y Human CETP lacks lipopolysaccharide transfer activity, but worsens inflammation and sepsis outcomes in mice By www.jlr.org Published On :: 2020-12-09 Aloïs DusuelDec 9, 2020; 0:jlr.RA120000704v1-jlr.RA120000704Research Articles Full Article
y Mutation in the distal NPxY motif of LRP1 alleviates dietary cholesterol-induced dyslipidemia and tissue inflammation By www.jlr.org Published On :: 2020-12-09 Anja JaeschkeDec 9, 2020; 0:jlr.RA120001141v1-jlr.RA120001141Research Articles Full Article
y Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice By www.jlr.org Published On :: 2020-12-01 Abudukadier AbuliziDec 1, 2020; 61:1565-1576Research Articles Full Article
y Structure dynamics of ApoA-I amyloidogenic variants in small HDL increase their ability to mediate cholesterol efflux By www.jlr.org Published On :: 2020-11-17 Oktawia NilssonNov 17, 2020; 0:jlr.RA120000920v1-jlr.RA120000920Research Articles Full Article
y Insights on the kinetics and dynamics of the furin-cleaved form of PCSK9 By www.jlr.org Published On :: 2020-11-17 Carlota OleagaNov 17, 2020; 0:jlr.RA120000964v1-jlr.RA120000964Research Articles Full Article
y Apolipoprotein C3 and apolipoprotein B colocalize in proximity to macrophages in atherosclerotic lesions in diabetes By www.jlr.org Published On :: 2020-12-08 Jenny E. KanterDec 8, 2020; 0:jlr.ILR120001217v1-jlr.ILR120001217Images in Lipid Research Full Article
y Generation and validation of a conditional knockout mouse model for the study of the Smith-Lemli-Opitz Syndrome By www.jlr.org Published On :: 2020-11-17 Babunageswararao KanuriNov 17, 2020; 0:jlr.RA120001101v1-jlr.RA120001101Research Articles Full Article
y Perilipin 5 S155 phosphorylation by PKA is required for the control of hepatic lipid metabolism and glycemic control By www.jlr.org Published On :: 2020-12-17 Stacey N KeenanDec 17, 2020; 0:jlr.RA120001126v1-jlr.RA120001126Research Articles Full Article
y Mass spectrometry characterization of light chain fragmentation sites in cardiac AL amyloidosis: insights into the timing of proteolysis [Genomics and Proteomics] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Amyloid fibrils are polymeric structures originating from aggregation of misfolded proteins. In vivo, proteolysis may modulate amyloidogenesis and fibril stability. In light chain (AL) amyloidosis, fragmented light chains (LCs) are abundant components of amyloid deposits; however, site and timing of proteolysis are debated. Identification of the N and C termini of LC fragments is instrumental to understanding involved processes and enzymes. We investigated the N and C terminome of the LC proteoforms in fibrils extracted from the hearts of two AL cardiomyopathy patients, using a proteomic approach based on derivatization of N- and C-terminal residues, followed by mapping of fragmentation sites on the structures of native and fibrillar relevant LCs. We provide the first high-specificity map of proteolytic cleavages in natural AL amyloid. Proteolysis occurs both on the LC variable and constant domains, generating a complex fragmentation pattern. The structural analysis indicates extensive remodeling by multiple proteases, largely taking place on poorly folded regions of the fibril surfaces. This study adds novel important knowledge on amyloid LC processing: although our data do not exclude that proteolysis of native LC dimers may destabilize their structure and favor fibril formation, the data show that LC deposition largely precedes the proteolytic events documentable in mature AL fibrils. Full Article
y Problem Notes for SAS®9 - 66438: You see the message "The informat $ could not be loaded, probably due to insufficient memory" after attempting to insert data into a MySQL database By Published On :: Wed, 2 Sep 2020 10:39:14 EST For data that is being loaded from a SAS Stored Process Server, an insertion process might fail to a MySQL database with a warning, as well as an error message that says "During insert: Incorrect datetime value " Full Article BASE+Base+SAS
y Problem Notes for SAS®9 - 66537: SAS Customer Intelligence Studio becomes non-responsive when you delete a calculated variable from the Edit Value dialog box By Published On :: Tue, 1 Sep 2020 14:25:38 EST In SAS Customer Intelligence Studio, you might notice that the user interface becomes unresponsive, as shown below: imgalt="SAS Customer Intelligence Studio UI becomes unresponsive" src="{fusion_66537 Full Article CAMPAIGNSDO+SAS+Customer+Intelligence+St
y Problem Notes for SAS®9 - 66539: A new calculated variable that you create in the Edit Value dialog box is not available for selection in SAS Customer Intelligence Studio By Published On :: Tue, 1 Sep 2020 13:44:23 EST In SAS Customer Intelligence Studio, you can choose to create a new calculated variable in the Edit Value dialog box when you populate a treatment custom detail. Following creation of the new calculated Full Article CAMPAIGNSDO+SAS+Customer+Intelligence+St
y Problem Notes for SAS®9 - 66544: You cannot clear warnings for decision campaign nodes in SAS Customer Intelligence Studio By Published On :: Tue, 1 Sep 2020 13:41:53 EST In SAS Customer Intelligence Studio, you might notice that you cannot clear warnings for decision campaign nodes by selecting either the Clear Warnings option or the Clear All Warnin Full Article CAMPAIGNSDO+SAS+Customer+Intelligence+St
y Problem Notes for SAS®9 - 66540: SAS Management Console and SAS Data Integration Studio might return the message "table failed to update" when you use the Update Metadata tool By Published On :: Tue, 1 Sep 2020 09:06:18 EST You encounter this issue when the table metadata matches the data source. In this scenario, no metadata update is required. Full Article MGMTCONSOLE+SAS+Management+Console
y Problem Notes for SAS®9 - 66542: The initial loading of a rule set and a rule flow takes significantly longer in SAS Business Rules Manager 3.3 compared with release 3.2 By Published On :: Mon, 31 Aug 2020 16:35:05 EST In SAS Business Rules Manager 3.3, the initial loading of a rule set and a rule flow takes significantly longer than it does in release 3.2. When this problem happens, long time gaps are evident in the local Full Article BRLSTBNDL+SAS+Business+Rules+Manager
y Problem Notes for SAS®9 - 55516: Opening the Edit Action Columns dialog box requires that you wait up to a minute to display a window By Published On :: Fri, 28 Aug 2020 11:23:00 EST Editing and/or saving an action column can take up to a minute to display a window. There are no workarounds identified at this time. Full Article SCDOFR+SAS+Visual+Scenario+Designer
y Problem Notes for SAS®9 - 66391: Opening a database table returns a Segmentation Violation when you use the Metadata LIBNAME engine (META) By Published On :: Wed, 26 Aug 2020 16:39:25 EST You might receive a Segmentation Violation when opening a database table in SAS. The SAS Log contains the error and traceback: ERR Full Article METADATASRV+SAS+Metadata+Server
y Problem Notes for SAS®9 - 58465: SAS Life Science Analytics Framework 4.6 - Group membership removal fails with an exception for Process Flows that exist in the Recycle Bin By Published On :: Wed, 26 Aug 2020 16:27:10 EST In SAS Life Science Analytics Framework 4.6, group membership removal fails with an exception if a user is set as assignee, a candidate, or a notification recipient in a user task for a Process Flow . The Process Full Article LSAFOFR+SAS+Life+Science+Analytics+Frame
y Problem Notes for SAS®9 - 33449: An error might occur when you use SAS 9 BULKLOAD= and BULKEXTRACT= options to load data to or extract data from the HP Neoview database on the HP Itanium platform By Published On :: Wed, 26 Aug 2020 16:21:08 EST An error might occur when you use the SAS 9 BULKLOAD= and BULKEXTRACT= options load data to or extract data from HP Neoview on the HP Itanium platform. The problem occurs because Hewlett-Packard changed the name of one of Full Article NEOVIEW+SAS/ACCESS+Interface+to+HP+Neovi
y Problem Notes for SAS®9 - 48028: Custom Time Frame-based data versions do not aggregate correctly when referenced in worksheets with standard hierarchy levels By Published On :: Wed, 26 Aug 2020 16:17:42 EST In SAS Merchandise Financial Planning, custom time frame-based data versions do not aggregate correctly when referenced in worksheets with standard hierarchy levels. The data does not aggregate correctly from l Full Article MMFINANCPLN+SAS+Merchandise+Financial+Pl
y Problem Notes for SAS®9 - 46544: Store layout view has some areas displayed with black fill rather than gray in SAS® Retail Space Management By Published On :: Wed, 26 Aug 2020 16:14:45 EST In SAS Retail Space Management, it should be possible to click on any location object, then Show Properties, and change the location fill color. This can be done on the gray-filled objects. However, w Full Article RTLSPCMGT+SAS+Retail+Space+Management
y Problem Notes for SAS®9 - 61815: SAS Episode Analytics 3.1 - Audit table is required in order to capture user interactions with the user interface By Published On :: Wed, 26 Aug 2020 16:09:53 EST SAS Episode Analytics 3.1 requires the ability to capture user interactions with the user interface for auditing purposes. To support the required functionality a new table has been add Full Article AVAECROFR+SAS+Episode+Analytics
y Problem Notes for SAS®9 - 65782: The PLM procedure incorrectly issues the message "ERROR: No valid observation in the OM= data set" By Published On :: Wed, 26 Aug 2020 15:11:09 EST If the OBSMARGINS= or OM= option is specified in an LSMEANS, LSMESTIMATE, or SLICE statement and a user-defined format is applied to any of the effect variables in the OM-data-set , PROC PLM incorrectly stops proce Full Article STAT+SAS/STAT
y Problem Notes for SAS®9 - 66535: You might intermittently see the error "RangeError: Maximum call stack exceeded..." when viewing a SAS Visual Analytics report By Published On :: Wed, 26 Aug 2020 15:06:43 EST When viewing a SAS Visual Analytics report, you might intermittently see an error that includes content similar to the following: Error Message: Full Article VISANLYTBNDL+SAS+Visual+Analytics
y Problem Notes for SAS®9 - 66505: The OBS= option does not generate a limit clause when you use SAS/ACCESS Interface to PostgreSQL to access a Yellowbrick database By Published On :: Wed, 26 Aug 2020 11:35:41 EST When you use SAS/ACCESS Interface to PostgreSQL to query a Yellowbrick database, the SAS OBS= option is not generating a limit clause on the query that is passed to the database. Click the Full Article POSTGRESOFR+SAS/ACCESS+Interface+to+Post
y Problem Notes for SAS®9 - 66511: A Russian translation shows the same value for two different variables in the Define Value dialog box for the Reply node in SAS Customer Intelligence Studio By Published On :: Mon, 24 Aug 2020 14:23:55 EST In SAS Customer Intelligence Studio, when you add Reply- node variable values in the Define Value dialog box, you might notice that two identically labeled data-grid variables are Full Article POLICYOFR+SAS+Real-Time+Decision+Manager
y Problem Notes for SAS®9 - 66507: The RegisterFontTask" install task fails during out-of-the-box, add-on, or upgrade-in-place deployments if Hot Fix D7G004 is applied By Published On :: Fri, 21 Aug 2020 11:05:36 EST The SAS 9.4M4 (TS1M4) Hot Fix D7G004 for ODS Templates installs national language support (NLS) content regardless of whether the languages were installed during the initial deployment. Having sparse Full Article
y Problem Notes for SAS®9 - 66401: Using SAS Model Manager to publish a model to SAS Metadata Repository fails and generates an error By Published On :: Fri, 21 Aug 2020 09:34:11 EST When you publish a model to SAS Metadata Repository by using SAS Model Manager, the publishing process fails and the following error is generated: "The model model-name has a function of ';Transformation';, which is not supported for Full Article MMGROFR+SAS+Model+Manager
y Problem Notes for SAS®9 - 66496: Titles and footnotes do not span the full width of a page when you use the COLUMNS= option with the TAGSETS.RTF_SAMPLE tagset By Published On :: Thu, 20 Aug 2020 10:19:10 EST Titles and footnotes do not span the entire width of the page when you use the COLUMNS= option with a value that is greater than 1 with the TAGSETS.RTF_SAMPLE tagset. When a value that is greater than 1 is specified for th Full Article BASE+Base+SAS
y Problem Notes for SAS®9 - 66500: A content release on the SAS Risk Governance Framework fails to load when you use SAS 9.4M7 (TS1M7) on the Microsoft Windows operating system By Published On :: Wed, 19 Aug 2020 17:45:15 EST When you log on to the SAS Risk Governance Framework and choose a solution, the web application might fail to load the solution content. When the problem occurs, you continue to see "Loading..." on the screen, an Full Article RGPBNDL+SAS+Risk+Governance+Framework
y WITHDRAWN: Structural and mechanistic studies of hydroperoxide conversions catalyzed by a CYP74 clan epoxy alcohol synthase from amphioxus (Branchiostoma floridae) [Research Articles] By www.jlr.org Published On :: 2014-03-04T09:59:12-08:00 This manuscript has been withdrawn by the Author. Full Article
y WITHDRAWN: The Fundamental And Pathological Importance Of Oxysterol Binding Protein And Its Related Proteins [Thematic Reviews] By www.jlr.org Published On :: 2018-10-15T08:42:37-07:00 This article has been withdrawn by the authors as part of this review overlapped with the contents of Pietrangelo A and Ridgway ND. 2018. Cellular and Molecular Life Sciences. 75; 3079-98. Full Article
y Fatty acid oxidation and photoreceptor metabolic needs [Thematic Reviews] By www.jlr.org Published On :: 2020-02-24T12:30:36-08:00 Photoreceptors have high energy-demands and a high density of mitochondria that produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) of fuel substrates. Although glucose is the major fuel for central nervous system (CNS) brain neurons, in photoreceptors (also CNS), most glucose is not metabolized through OXPHOS but is instead metabolized into lactate by aerobic glycolysis. The major fuel sources for photoreceptor mitochondria remained unclear for almost six decades. Similar to other tissues (like heart and skeletal muscle) with high metabolic rates, photoreceptors were recently found to metabolize fatty acids (palmitate) through OXPHOS. Disruption of lipid entry into photoreceptors leads to extracellular lipid accumulation, suppressed glucose transporter expression, and a duel lipid/glucose fuel shortage. Modulation of lipid metabolism helps restore photoreceptor function. However, further elucidation of the types of lipids used as retinal energy sources, the metabolic interaction with other fuel pathways, as well as the crosstalk among retinal cells to provide energy to photoreceptors is not yet known. In this review, we will focus on the current understanding of photoreceptor energy demand and sources, and potential future investigations of photoreceptor metabolism. Full Article
y Bisretinoid phospholipid and vitamin A aldehyde: Shining a light [Thematic Reviews] By www.jlr.org Published On :: 2020-05-05T13:30:26-07:00 Vitamin A aldehyde covalently bound to opsin protein is embedded in a phospholipid-rich membrane that supports photon absorption and phototransduction in photoreceptor cell outer segments. Following absorption of a photon, the 11-cis-retinal chromophore of visual pigment in photoreceptor cells isomerizes to all-trans-retinal. To maintain photosensitivity 11-cis-retinal must be replaced. At the same time, however, all-trans-retinal has to be handled so as to prevent nonspecific aldehyde activity. Some molecules of retinaldehyde upon release from opsin are efficiently reduced to retinol. Other molecules are released into the lipid phase of the disc membrane where they form a conjugate (N-retinylidene-PE, NRPE) through a Schiff base linkage with phosphatidylethanolamine (PE). The reversible formation of NRPE serves as a transient sink for retinaldehyde that is intended to return retinaldehyde to the visual cycle. However, if instead of hydrolyzing to PE and retinaldehyde, NRPE reacts with a second molecule of retinaldehyde a synthetic pathway is initiated that leads to the formation of multiple species of unwanted bisretinoid fluorophores. We report on recently identified members of the bisretinoid family some of which differ with respect to the acyl chains associated with the glycerol backbone. We discuss processing of the lipid moieties of these fluorophores in lysosomes of retinal pigment epithelial (RPE) cells, their fluorescence characters and new findings related to light and iron-associated oxidation of bisretinoids. Full Article
y Retinoids in the visual cycle: Role of the retinal G protein-coupled receptor [Thematic Reviews] By www.jlr.org Published On :: 2020-06-03T16:30:29-07:00 Driven by the energy of a photon, the visual pigments in rod and cone photoreceptor cells isomerize 11-cis-retinal to the all-trans configuration. This photochemical reaction initiates the signal transduction pathway that eventually leads to the transmission of a visual signal to the brain and leaves the opsins insensitive to further light stimulation. For the eye to restore light sensitivity, opsins require recharging with 11-cis-retinal. This trans–cis back conversion is achieved through a series of enzymatic reactions composing the retinoid (visual) cycle. Although it is evident that the classical retinoid cycle is critical for vision, the existence of an adjunct pathway for 11-cis-retinal regeneration has been debated for many years. Retinal pigment epithelium (RPE)–retinal G protein-coupled receptor (RGR) has been identified previously as a mammalian retinaldehyde photoisomerase homologous to retinochrome found in invertebrates. Using pharmacological, genetic, and biochemical approaches, researchers have now established the physiological relevance of the RGR in 11-cis-retinal regeneration. The photoisomerase activity of RGR in the RPE and Müller glia explains how the eye can remain responsive in daylight. In this review, we will focus on retinoid metabolism in the eye and visual chromophore regeneration mediated by RGR. Full Article
y Lipid Conformational Order and the Etiology of Cataract and Dry Eye [Thematic Reviews] By www.jlr.org Published On :: 2020-06-18T14:30:29-07:00 Lens and tear film lipids are as unique as the systems they reside in. The major lipid of the human lens is dihydrosphingomylein, found in quantity only in the lens. The lens contains a cholesterol to phospholipid molar ratio as high as 10:1, more than anywhere in the body. Lens lipids contribute to maintaining lens clarity, and alterations in lens lipid composition due to age are likely to contribute to cataract. Lens lipid composition reflects adaptations to the unique characteristics of the lens: no turnover of lens lipids or proteins; the lowest amount of oxygen than any other tissue and contains almost no intracellular organelles. The tear film lipid layer (TFLL) is also unique. The TFLL is a thin, 100 nm layer of lipid on the surface of tears covering the cornea that contributes to tear film stability. The major lipids of the TFLL are wax esters and cholesterol esters that are not found in the lens. The hydrocarbon chains associated with the esters are longer than those found anywhere in the body, as long as 32 carbons, and many are branched. Changes in the composition and structure of the 30,000 different moieties of TFLL contribute to the instability of tears. The focus of the current review is how spectroscopy has been used to elucidate the relationships between lipid composition, conformational order and function and the etiology of cataract and dry eye. Full Article
y Dietary sphinganine is selectively assimilated by members of the mammalian gut microbiome [Research Articles] By www.jlr.org Published On :: 2020-07-09T14:33:39-07:00 Functions of the gut microbiome have a growing number of implications for host metabolic health, with diet being one of the most significant influences on microbiome composition. Compelling links between diet and the gut microbiome suggest key roles for various macronutrients, including lipids, yet how individual classes of dietary lipids interact with the microbiome remains largely unknown. Sphingolipids are bioactive components of most foods and are also produced by prominent gut microbes. This makes sphingolipids intriguing candidates for shaping diet–microbiome interactions. Here, we used a click chemistry–based approach to track the incorporation of bioorthogonal dietary omega-alkynyl sphinganine (sphinganine alkyne [SAA]) into the murine gut microbial community (Bioorthogonal labeling). We identified microbial and SAA-specific metabolic products through fluorescence-based sorting of SAA-containing microbes (Sort), 16S rRNA gene sequencing to identify the sphingolipid-interacting microbes (Seq), and comparative metabolomics to identify products of SAA assimilation by the microbiome (Spec). Together, this approach, termed Bioorthogonal labeling-Sort-Seq-Spec (BOSSS), revealed that SAA assimilation is nearly exclusively performed by gut Bacteroides, indicating that sphingolipid-producing bacteria play a major role in processing dietary sphinganine. Comparative metabolomics of cecal microbiota from SAA-treated mice revealed conversion of SAA to a suite of dihydroceramides, consistent with metabolic activities of Bacteroides and Bifidobacterium. Additionally, other sphingolipid-interacting microbes were identified with a focus on an uncharacterized ability of Bacteroides and Bifidobacterium to metabolize dietary sphingolipids. We conclude that BOSSS provides a platform to study the flux of virtually any alkyne-labeled metabolite in diet–microbiome interactions. Full Article
y Hepatic Deletion of Mboat7 (Lpiat1) Causes Activation of SREBP-1c and Fatty Liver [Research Articles] By www.jlr.org Published On :: 2020-08-28T09:33:17-07:00 Genetic variants that increase the risk of fatty liver disease (FLD) and cirrhosis have recently been identified in the proximity of membrane bound O-acyltransferase domain-containing 7 (MBOAT7). To elucidate the link between these variants and FLD we characterized Mboat7 liver-specific knock-out mice (Mboat7-LSKO). Chow-fed Mboat7-LSKO mice developed fatty livers and associated liver injury. Lipidomic analysis of liver using mass spectrometry revealed a pronounced reduction in 20-carbon polyunsaturated fatty acid content in phosphatidylinositols (PIs), but not in other phospholipids. The change in fatty acid composition of PIs in these mice was associated with a marked increase in de novo lipogenesis due to activation of SREBP-1c, a transcription factor that coordinates the activation of genes encoding enzymes in the fatty acid biosynthesis pathway. Hepatic removal of both SREBP cleavage activating protein (Scap) and Mboat7 normalized hepatic triglycerides relative to Scap only hepatic knock-out showing increased SREBP-1c processing is required for Mboat7 induced steatosis. This study reveals a clear relationship between PI fatty acid composition and regulation of hepatic fat synthesis and delineates the mechanism by which mutations in MBOAT7 cause hepatic steatosis. Full Article
y Lipid and Metabolic Syndrome Traits in Coronary Artery Disease: A Mendelian Randomization Study [Patient-Oriented and Epidemiological Research] By www.jlr.org Published On :: 2020-09-09T12:33:17-07:00 Mendelian randomization (MR) of lipid traits in coronary artery disease (CAD) has provided evidence for causal associations of low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG) in CAD, but many lipid trait genetic variants have pleiotropic effects on other cardiovascular risk factors that may bias MR associations. The goal of this study was to evaluate pleiotropic effects of lipid trait genetic variants and to account for these effects in MR of lipid traits in CAD. We performed multivariable MR using inverse variance-weighted (IVW) and MR-Egger methods in large (n ≥ 300,000) GWAS datasets. We found that 30% of lipid trait genetic variants have effects on metabolic syndrome traits, including body mass index (BMI), type 2 diabetes (T2D), and systolic blood pressure (SBP). Nonetheless, in multivariable MR analysis, LDL-C, high-density lipoprotein cholesterol (HDL-C), TG, BMI, T2D, and SBP are independently associated with CAD, and each of these associations is robust to adjustment for directional pleiotropy. MR at loci linked to direct effects on HDL-C and TG suggests locus- and mechanism-specific causal effects of these factors on CAD. Full Article
y Sphingolipids as Critical Players in Retinal Physiology and Pathology [Thematic Reviews] By www.jlr.org Published On :: 2020-09-18T07:36:30-07:00 Sphingolipids have emerged as bioactive lipids involved in the regulation of many physiological and pathological processes. In the retina, they have been established to participate in numerous processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Dysregulation of sphingolipids is, therefore, crucial in the onset and progression of retinal diseases. This review examines the involvement of sphingolipids in retinal physiology and diseases. Ceramide (Cer) emerges as a common mediator of inflammation and death of neuronal and retinal pigment epithelium cells in animal models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. Sphingosine-1-phosphate (S1P) has opposite roles, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide-1-phosphate may also contribute to uveitis. Notably, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), preserves neuronal viability and retinal function. These findings underscore the relevance of alterations in the sphingolipid metabolic network in the etiology of multiple retinopathies and highlight the potential of modulating their metabolism for the design of novel therapeutic approaches. Full Article
y Cholesterol homeostasis in the vertebrate retina: Biology and pathobiology [Thematic Reviews] By www.jlr.org Published On :: 2020-10-20T09:30:27-07:00 Cholesterol is a quantitatively and biologically significant constituent of all mammalian cell membrane, including those that comprise the retina. Retinal cholesterol homeostasis entails the interplay between de novo synthesis, uptake, intra-retinal sterol transport, metabolism and efflux. Defects in these complex processes are associated with several congenital and age-related disorders of the visual system. Herein, we provide an overview of the following topics: a) cholesterol synthesis in the neural retina; b) lipoprotein uptake and intraretinal sterol transport in the neural retina and the retinal pigment epithelium (RPE); c) cholesterol efflux from the neural retina and the RPE; and d) biology and pathobiology of defects in sterol synthesis and sterol oxidation in the neural retina and the RPE. We focus, in particular, on studies involving animal models of monogenic disorders pertinent to the above topics, as well as in vitro models using biochemical, metabolic, and omic approaches. We also identify current knowledge gaps as well as opportunities in the field that beg further research in this topic area. Full Article
y High-density lipoprotein-associated miRNA is increased following Roux-en-Y gastric bypass surgery for severe obesity [Research Articles] By www.jlr.org Published On :: 2020-10-22T06:30:32-07:00 Roux-en-Y gastric bypass (RYGB) is one of the most commonly performed weight-loss procedures, but how severe obesity and RYGB affects circulating HDL-associated microRNAs (miRNAs) remains unclear. Here, we aim to investigate how HDL-associated miRNAs are regulated in severe obesity and how weight loss after RYGB surgery affects HDL-miRNAs. Plasma HDL were isolated from patients with severe obesity (n=53) before, 6 and 12 months after RYGB by immunoprecipitation using goat anti-human apoA-I microbeads. HDL were also isolated from 18 healthy participants. miRNAs were extracted from isolated HDL and levels of miR-24, miR-126, miR-222 and miR-223 were determined by TaqMan miRNA assays. We found that HDL-associated miR-126, miR-222 and miR-223 levels, but not miR-24 levels, were significantly higher in patients with severe obesity when compared with healthy controls. There were significant increases in HDL-associated miR-24, miR-222 and miR-223 at 12 months after RYGB. Additionally, cholesterol efflux capacity and paraoxonase (PON1) activity were increased and intracellular adhesion molecule-1 (ICAM-1) levels decreased. The increases in HDL-associated miR-24 and miR-223 were positively correlated with increase in cholesterol efflux capacity (r=0.326, P=0.027 and r=0.349, P=0.017 respectively). An inverse correlation was observed between HDL-associated miR-223 and ICAM-1 at baseline. Together, these findings show that HDL-associated miRNAs are differentially regulated in healthy versus patients with severe obesity and are altered after RYGB. These findings provide insights into how miRNAs are regulated in obesity before and after weight reduction, and may lead to the development of novel treatment strategies for obesity and related metabolic disorders. Full Article
y Overview of how N32 and N34 elovanoids sustain sight by protecting retinal pigment epithelial cells and photoreceptors [Thematic Reviews] By www.jlr.org Published On :: 2020-10-26T14:30:21-07:00 The essential fatty acid DHA (22:6, omega-3 or n-3) is enriched in and required for the membrane biogenesis and function of photoreceptor cells (PRC), synapses, mitochondria, etc. of the CNS. PRC DHA becomes an acyl chain at the sn-2 of phosphatidylcholine (PC), amounting to more than 50% of the PRC outer segment phospholipids, where phototransduction takes place. Very long chain PUFAs (VLC-PUFAs,n-3, ≥ 28 carbons) are at the sn-1 of this PC molecular species and interact with rhodopsin. PRC shed their tips (DHA-rich membrane disks) daily, which in turn are phagocytized by the retinal pigment epithelium (RPE), where DHA is recycled back to PRC inner segments to be used for the biogenesis of new photoreceptor membranes. Here, we review the structures and stereochemistry of novel elovanoid (ELV)-N32 and ELV-N34 to be ELV-N32: (14Z,17Z,20R,21E,23E,25Z,27S,29Z)-20,27-dihydroxydo-triaconta-14,17,21,23,25,29-hexaenoic acid; ELV-N34: (16Z,19Z,22R,23E,25E,27Z,29S,31Z)-22,29-dihydroxytetra-triaconta-16,19,23,25,27,31-hexaenoic acid. ELVs are low-abundance, high-potency, protective mediators. Their bioactivity includes enhancing of anti-apoptotic and pro-survival protein expression with concomitant downregulation of pro-apoptotic proteins when RPE is confronted with uncompensated oxidative stress (UOS). ELVs also target PRC/RPE senescence gene programming, the senescence secretory phenotype in the interphotoreceptor matrix (IPM), as well as inflammaging (chronic, sterile, low-grade inflammation). An important lesson on neuroprotection is highlighted by the ELV mediators that target the terminally differentiated PRC and RPE, sustaining a beautifully synchronized renewal process. The role of ELVs in PRC and RPE viability and function uncovers insights on disease mechanisms and the development of therapeutics for age-related macular degeneration (AMD), Alzheimer’s disease (AD), and other pathologies. Full Article
y Structure dynamics of ApoA-I amyloidogenic variants in small HDL increase their ability to mediate cholesterol efflux [Research Articles] By www.jlr.org Published On :: 2020-11-17T08:30:36-08:00 Apolipoprotein A-I (ApoA-I) of high-density lipoprotein (HDL) is essential for the transportation of cholesterol between peripheral tissues and the liver. However, specific mutations in Apolipoprotein A-I (ApoA-I) of high-density lipoprotein (HDL) are responsible for a late-onset systemic amyloidosis, the pathological accumulation of protein fibrils in tissues and organs. Carriers of these mutations do not exhibit increased cardiovascular disease risk despite displaying reduced levels of ApoA-I/ HDL-cholesterol. To explain this paradox, we show that the HDL particle profile of patients carrying either L75P or L174S ApoA-I amyloidogenic variants a higher relative abundance of the 8.4 nm vs 9.6 nm particles, and that serum from patients, as well as reconstituted 8.4 and 9.6 nm HDL particles (rHDL), possess increased capacity to catalyze cholesterol efflux from macrophages. Synchrotron radiation circular dichroism and hydrogen-deuterium exchange revealed that the variants in 8.4 nm rHDL have altered secondary structure composition and display a more flexible binding to lipids compared to their native counterpart. The reduced HDL-cholesterol levels of patients carrying ApoA-I amyloidogenic variants are thus balanced by higher proportion of small, dense HDL particles and better cholesterol efflux due to altered, region-specific protein structure dynamics. Full Article
y Insights on the kinetics and dynamics of the furin-cleaved form of PCSK9 [Research Articles] By www.jlr.org Published On :: 2020-11-17T08:30:36-08:00 Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates cholesterol metabolism by inducing the degradation of hepatic low-density lipoprotein receptor (LDLR). Plasma PCSK9 has two main molecular forms: a 62-kDa mature form (PCSK9_62) and a 55-kDa, furin-cleaved form (PCSK9_55). PCSK9_55 is considered less active than PCSK9_62 in degrading LDLR. We aimed to identify the site of PCSK9_55 formation (intra- vs. extracellular) and to further characterize the LDLR-degradative function of PCSK9_55 relative to PCSK9_62. Co-expressing PCSK9_62 with furin in cell culture induced formation of PCSK9_55, most of which was found in the extracellular space. Under the same conditions we found that: i) adding a cell-permeable furin inhibitor preferentially decreased the formation of PCSK9_55 extracellularly; ii) using pulse-chase, we observed the formation of PCSK9_55 exclusively extracellularly in a time-dependent manner. A recombinant form of PCSK9_55 was efficiently produced but displayed impaired secretion that resulted in its intracellular trapping. However, the non-secreted PCSK9_55 was able to induce degradation of LDLR, though with 50% lower efficiency compared with PCSK9_62. Collectively, our data show that PCSK9_55 is generated in the extracellular space, and that intracellular PCSK9_55 is not secreted but retains the ability to degrade the LDLR through an intracellular pathway. Full Article
y Generation and validation of a conditional knockout mouse model for the study of the Smith-Lemli-Opitz Syndrome [Research Articles] By www.jlr.org Published On :: 2020-11-17T11:30:28-08:00 Smith-Lemli-Opitz Syndrome (SLOS) is a developmental disorder (OMIM #270400) caused by autosomal recessive mutations in the Dhcr7 gene, which encodes the enzyme 3β-hydroxysterol-7 reductase. SLOS patients present clinically with dysmorphology and neurological, behavioral and cognitive defects, with characteristically elevated levels of 7-dehydrocholesterol (7-DHC) in all bodily tissues and fluids. Previous mouse models of SLOS have been hampered by postnatal lethality when Dhcr7 is knocked out globally, while a hypomorphic mouse model showed improvement in the biochemical phenotype with ageing, and did not manifest most other characteristic features of SLOS. We report the generation of a conditional knockout of Dhcr7 (Dhcr7flx/flx), validated by generating a mouse with a liver-specific deletion (Dhcr7L-KO). Phenotypic characterization of liver-specific knockout mice revealed no significant changes in viability, fertility, growth curves, liver architecture, hepatic triglyceride secretion, or parameters of systemic glucose homeostasis. Furthermore, qPCR and RNA-Seq analyses of livers revealed no perturbations in pathways responsible for cholesterol synthesis, either in male or female Dhcr7L-KO mice, suggesting hepatic disruption of post-squalene cholesterol synthesis leads to minimal impact on sterol metabolism in the liver. This validated conditional Dhcr7 knockout model may now allow us to systematically explore the pathophysiology of SLOS, by allowing for temporal, cell and tissue-specific loss of DHCR7. Full Article
y Apolipoprotein C3 and apolipoprotein B colocalize in proximity to macrophages in atherosclerotic lesions in diabetes [Images in Lipid Research] By www.jlr.org Published On :: 2020-12-08T14:30:11-08:00 Full Article
y Human CETP lacks lipopolysaccharide transfer activity, but worsens inflammation and sepsis outcomes in mice [Research Articles] By www.jlr.org Published On :: 2020-12-09T11:36:34-08:00 Bacterial lipopolysaccharides (LPSs or endotoxins) can bind most proteins of the lipid transfer/LPS-binding protein (LT/LBP) family in host organisms. The LPS-bound LT/LBP proteins then trigger either an LPS-induced proinflammatory cascade or LPS binding to lipoproteins that are involved in endotoxin inactivation and detoxification. Cholesteryl ester transfer protein (CETP) is an LT/LBP member, but its impact on LPS metabolism and sepsis outcome is unclear. Here, we performed fluorescent LPS transfer assays to assess the ability of CETP to bind and transfer LPS. The effects of intravenous (iv) infusion of purified LPS or polymicrobial infection (cecal ligation and puncture [CLP]) were compared in transgenic mice expressing human CETP and wild-type mice naturally having no CETP activity. CETP displayed no LPS transfer activity in vitro, but it tended to reduce biliary excretion of LPS in vivo. The CETP expression in mice was associated with significantly lower basal plasma lipid levels and with higher mortality rates in both models of endotoxemia and sepsis. Furthermore, CETPTg plasma modified cytokine production of macrophages in vitro. In conclusion, despite having no direct LPS binding and transfer property, human CETP worsens sepsis outcomes in mice by altering the protective effects of plasma lipoproteins against endotoxemia, inflammation, and infection. Full Article
y Mutation in the distal NPxY motif of LRP1 alleviates dietary cholesterol-induced dyslipidemia and tissue inflammation [Research Articles] By www.jlr.org Published On :: 2020-12-09T08:30:22-08:00 The LDL receptor-related protein-1 (LRP1) is highly expressed in numerous cell types, and its impairment is associated with obesity, diabetes, and fatty liver disease. However, the mechanisms linking LRP1 to metabolic disease are not completely understood. Here, we compared the metabolic phenotype of C57BL/6J wild type and LRP1 knock-in mice carrying an inactivating mutation in the distal NPxY motif after feeding a low fat (LF) diet or high fat diets with (HFHC) or without (HF) cholesterol supplementation. In response to HF feeding, both groups developed hyperglycemia, hyperinsulinemia, and hyperlipidemia, as well as increased adiposity with adipose tissue inflammation and liver steatosis. However, when animals were fed the HF diet supplemented with cholesterol, the LRP1 NPxY mutation prevents hypercholesterolemia, reduces adipose tissue and brain inflammation, and limits liver progression to steatohepatitis. Nevertheless, insulin signaling is impaired in LRP1 NPxY mutant hepatocytes and this mutation does not protect against HFHC-induced insulin resistance. The selective metabolic improvement observed in HFHC-fed LRP1 NPxY mutant mice is due to an apparent increase of hepatic LDL receptor levels, leading to an elevated rate of plasma lipoprotein clearance and lowering of plasma and hepatic cholesterol levels. The unique metabolic phenotypes displayed by LRP1 NPxY mutant mice in response to HF or HFHC diet feeding indicate an LRP1-cholesterol axis in modulating tissue inflammation. The LRP1 NPxY mutant mouse phenotype differs from phenotypes observed in mice with tissue-specific LRP1 inactivation, thus highlighting the importance of an integrative approach to evaluate how global LRP1 dysfunction contributes to metabolic disease development. Full Article
y Deletion of lysophosphatidylcholine acyltransferase3 in myeloid cells worsens hepatic steatosis after a high fat diet [Research Articles] By www.jlr.org Published On :: 2020-12-11T09:30:19-08:00 Recent studies have highlighted an important role for lysophosphatidylcholine acyltransferase 3 (LPCAT3) in controlling the PUFA composition of cell membranes in the liver and intestine. In these organs, LPCAT3 critically supports cell membrane-associated processes such as lipid absorption or lipoprotein secretion. However, the role of LPCAT3 in macrophages remains controversial. Here, we investigated LPCAT3’s role in macrophages both in vitro and in vivo in mice with atherosclerosis and obesity. To accomplish this, we used the LysMCre strategy to develop a mouse model with conditional Lpcat3 deficiency in myeloid cells (Lpcat3KOMac). We observed that partial Lpcat3 deficiency (approx. 75% reduction) in macrophages alters the PUFA composition of all phospholipid (PL) subclasses, including phosphatidylinositols and phosphatidylserines. A reduced incorporation of C20 PUFAs (mainly arachidonic acid [AA]) into PLs was associated with a redistribution of these FAs toward other cellular lipids such as cholesteryl esters. Lpcat3 deficiency had no obvious impact on macrophage inflammatory response or endoplasmic reticulum (ER) stress; however, Lpcat3KOMac macrophages exhibited a reduction in cholesterol efflux in vitro. In vivo, myeloid Lpcat3 deficiency did not affect atherosclerosis development in LDL receptor deficient mouse (Ldlr-/-) mice. Lpcat3KOMac mice on a high-fat diet displayed a mild increase in hepatic steatosis associated with alterations in several liver metabolic pathways and in liver eicosanoid composition. We conclude that alterations in AA metabolism along with myeloid Lpcat3 deficiency may secondarily affect AA homeostasis in the whole liver, leading to metabolic disorders and triglyceride accumulation. Full Article