on course in 2019. Prior to the study, the students had used standard model teeth and real-teeth models in their preclinical education. They had experience in caries removal and preparation on real patients. The perceived benefits of the 3D printed tooth were evaluated by a questionnaire. All individuals in both groups completed the questionnaire, for a 100% response rate. The results showed that the printed tooth was given an overall mean grade of 2.3 (students) and 2.0 (experts) on a scale from 1=excellent to 5=poor. The difference in hardness between the dentin and enamel layer was given a mean of 2.4 (students and experts) and the difference in color a 1.7 (students) and 1.8 (experts). The tooth model with the prepared tooth illustrating an ideal preparation was graded 1.6 (students and experts). In this study, the students had the opportunity to learn a correct crown preparation on a printed tooth with different material properties for enamel and dentin. The learning effect with this tooth model was rated as good on the questionnaire by both students and expert dentists.




3

SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation [Research Articles]

Membrane-bound proteins have been proposed to mediate the transport of long-chain FA (LCFA) transport through the plasma membrane (PM). These proposals are based largely on reports that PM transport of LCFAs can be blocked by a number of enzymes and purported inhibitors of LCFA transport. Here, using the ratiometric pH indicator (2',7'-bis-(2-carboxyethyl)-5-(and-6-)-carboxyfluorescein and acrylodated intestinal FA-binding protein-based dual fluorescence assays, we investigated the effects of nine inhibitors of the putative FA transporter protein CD36 on the binding and transmembrane movement of LCFAs. We particularly focused on sulfosuccinimidyl oleate (SSO), reported to be a competitive inhibitor of CD36-mediated LCFA transport. Using these assays in adipocytes and inhibitor-treated protein-free lipid vesicles, we demonstrate that rapid LCFA transport across model and biological membranes remains unchanged in the presence of these purported inhibitors. We have previously shown in live cells that CD36 does not accelerate the transport of unesterified LCFAs across the PM. Our present experiments indicated disruption of LCFA metabolism inside the cell within minutes upon treatment with many of the "inhibitors" previously assumed to inhibit LCFA transport across the PM. Furthermore, using confocal microscopy and a specific anti-SSO antibody, we found that numerous intracellular and PM-bound proteins are SSO-modified in addition to CD36. Our results support the hypothesis that LCFAs diffuse rapidly across biological membranes and do not require an active protein transporter for their transmembrane movement.




3

Slc43a3 is a regulator of free fatty acid flux [Research Articles]

Adipocytes take up long chain FAs through diffusion and protein-mediated transport, whereas FA efflux is considered to occur by diffusion. To identify potential membrane proteins that are involved in regulating FA flux in adipocytes, the expression levels of 55 membrane transporters without known function were screened in subcutaneous adipose samples from obese patients before and after bariatric surgery using branched DNA methodology. Among the 33 solute carrier (SLC) transporter family members screened, the expression of 14 members showed significant changes before and after bariatric surgery. One of them, Slc43a3, increased about 2.5-fold after bariatric surgery. Further investigation demonstrated that Slc43a3 is highly expressed in murine adipose tissue and induced during adipocyte differentiation in primary preadipocytes and in OP9 cells. Knockdown of Slc43a3 with siRNA in differentiated OP9 adipocytes reduced both basal and forskolin-stimulated FA efflux, while also increasing FA uptake and lipid droplet accumulation. In contrast, overexpression of Slc43a3 decreased FA uptake in differentiated OP9 cells and resulted in decreased lipid droplet accumulation. Therefore, Slc43a3 seems to regulate FA flux in adipocytes, functioning as a positive regulator of FA efflux and as a negative regulator of FA uptake.




3

Commentary on SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect fatty acid translocation [Commentaries]




3

Modulation of Monocyte-Driven Myositis in Alphavirus Infection Reveals a Role for CX3CR1+ Macrophages in Tissue Repair

ABSTRACT

Arthritogenic alphaviruses such as Ross River and Chikungunya viruses cause debilitating muscle and joint pain and pose significant challenges in the light of recent outbreaks. How host immune responses are orchestrated after alphaviral infections and lead to musculoskeletal inflammation remains poorly understood. Here, we show that myositis induced by Ross River virus (RRV) infection is driven by CD11bhi Ly6Chi inflammatory monocytes and followed by the establishment of a CD11bhi Ly6Clo CX3CR1+ macrophage population in the muscle upon recovery. Selective modulation of CD11bhi Ly6Chi monocyte migration to infected muscle using immune-modifying microparticles (IMP) reduced disease score, tissue damage, and inflammation and promoted the accumulation of CX3CR1+ macrophages, enhancing recovery and resolution. Here, we detail the role of immune pathology, describing a poorly characterized muscle macrophage subset as part of the dynamics of alphavirus-induced myositis and tissue recovery and identify IMP as an effective immunomodulatory approach. Given the lack of specific treatments available for alphavirus-induced pathologies, this study highlights a therapeutic potential for simple immune modulation by IMP in infected individuals in the event of large alphavirus outbreaks.

IMPORTANCE Arthritogenic alphaviruses cause debilitating inflammatory disease, and current therapies are restricted to palliative approaches. Here, we show that following monocyte-driven muscle inflammation, tissue recovery is associated with the accumulation of CX3CR1+ macrophages in the muscle. Modulating inflammatory monocyte infiltration using immune-modifying microparticles (IMP) reduced tissue damage and inflammation and enhanced the formation of tissue repair-associated CX3CR1+ macrophages in the muscle. This shows that modulating key effectors of viral inflammation using microparticles can alter the outcome of disease by facilitating the accumulation of macrophage subsets associated with tissue repair.




3

Repurposed Drugs That Block the Gonococcus-Complement Receptor 3 Interaction Can Prevent and Cure Gonococcal Infection of Primary Human Cervical Epithelial Cells

ABSTRACT

In the absence of a vaccine, multidrug-resistant Neisseria gonorrhoeae has emerged as a major human health threat, and new approaches to treat gonorrhea are urgently needed. N. gonorrhoeae pili are posttranslationally modified by a glycan that terminates in a galactose. The terminal galactose is critical for initial contact with the human cervical mucosa via an interaction with the I-domain of complement receptor 3 (CR3). We have now identified the I-domain galactose-binding epitope and characterized its galactose-specific lectin activity. Using surface plasmon resonance and cellular infection assays, we found that a peptide mimic of this galactose-binding region competitively inhibited the N. gonorrhoeae-CR3 interaction. A compound library was screened for potential drugs that could similarly prohibit the N. gonorrhoeae-CR3 interaction and be repurposed as novel host-targeted therapeutics for multidrug-resistant gonococcal infections in women. Two drugs, methyldopa and carbamazepine, prevented and cured cervical cell infection by multidrug-resistant gonococci by blocking the gonococcal-CR3 I-domain interaction.

IMPORTANCE Novel therapies that avert the problem of Neisseria gonorrhoeae with acquired antibiotic resistance are urgently needed. Gonococcal infection of the human cervix is initiated by an interaction between a galactose modification made to its surface appendages, pili, and the I-domain region of (host) complement receptor 3 (CR3). By targeting this crucial gonococcal–I-domain interaction, it may be possible to prevent cervical infection in females. To this end, we identified the I-domain galactose-binding epitope of CR3 and characterized its galactose lectin activity. Moreover, we identified two drugs, carbamazepine and methyldopa, as effective host-targeted therapies for gonorrhea treatment. At doses below those currently used for their respective existing indications, both carbamazepine and methyldopa were more effective than ceftriaxone in curing cervical infection ex vivo. This host-targeted approach would not be subject to N. gonorrhoeae drug resistance mechanisms. Thus, our data suggest a long-term solution to the growing problem of multidrug-resistant N. gonorrhoeae infections.




3

Heterosubtypic Protection Induced by a Live Attenuated Influenza Virus Vaccine Expressing Galactose-{alpha}-1,3-Galactose Epitopes in Infected Cells

ABSTRACT

Anti-galactose-α-1,3-galactose (anti-α-Gal) antibody is naturally expressed at a high level in humans. It constitutes about 1% of immunoglobulins found in human blood. Here, we designed a live attenuated influenza virus vaccine that can generate α-Gal epitopes in infected cells in order to facilitate opsonization of infected cells, thereby enhancing vaccine-induced immune responses. In the presence of normal human sera, cells infected with this mutant can enhance phagocytosis of human macrophages and cytotoxicity of NK cells in vitro. Using a knockout mouse strain that allows expression of anti-α-Gal antibody in vivo, we showed that this strategy can increase vaccine immunogenicity and the breadth of protection. This vaccine can induce 100% protection against a lethal heterosubtypic group 1 (H5) or group 2 (mouse-adapted H3) influenza virus challenge in the mouse model. In contrast, its heterosubtypic protective effect in wild-type or knockout mice that do not have anti-α-Gal antibody expression is only partial, demonstrating that the enhanced vaccine-induced protection requires anti-α-Gal antibody upon vaccination. Anti-α-Gal-expressing knockout mice immunized with this vaccine produce robust humoral and cell-mediated responses upon a lethal virus challenge. This vaccine can stimulate CD11blo/– pulmonary dendritic cells, which are known to be crucial for clearance of influenza virus. Our approach provides a novel strategy for developing next-generation influenza virus vaccines.

IMPORTANCE Influenza A viruses have multiple HA subtypes that are antigenically diverse. Classical influenza virus vaccines are subtype specific, and they cannot induce satisfactory heterosubtypic immunity against multiple influenza virus subtypes. Here, we developed a live attenuated H1N1 influenza virus vaccine that allows the expression of α-Gal epitopes by infected cells. Anti-α-Gal antibody is naturally produced by humans. In the presence of this antibody, human cells infected with this experimental vaccine virus can enhance several antibody-mediated immune responses in vitro. Importantly, mice expressing anti-α-Gal antibody in vivo can be fully protected by this H1N1 vaccine against a lethal H5 or H3 virus challenge. Our work demonstrates a new strategy for using a single influenza virus strain to induce broadly cross-reactive immune responses against different influenza virus subtypes.




3

CO2/HCO3- Accelerates Iron Reduction through Phenolic Compounds

ABSTRACT

Iron is a vital mineral for almost all living organisms and has a pivotal role in central metabolism. Despite its great abundance on earth, the accessibility for microorganisms is often limited, because poorly soluble ferric iron (Fe3+) is the predominant oxidation state in an aerobic environment. Hence, the reduction of Fe3+ is of essential importance to meet the cellular demand of ferrous iron (Fe2+) but might become detrimental as excessive amounts of intracellular Fe2+ tend to undergo the cytotoxic Fenton reaction in the presence of hydrogen peroxide. We demonstrate that the complex formation rate of Fe3+ and phenolic compounds like protocatechuic acid was increased by 46% in the presence of HCO3 and thus accelerated the subsequent redox reaction, yielding reduced Fe2+. Consequently, elevated CO2/HCO3 levels increased the intracellular Fe2+ availability, which resulted in at least 50% higher biomass-specific fluorescence of a DtxR-based Corynebacterium glutamicum reporter strain, and stimulated growth. Since the increased Fe2+ availability was attributed to the interaction of HCO3 and chemical iron reduction, the abiotic effect postulated in this study is of general relevance in geochemical and biological environments.

IMPORTANCE In an oxygenic environment, poorly soluble Fe3+ must be reduced to meet the cellular Fe2+ demand. This study demonstrates that elevated CO2/HCO3 levels accelerate chemical Fe3+ reduction through phenolic compounds, thus increasing intracellular Fe2+ availability. A number of biological environments are characterized by the presence of phenolic compounds and elevated HCO3 levels and include soil habitats and the human body. Fe2+ availability is of particular interest in the latter, as it controls the infectiousness of pathogens. Since the effect postulated here is abiotic, it generally affects the Fe2+ distribution in nature.




3

In Vivo Targeting of Clostridioides difficile Using Phage-Delivered CRISPR-Cas3 Antimicrobials

ABSTRACT

Clostridioides difficile is an important nosocomial pathogen that causes approximately 500,000 cases of C. difficile infection (CDI) and 29,000 deaths annually in the United States. Antibiotic use is a major risk factor for CDI because broad-spectrum antimicrobials disrupt the indigenous gut microbiota, decreasing colonization resistance against C. difficile. Vancomycin is the standard of care for the treatment of CDI, likely contributing to the high recurrence rates due to the continued disruption of the gut microbiota. Thus, there is an urgent need for the development of novel therapeutics that can prevent and treat CDI and precisely target the pathogen without disrupting the gut microbiota. Here, we show that the endogenous type I-B CRISPR-Cas system in C. difficile can be repurposed as an antimicrobial agent by the expression of a self-targeting CRISPR that redirects endogenous CRISPR-Cas3 activity against the bacterial chromosome. We demonstrate that a recombinant bacteriophage expressing bacterial genome-targeting CRISPR RNAs is significantly more effective than its wild-type parent bacteriophage at killing C. difficile both in vitro and in a mouse model of CDI. We also report that conversion of the phage from temperate to obligately lytic is feasible and contributes to the therapeutic suitability of intrinsic C. difficile phages, despite the specific challenges encountered in the disease phenotypes of phage-treated animals. Our findings suggest that phage-delivered programmable CRISPR therapeutics have the potential to leverage the specificity and apparent safety of phage therapies and improve their potency and reliability for eradicating specific bacterial species within complex communities, offering a novel mechanism to treat pathogenic and/or multidrug-resistant organisms.

IMPORTANCE Clostridioides difficile is a bacterial pathogen responsible for significant morbidity and mortality across the globe. Current therapies based on broad-spectrum antibiotics have some clinical success, but approximately 30% of patients have relapses, presumably due to the continued perturbation to the gut microbiota. Here, we show that phages can be engineered with type I CRISPR-Cas systems and modified to reduce lysogeny and to enable the specific and efficient targeting and killing of C. difficile in vitro and in vivo. Additional genetic engineering to disrupt phage modulation of toxin expression by lysogeny or other mechanisms would be required to advance a CRISPR-enhanced phage antimicrobial for C. difficile toward clinical application. These findings provide evidence into how phage can be combined with CRISPR-based targeting to develop novel therapies and modulate microbiomes associated with health and disease.




3

Bordetella Dermonecrotic Toxin Is a Neurotropic Virulence Factor That Uses CaV3.1 as the Cell Surface Receptor

ABSTRACT

Dermonecrotic toxin (DNT) is one of the representative toxins produced by Bordetella pertussis, but its role in pertussis, B. pertussis infection, remains unknown. In this study, we identified the T-type voltage-gated Ca2+ channel CaV3.1 as the DNT receptor by CRISPR-Cas9-based genome-wide screening. As CaV3.1 is highly expressed in the nervous system, the neurotoxicity of DNT was examined. DNT affected cultured neural cells and caused flaccid paralysis in mice after intracerebral injection. No neurological symptoms were observed by intracerebral injection with the other major virulence factors of the organisms, pertussis toxin and adenylate cyclase toxin. These results indicate that DNT has aspects of the neurotropic virulence factor of B. pertussis. The possibility of the involvement of DNT in encephalopathy, which is a complication of pertussis, is also discussed.

IMPORTANCE Bordetella pertussis, which causes pertussis, a contagious respiratory disease, produces three major protein toxins, pertussis toxin, adenylate cyclase toxin, and dermonecrotic toxin (DNT), for which molecular actions have been elucidated. The former two toxins are known to be involved in the emergence of some clinical symptoms and/or contribute to the establishment of bacterial infection. In contrast, the role of DNT in pertussis remains unclear. Our study shows that DNT affects neural cells through specific binding to the T-type voltage-gated Ca2+ channel that is highly expressed in the central nervous system and leads to neurological disorders in mice after intracerebral injection. These data raise the possibility of DNT as an etiological agent for pertussis encephalopathy, a severe complication of B. pertussis infection.




3

Report from the American Society for Microbiology COVID-19 International Summit, 23 March 2020: Value of Diagnostic Testing for SARS-CoV-2/COVID-19




3

Toxin-Antitoxin Gene Pairs Found in Tn3 Family Transposons Appear To Be an Integral Part of the Transposition Module

ABSTRACT

Much of the diversity of prokaryotic genomes is contributed by the tightly controlled recombination activity of transposons (Tns). The Tn3 family is arguably one of the most widespread transposon families. Members carry a large range of passenger genes incorporated into their structures. Family members undergo replicative transposition using a DDE transposase to generate a cointegrate structure which is then resolved by site-specific recombination between specific DNA sequences (res) on each of the two Tn copies in the cointegrate. These sites also carry promoters controlling expression of the recombinase and transposase. We report here that a number of Tn3 members encode a type II toxin-antitoxin (TA) system, typically composed of a stable toxin and a labile antitoxin that binds the toxin and inhibits its lethal activity. This system serves to improve plasmid maintenance in a bacterial population and, until recently, was believed to be associated with bacterial persistence. At least six different TA gene pairs are associated with various Tn3 members. Our data suggest that several independent acquisition events have occurred. In contrast to most Tn3 family passenger genes, which are generally located away from the transposition module, the TA gene pairs abut the res site upstream of the resolvase genes. Although their role when part of Tn3 family transposons is unclear, this finding suggests a potential role for the embedded TA in stabilizing the associated transposon with the possibility that TA expression is coupled to expression of transposase and resolvase during the transposition process itself.

IMPORTANCE Transposable elements (TEs) are important in genetic diversification due to their recombination properties and their ability to promote horizontal gene transfer. Over the last decades, much effort has been made to understand TE transposition mechanisms and their impact on prokaryotic genomes. For example, the Tn3 family is ubiquitous in bacteria, molding their host genomes by the paste-and-copy mechanism. In addition to the transposition module, Tn3 members often carry additional passenger genes (e.g., conferring antibiotic or heavy metal resistance and virulence), and three were previously known to carry a toxin-antitoxin (TA) system often associated with plasmid maintenance; however, the role of TA systems within the Tn3 family is unknown. The genetic context of TA systems in Tn3 members suggests that they may play a regulatory role in ensuring stable invasion of these Tns during transposition.




3

Avoiding Drug Resistance by Substrate Envelope-Guided Design: Toward Potent and Robust HCV NS3/4A Protease Inhibitors

ABSTRACT

Hepatitis C virus (HCV) infects millions of people worldwide, causing chronic liver disease that can lead to cirrhosis, hepatocellular carcinoma, and liver transplant. In the last several years, the advent of direct-acting antivirals, including NS3/4A protease inhibitors (PIs), has remarkably improved treatment outcomes of HCV-infected patients. However, selection of resistance-associated substitutions and polymorphisms among genotypes can lead to drug resistance and in some cases treatment failure. A proactive strategy to combat resistance is to constrain PIs within evolutionarily conserved regions in the protease active site. Designing PIs using the substrate envelope is a rational strategy to decrease the susceptibility to resistance by using the constraints of substrate recognition. We successfully designed two series of HCV NS3/4A PIs to leverage unexploited areas in the substrate envelope to improve potency, specifically against resistance-associated substitutions at D168. Our design strategy achieved better resistance profiles over both the FDA-approved NS3/4A PI grazoprevir and the parent compound against the clinically relevant D168A substitution. Crystallographic structural analysis and inhibition assays confirmed that optimally filling the substrate envelope is critical to improve inhibitor potency while avoiding resistance. Specifically, inhibitors that enhanced hydrophobic packing in the S4 pocket and avoided an energetically frustrated pocket performed the best. Thus, the HCV substrate envelope proved to be a powerful tool to design robust PIs, offering a strategy that can be translated to other targets for rational design of inhibitors with improved potency and resistance profiles.

IMPORTANCE Despite significant progress, hepatitis C virus (HCV) continues to be a major health problem with millions of people infected worldwide and thousands dying annually due to resulting complications. Recent antiviral combinations can achieve >95% cure, but late diagnosis, low access to treatment, and treatment failure due to drug resistance continue to be roadblocks against eradication of the virus. We report the rational design of two series of HCV NS3/4A protease inhibitors with improved resistance profiles by exploiting evolutionarily constrained regions of the active site using the substrate envelope model. Optimally filling the S4 pocket is critical to avoid resistance and improve potency. Our results provide drug design strategies to avoid resistance that are applicable to other quickly evolving viral drug targets.




3

Nonproteolytic K29-Linked Ubiquitination of the PB2 Replication Protein of Influenza A Viruses by Proviral Cullin 4-Based E3 Ligases

ABSTRACT

The multifunctional nature of viral proteins is essentially driven by posttranslational modifications (PTMs) and is key for the successful outcome of infection. For influenza A viruses (IAVs), a composite pattern of PTMs regulates the activity of viral proteins. However, almost none are known that target the PB2 replication protein, except for inducing its degradation. We show here that PB2 undergoes a nonproteolytic ubiquitination during infection. We identified E3 ubiquitin ligases catalyzing this ubiquitination as two multicomponent RING-E3 ligases based on cullin 4 (CRL4s), which are both contributing to the levels of ubiquitinated forms of PB2 in infected cells. The CRL4 E3 ligase activity is required for the normal progression of the viral cycle and for maximal virion production, indicating that the CRL4s mediate a ubiquitin signaling that promotes infection. The CRL4s are recruiting PB2 through an unconventional bimodal interaction with both the DDB1 adaptor and DCAF substrate receptors. While able to bind to PB2 when engaged in the viral polymerase complex, the CRL4 factors do not alter transcription and replication of the viral segments during infection. CRL4 ligases catalyze different patterns of lysine ubiquitination on PB2. Recombinant viruses mutated in the targeted lysines showed attenuated viral production, suggesting that CRL4-mediated ubiquitination of PB2 contributes to IAV infection. We identified K29-linked ubiquitin chains as main components of the nonproteolytic PB2 ubiquitination mediated by the CRL4s, providing the first example of the role of this atypical ubiquitin linkage in the regulation of a viral infection.

IMPORTANCE Successful infection by influenza A virus, a pathogen of major public health importance, involves fine regulation of the multiple functions of the viral proteins, which often relies on post-translational modifications (PTMs). The PB2 protein of influenza A viruses is essential for viral replication and a key determinant of host range. While PTMs of PB2 inducing its degradation have been identified, here we show that PB2 undergoes a regulating PTM signaling detected during infection, based on an atypical K29-linked ubiquitination and mediated by two multicomponent E3 ubiquitin ligases. Recombinant viruses impaired for CRL4-mediated ubiquitination are attenuated, indicating that ubiquitination of PB2 is necessary for an optimal influenza A virus infection. The CRL4 E3 ligases are required for normal viral cycle progression and for maximal virion production. Consequently, they represent potential candidate host factors for antiviral targets.