omi

Kyprolis (carfilzomib)

Title: Kyprolis (carfilzomib)
Category: Medications
Created: 4/27/2020 12:00:00 AM
Last Editorial Review: 4/27/2020 12:00:00 AM




omi

Genomics, Morphoproteomics, and Treatment Patterns of Patients with Alveolar Soft Part Sarcoma and Response to Multiple Experimental Therapies

Overexpression of transcription factor 3 in alveolar soft part sarcoma(ASPS) results in upregulation of cell proliferation pathways. No standard treatment algorithm exists for ASPS; multikinase inhibitors[tyrosine kinase inhibitor (TKI)] and immune checkpoint inhibitors (ICI) have shown clinical benefit. To date, no studies have reported on management strategies or sequencing of therapy. We evaluated ASPS treatment patterns and responses in an experimental therapeutics clinic. Genomic and morphoproteomic analysis was performed to further elucidate novel targets. We retrospectively reviewed patients with ASPS treated on clinical trials. Demographic and clinical next-generation sequencing (NGS) profiles were collected. AACR GENIE database was queried to further evaluate aberrations in ASPS. Morphoproteomic analysis was carried out to better define the biology of ASPS with integration of genomic and proteomic findings. Eleven patients with ASPS were identified; 7 received NGS testing and mutations in CDKN2A (n = 1) and hepatocyte growth factor (n = 1) were present. Ten patients were treated with TKIs with stable disease as best response and 4 patients with ICI (three partial responses). Within GENIE, 20 patients were identified harboring 3 called pathogenic mutations. Tumor mutation burden was low in all samples. Morphoproteomic analysis confirmed the expression of phosphorylated c-Met. In addition, fatty acid synthase and phosphorylated-STAT3 were detected in tumor cell cytoplasm and nuclei. Patients with ASPS have a quiescent genome and derive clinical benefit from VEGF-targeting TKIs. Morphoproteomic analysis has provided both additional correlative pathways and angiogenic mechanisms that are targetable for patients with ASPS. Our study suggests that sequential therapy with TKIs and immune checkpoint inhibitors is a reasonable management strategy.




omi

Using Colonization Assays and Comparative Genomics To Discover Symbiosis Behaviors and Factors in Vibrio fischeri

ABSTRACT

The luminous marine Gram-negative bacterium Vibrio (Aliivibrio) fischeri is the natural light organ symbiont of several squid species, including the Hawaiian bobtail squid, Euprymna scolopes, and the Japanese bobtail squid, Euprymna morsei. Work with E. scolopes has shown how the bacteria establish their niche in the light organ of the newly hatched host. Two types of V. fischeri strains have been distinguished based upon their behavior in cocolonization competition assays in juvenile E. scolopes, i.e., (i) niche-sharing or (ii) niche-dominant behavior. This study aimed to determine whether these behaviors are observed with other V. fischeri strains or whether they are specific to those isolated from E. scolopes light organs. Cocolonization competition assays between V. fischeri strains isolated from the congeneric squid E. morsei or from other marine animals revealed the same sharing or dominant behaviors. In addition, whole-genome sequencing of these strains showed that the dominant behavior is polyphyletic and not associated with the presence or absence of a single gene or genes. Comparative genomics of 44 squid light organ isolates from around the globe led to the identification of symbiosis-specific candidates in the genomes of these strains. Colonization assays using genetic derivatives with deletions of these candidates established the importance of two such genes in colonization. This study has allowed us to expand the concept of distinct colonization behaviors to strains isolated from a number of squid and fish hosts.

IMPORTANCE There is an increasing recognition of the importance of strain differences in the ecology of a symbiotic bacterial species and, in particular, how these differences underlie crucial interactions with their host. Nevertheless, little is known about the genetic bases for these differences, how they manifest themselves in specific behaviors, and their distribution among symbionts of different host species. In this study, we sequenced the genomes of Vibrio fischeri isolated from the tissues of squids and fishes and applied comparative genomics approaches to look for patterns between symbiont lineages and host colonization behavior. In addition, we identified the only two genes that were exclusively present in all V. fischeri strains isolated from the light organs of sepiolid squid species. Mutational studies of these genes indicated that they both played a role in colonization of the squid light organ, emphasizing the value of applying a comparative genomics approach in the study of symbioses.




omi

Parallel Genomics Uncover Novel Enterococcal-Bacteriophage Interactions

ABSTRACT

Bacteriophages (phages) have been proposed as alternative therapeutics for the treatment of multidrug-resistant bacterial infections. However, there are major gaps in our understanding of the molecular events in bacterial cells that control how bacteria respond to phage predation. Using the model organism Enterococcus faecalis, we used two distinct genomic approaches, namely, transposon library screening and RNA sequencing, to investigate the interaction of E. faecalis with a virulent phage. We discovered that a transcription factor encoding a LytR family response regulator controls the expression of enterococcal polysaccharide antigen (epa) genes that are involved in phage infection and bacterial fitness. In addition, we discovered that DNA mismatch repair mutants rapidly evolve phage adsorption deficiencies, underpinning a molecular basis for epa mutation during phage infection. Transcriptomic profiling of phage-infected E. faecalis revealed broad transcriptional changes influencing viral replication and progeny burst size. We also demonstrate that phage infection alters the expression of bacterial genes associated with intra- and interbacterial interactions, including genes involved in quorum sensing and polymicrobial competition. Together, our results suggest that phage predation has the potential to influence complex microbial behavior and may dictate how bacteria respond to external environmental stimuli. These responses could have collateral effects (positive or negative) on microbial communities, such as the host microbiota, during phage therapy.

IMPORTANCE We lack fundamental understanding of how phage infection influences bacterial gene expression and, consequently, how bacterial responses to phage infection affect the assembly of polymicrobial communities. Using parallel genomic approaches, we have discovered novel transcriptional regulators and metabolic genes that influence phage infection. The integration of whole-genome transcriptomic profiling during phage infection has revealed the differential regulation of genes important for group behaviors and polymicrobial interactions. Our work suggests that therapeutic phages could more broadly influence bacterial community composition outside their intended host targets.




omi

Erratum for Townsend et al., "A Master Regulator of Bacteroides thetaiotaomicron Gut Colonization Controls Carbohydrate Utilization and an Alternative Protein Synthesis Factor"




omi

Gamma Interferon Is Required for Chlamydia Clearance but Is Dispensable for T Cell Homing to the Genital Tract

ABSTRACT

While there is no effective vaccine against Chlamydia trachomatis infection, previous work has demonstrated the importance of C. trachomatis-specific CD4+ T cells (NR1 T cells) in pathogen clearance. Specifically, NR1 T cells have been shown to be protective in mice, and this protection depends on the host’s ability to sense the cytokine gamma interferon (IFN-). However, it is unclear what role NR1 production or sensing of IFN- plays in T cell homing to the genital tract or T cell-mediated protection against C. trachomatis. Using two-photon microscopy and flow cytometry, we found that naive wild-type (WT), IFN-–/–, and IFN-R–/– NR1 T cells specifically home to sections in the genital tract that contain C. trachomatis. We also determined that protection against infection requires production of IFN- from either NR1 T cells or endogenous cells, further highlighting the importance of IFN- in clearing C. trachomatis infection.

IMPORTANCE Chlamydia trachomatis is an important mucosal pathogen that is the leading cause of sexually transmitted bacterial infections in the United States. Despite this, there is no vaccine currently available. In order to develop such a vaccine, it is necessary to understand the components of the immune response that can lead to protection against this pathogen. It is well known that antigen-specific CD4+ T cells are critical for Chlamydia clearance, but the contexts in which they are protective or not protective are unknown. Here, we aimed to characterize the importance of gamma interferon production and sensing by T cells and the effects on the immune response to C. trachomatis. Our work here helps to define the contexts in which antigen-specific T cells can be protective, which is critical to our ability to design an effective and protective vaccine against C. trachomatis.




omi

A Solution to Antifolate Resistance in Group B Streptococcus: Untargeted Metabolomics Identifies Human Milk Oligosaccharide-Induced Perturbations That Result in Potentiation of Trimethoprim

ABSTRACT

Adjuvants can be used to potentiate the function of antibiotics whose efficacy has been reduced by acquired or intrinsic resistance. In the present study, we discovered that human milk oligosaccharides (HMOs) sensitize strains of group B Streptococcus (GBS) to trimethoprim (TMP), an antibiotic to which GBS is intrinsically resistant. Reductions in the MIC of TMP reached as high as 512-fold across a diverse panel of isolates. To better understand HMOs’ mechanism of action, we characterized the metabolic response of GBS to HMO treatment using ultrahigh-performance liquid chromatography–high-resolution tandem mass spectrometry (UPLC-HRMS/MS) analysis. These data showed that when challenged by HMOs, GBS undergoes significant perturbations in metabolic pathways related to the biosynthesis and incorporation of macromolecules involved in membrane construction. This study represents reports the metabolic characterization of a cell that is perturbed by HMOs.

IMPORTANCE Group B Streptococcus is an important human pathogen that causes serious infections during pregnancy which can lead to chorioamnionitis, funisitis, premature rupture of gestational membranes, preterm birth, neonatal sepsis, and death. GBS is evolving antimicrobial resistance mechanisms, and the work presented in this paper provides evidence that prebiotics such as human milk oligosaccharides can act as adjuvants to restore the utility of antibiotics.




omi

Sulfamoyl Heteroarylcarboxylic Acids as Promising Metallo-{beta}-Lactamase Inhibitors for Controlling Bacterial Carbapenem Resistance

ABSTRACT

Production of metallo-β-lactamases (MBLs), which hydrolyze carbapenems, is a cause of carbapenem resistance in Enterobacteriaceae. Development of effective inhibitors for MBLs is one approach to restore carbapenem efficacy in carbapenem-resistant Enterobacteriaceae (CRE). We report here that sulfamoyl heteroarylcarboxylic acids (SHCs) can competitively inhibit the globally spreading and clinically relevant MBLs (i.e., IMP-, NDM-, and VIM-type MBLs) at nanomolar to micromolar orders of magnitude. Addition of SHCs restored meropenem efficacy against 17/19 IMP-type and 7/14 NDM-type MBL-producing Enterobacteriaceae to satisfactory clinical levels. SHCs were also effective against IMP-type MBL-producing Acinetobacter spp. and engineered Escherichia coli strains overproducing individual minor MBLs (i.e., TMB-2, SPM-1, DIM-1, SIM-1, and KHM-1). However, SHCs were less effective against MBL-producing Pseudomonas aeruginosa. Combination therapy with meropenem and SHCs successfully cured mice infected with IMP-1-producing E. coli and dually NDM-1/VIM-1-producing Klebsiella pneumoniae clinical isolates. X-ray crystallographic analyses revealed the inhibition mode of SHCs against MBLs; the sulfamoyl group of SHCs coordinated to two zinc ions, and the carboxylate group coordinated to one zinc ion and bound to positively charged amino acids Lys224/Arg228 conserved in MBLs. Preclinical testing revealed that the SHCs showed low toxicity in cell lines and mice and high stability in human liver microsomes. Our results indicate that SHCs are promising lead compounds for inhibitors of MBLs to combat MBL-producing CRE.

IMPORTANCE Carbapenem antibiotics are the last resort for control of severe infectious diseases, bloodstream infections, and pneumonia caused by Gram-negative bacteria, including Enterobacteriaceae. However, carbapenem-resistant Enterobacteriaceae (CRE) strains have spread globally and are a critical concern in clinical settings because CRE infections are recognized as a leading cause of increased mortality among hospitalized patients. Most CRE produce certain kinds of serine carbapenemases (e.g., KPC- and GES-type β-lactamases) or metallo-β-lactamases (MBLs), which can hydrolyze carbapenems. Although effective MBL inhibitors are expected to restore carbapenem efficacy against MBL-producing CRE, no MBL inhibitor is currently clinically available. Here, we synthesized 2,5-diethyl-1-methyl-4-sulfamoylpyrrole-3-carboxylic acid (SPC), which is a potent inhibitor of MBLs. SPC is a remarkable lead compound for clinically useful MBL inhibitors and can potentially provide a considerable benefit to patients receiving treatment for lethal infectious diseases caused by MBL-producing CRE.




omi

Metagenomic Exploration of the Marine Sponge Mycale hentscheli Uncovers Multiple Polyketide-Producing Bacterial Symbionts

ABSTRACT

Marine sponges have been a prolific source of unique bioactive compounds that are presumed to act as a deterrent to predation. Many of these compounds have potential therapeutic applications; however, the lack of efficient and sustainable synthetic routes frequently limits clinical development. Here, we describe a metagenomic investigation of Mycale hentscheli, a chemically gifted marine sponge that possesses multiple distinct chemotypes. We applied shotgun metagenomic sequencing, hybrid assembly of short- and long-read data, and metagenomic binning to obtain a comprehensive picture of the microbiome of five specimens, spanning three chemotypes. Our data revealed multiple producing species, each having relatively modest secondary metabolomes, that contribute collectively to the chemical arsenal of the holobiont. We assembled complete genomes for multiple new genera, including two species that produce the cytotoxic polyketides pateamine and mycalamide, as well as a third high-abundance symbiont harboring a proteusin-type biosynthetic pathway that appears to encode a new polytheonamide-like compound. We also identified an additional 188 biosynthetic gene clusters, including a pathway for biosynthesis of peloruside. These results suggest that multiple species cooperatively contribute to defensive symbiosis in M. hentscheli and reveal that the taxonomic diversity of secondary-metabolite-producing sponge symbionts is larger and richer than previously recognized.

IMPORTANCE Mycale hentscheli is a marine sponge that is rich in bioactive small molecules. Here, we use direct metagenomic sequencing to elucidate highly complete and contiguous genomes for the major symbiotic bacteria of this sponge. We identify complete biosynthetic pathways for the three potent cytotoxic polyketides which have previously been isolated from M. hentscheli. Remarkably, and in contrast to previous studies of marine sponges, we attribute each of these metabolites to a different producing microbe. We also find that the microbiome of M. hentscheli is stably maintained among individuals, even over long periods of time. Collectively, our data suggest a cooperative mode of defensive symbiosis in which multiple symbiotic bacterial species cooperatively contribute to the defensive chemical arsenal of the holobiont.




omi

Nucleic Acid-Sensing Toll-Like Receptors Play a Dominant Role in Innate Immune Recognition of Pneumococci

ABSTRACT

Streptococcus pneumoniae (or pneumococcus) is a highly prevalent human pathogen. Toll-like receptors (TLRs) function as immune sensors that can trigger host defenses against this bacterium. Defects in TLR-activated signaling pathways, including deficiency in the adaptor protein myeloid differentiation factor 88 (MyD88), are associated with markedly increased susceptibility to infection. However, the individual MyD88-dependent TLRs predominantly involved in antipneumococcal defenses have not been identified yet. Here we find that triple knockout mice simultaneously lacking TLR7, TLR9, and TLR13, which sense the presence of bacterial DNA (TLR9) and RNA (TLR7 and TLR13) in the phagolysosomes of phagocytic cells, display a phenotype that largely resembles that of MyD88-deficient mice and rapidly succumb to pneumococcal pneumonitis due to defective neutrophil influx into the lung. Accordingly, TLR7/9/13 triple knockout resident alveolar macrophages were largely unable to respond to pneumococci with the production of neutrophil-attracting chemokines and cytokines. Mice with single deficiencies of TLR7, TLR9, or TLR13 showed unaltered ability to control lung infection but were moderately more susceptible to encephalitis, in association with a decreased ability of microglia to mount cytokine responses in vitro. Our data point to a dominant, tissue-specific role of nucleic acid-sensing pathways in innate immune recognition of S. pneumoniae and also show that endosomal TLRs are largely capable of compensating for the absence of each other, which seems crucial to prevent pneumococci from escaping immune recognition. These results may be useful to develop novel strategies to treat infections by antibiotic-resistant pneumococci based on stimulation of the innate immune system.

IMPORTANCE The pneumococcus is a bacterium that frequently causes infections in the lungs, ears, sinus cavities, and meninges. During these infections, body defenses are triggered by tissue-resident cells that use specialized receptors, such as Toll-like receptors (TLRs), to sense the presence of bacteria. We show here that pneumococci are predominantly detected by TLRs that are located inside intracellular vacuoles, including endosomes, where these receptors can sense the presence of nucleic acids released from ingested bacteria. Mice that simultaneously lacked three of these receptors (specifically, TLR7, TLR9, and TLR13) were extremely susceptible to lung infection and rapidly died after inhalation of pneumococci. Moreover, tissue-resident macrophages from these mice were impaired in their ability to respond to the presence of pneumococci by producing inflammatory mediators capable of recruiting polymorphonuclear leucocytes to infection sites. This information may be useful to develop drugs to treat pneumococcal infections, particularly those caused by antibiotic-resistant strains.




omi

Tracing the Evolutionary History and Global Expansion of Candida auris Using Population Genomic Analyses

ABSTRACT

Candida auris has emerged globally as a multidrug-resistant yeast that can spread via nosocomial transmission. An initial phylogenetic study of isolates from Japan, India, Pakistan, South Africa, and Venezuela revealed four populations (clades I, II, III, and IV) corresponding to these geographic regions. Since this description, C. auris has been reported in more than 30 additional countries. To trace this global emergence, we compared the genomes of 304 C. auris isolates from 19 countries on six continents. We found that four predominant clades persist across wide geographic locations. We observed phylogeographic mixing in most clades; clade IV, with isolates mainly from South America, demonstrated the strongest phylogeographic substructure. C. auris isolates from two clades with opposite mating types were detected contemporaneously in a single health care facility in Kenya. We estimated a Bayesian molecular clock phylogeny and dated the origin of each clade within the last 360 years; outbreak-causing clusters from clades I, III, and IV originated 36 to 38 years ago. We observed high rates of antifungal resistance in clade I, including four isolates resistant to all three major classes of antifungals. Mutations that contribute to resistance varied between the clades, with Y132F in ERG11 as the most widespread mutation associated with azole resistance and S639P in FKS1 for echinocandin resistance. Copy number variants in ERG11 predominantly appeared in clade III and were associated with fluconazole resistance. These results provide a global context for the phylogeography, population structure, and mechanisms associated with antifungal resistance in C. auris.

IMPORTANCE In less than a decade, C. auris has emerged in health care settings worldwide; this species is capable of colonizing skin and causing outbreaks of invasive candidiasis. In contrast to other Candida species, C. auris is unique in its ability to spread via nosocomial transmission and its high rates of drug resistance. As part of the public health response, whole-genome sequencing has played a major role in characterizing transmission dynamics and detecting new C. auris introductions. Through a global collaboration, we assessed genome evolution of isolates of C. auris from 19 countries. Here, we described estimated timing of the expansion of each C. auris clade and of fluconazole resistance, characterized discrete phylogeographic population structure of each clade, and compared genome data to sensitivity measurements to describe how antifungal resistance mechanisms vary across the population. These efforts are critical for a sustained, robust public health response that effectively utilizes molecular epidemiology.




omi

Long-acting, Injectable Buprenorphine: Great Promise, but Significant Barriers to Use

To the Editor—A 30-day injectable form of buprenorphine branded as SublocadeTM (Buprenorphine XR SQ) was approved by the FDA in 2017. This medication is administered by a health care professional subcutaneously in the abdomen to treat opioid use disorder. This long-acting delivery system holds great promise for many patients who have barriers to taking daily transmucosal buprenorphine-containing medications such as those with poor adherence to a daily medication. It is beneficial for those who have difficulty safely storing their medications, including patients who have children in the home, unstable housing, or live with others who have a use disorder. This product is also an option for patients who prefer mono-product buprenorphine. As Buprenorphine XR SQ is administered directly by a health care professional, it does not contain the abuse-deterrent naloxone that some patients feel causes side effects.

There are two ways to acquire Buprenorphine XR SQ: 1) order product from the distributor (buy and bill); or 2) dispensed from a specialty pharmacy for a specific patient (specialty pharmacy) [1]. For the buy and bill option, the health care setting must be certified through the Risk Evaluation and Mitigation Strategy (REMS) program and adhere to dispensing regulations [2]. We found this challenging to implement in the outpatient setting, thus we pursued the specialty pharmacy option. It ultimately took us nearly one year to complete the process.

The following are the barriers we faced with our first attempt. As a controlled substance, the medication must be stored in a refrigerated lockbox. Before...




omi

Phosphomimetic T335D Mutation of Hydroxypyruvate Reductase 1 Modifies Cofactor Specificity and Impacts Arabidopsis Growth in Air

Photorespiration is an essential process in oxygenic photosynthetic organisms triggered by the oxygenase activity of Rubisco. In peroxisomes, photorespiratory HYDROXYPYRUVATE REDUCTASE1 (HPR1) catalyzes the conversion of hydroxypyruvate to glycerate together with the oxidation of a pyridine nucleotide cofactor. HPR1 regulation remains poorly understood; however, HPR1 phosphorylation at T335 has been reported. By comparing the kinetic properties of phosphomimetic (T335D), nonphosphorylatable (T335A), and wild-type recombinant Arabidopsis (Arabidopsis thaliana) HPR1, it was found that HPR1-T335D exhibits reduced NADH-dependent hydroxypyruvate reductase activity while showing improved NADPH-dependent activity. Complementation of the Arabidopsis hpr1-1 mutant by either wild-type HPR1 or HPR1-T335A fully complemented the photorespiratory growth phenotype of hpr1-1 in ambient air, whereas HPR1-T335D-containing hpr1-1 plants remained smaller and had lower photosynthetic CO2 assimilation rates. Metabolite analyses indicated that these phenotypes were associated with subtle perturbations in the photorespiratory cycle of HPR1-T335D-complemented hpr1-1 rosettes compared to all other HPR1-containing lines. Therefore, T335 phosphorylation may play a role in the regulation of HPR1 activity in planta, although it was not required for growth under ambient air controlled conditions. Furthermore, improved NADP-dependent HPR1 activities in peroxisomes could not compensate for the reduced NADH-dependent HPR1 activity.




omi

Overcoming Algal Vitamin B12 Auxotrophy by Experimental Evolution




omi

A Triadic Intervention for Adolescent Sexual Health: A Randomized Clinical Trial

OBJECTIVES:

In this study, we evaluate the efficacy of Families Talking Together (FTT), a triadic intervention to reduce adolescent sexual risk behavior.

METHODS:

Adolescents aged 11 to 14 and their female caregivers were recruited from a pediatric clinic; 900 families were enrolled; 84 declined. Families were randomly assigned to FTT or 1 of 2 control conditions. The FTT triadic intervention consisted of a 45-minute face-to-face session for mothers, health care provider endorsement of intervention content, printed materials for families, and a booster call for mothers. The primary outcomes were ever having had vaginal intercourse, sexual debut within the past 12 months, and condom use at last sexual intercourse. Assessments occurred at baseline, 3 months post baseline, and 12 months post baseline.

RESULTS:

Of enrolled families, 73.4% identified as Hispanic, 20.4% as African American, and 6.2% as mixed race. Mean maternal age was 38.8 years, and mean adolescent grade was seventh grade. At the 12-month follow-up, 5.2% of adolescents in the experimental group reported having had sexual intercourse, compared with 18% of adolescents in the control groups (P < .05). In the experimental group, 4.7% of adolescents reported sexual debut within the past 12 months, compared with 14.7% of adolescents in the control group (P < .05). In the experimental group, 74.2% of sexually active adolescents indicated using a condom at last sexual intercourse, compared with 49.1% of adolescents in the control group (P < .05).

CONCLUSIONS:

This research suggests that the FTT triadic intervention is efficacious in delaying sexual debut and reducing sexual risk behavior among adolescents.




omi

Teenager With Abdominal Pain and Decreased Appetite

A 16-year-old girl presented to her primary care physician with a one-month history of decreased appetite and abdominal pain. She had normal bowel movements and no vomiting, but her periumbilical pain limited her ability to finish most meals. She had gradual weight loss over the previous 2 years, and during the previous 4 years, she intermittently received counseling for depression after the loss of her mother. Her initial physical examination and laboratory evaluation were unremarkable. She was referred to a nutritionist, adolescent medicine, and pediatric gastroenterology. Her presentation evolved over time, which ultimately led to a definitive diagnosis.




omi

Genetic Associations in Four Decades of Multienvironment Trials Reveal Agronomic Trait Evolution in Common Bean [Genetics of Complex Traits]

Multienvironment trials (METs) are widely used to assess the performance of promising crop germplasm. Though seldom designed to elucidate genetic mechanisms, MET data sets are often much larger than could be duplicated for genetic research and, given proper interpretation, may offer valuable insights into the genetics of adaptation across time and space. The Cooperative Dry Bean Nursery (CDBN) is a MET for common bean (Phaseolus vulgaris) grown for > 70 years in the United States and Canada, consisting of 20–50 entries each year at 10–20 locations. The CDBN provides a rich source of phenotypic data across entries, years, and locations that is amenable to genetic analysis. To study stable genetic effects segregating in this MET, we conducted genome-wide association studies (GWAS) using best linear unbiased predictions derived across years and locations for 21 CDBN phenotypes and genotypic data (1.2 million SNPs) for 327 CDBN genotypes. The value of this approach was confirmed by the discovery of three candidate genes and genomic regions previously identified in balanced GWAS. Multivariate adaptive shrinkage (mash) analysis, which increased our power to detect significant correlated effects, found significant effects for all phenotypes. Mash found two large genomic regions with effects on multiple phenotypes, supporting a hypothesis of pleiotropic or linked effects that were likely selected on in pursuit of a crop ideotype. Overall, our results demonstrate that statistical genomics approaches can be used on MET phenotypic data to discover significant genetic effects and to define genomic regions associated with crop improvement.




omi

Dominance Effects and Functional Enrichments Improve Prediction of Agronomic Traits in Hybrid Maize [Genomic Prediction]

Single-cross hybrids have been critical to the improvement of maize (Zea mays L.), but the characterization of their genetic architectures remains challenging. Previous studies of hybrid maize have shown the contribution of within-locus complementation effects (dominance) and their differential importance across functional classes of loci. However, they have generally considered panels of limited genetic diversity, and have shown little benefit from genomic prediction based on dominance or functional enrichments. This study investigates the relevance of dominance and functional classes of variants in genomic models for agronomic traits in diverse populations of hybrid maize. We based our analyses on a diverse panel of inbred lines crossed with two testers representative of the major heterotic groups in the U.S. (1106 hybrids), as well as a collection of 24 biparental populations crossed with a single tester (1640 hybrids). We investigated three agronomic traits: days to silking (DTS), plant height (PH), and grain yield (GY). Our results point to the presence of dominance for all traits, but also among-locus complementation (epistasis) for DTS and genotype-by-environment interactions for GY. Consistently, dominance improved genomic prediction for PH only. In addition, we assessed enrichment of genetic effects in classes defined by genic regions (gene annotation), structural features (recombination rate and chromatin openness), and evolutionary features (minor allele frequency and evolutionary constraint). We found support for enrichment in genic regions and subsequent improvement of genomic prediction for all traits. Our results suggest that dominance and gene annotations improve genomic prediction across diverse populations in hybrid maize.




omi

Fast Algorithms for Conducting Large-Scale GWAS of Age-at-Onset Traits Using Cox Mixed-Effects Models [Statistical Genetics and Genomics]

Age-at-onset is one of the critical traits in cohort studies of age-related diseases. Large-scale genome-wide association studies (GWAS) of age-at-onset traits can provide more insights into genetic effects on disease progression and transitions between stages. Moreover, proportional hazards (or Cox) regression models can achieve higher statistical power in a cohort study than a case-control trait using logistic regression. Although mixed-effects models are widely used in GWAS to correct for sample dependence, application of Cox mixed-effects models (CMEMs) to large-scale GWAS is so far hindered by intractable computational cost. In this work, we propose COXMEG, an efficient R package for conducting GWAS of age-at-onset traits using CMEMs. COXMEG introduces fast estimation algorithms for general sparse relatedness matrices including, but not limited to, block-diagonal pedigree-based matrices. COXMEG also introduces a fast and powerful score test for dense relatedness matrices, accounting for both population stratification and family structure. In addition, COXMEG generalizes existing algorithms to support positive semidefinite relatedness matrices, which are common in twin and family studies. Our simulation studies suggest that COXMEG, depending on the structure of the relatedness matrix, is orders of magnitude computationally more efficient than coxme and coxph with frailty for GWAS. We found that using sparse approximation of relatedness matrices yielded highly comparable results in controlling false-positive rate and retaining statistical power for an ethnically homogeneous family-based sample. By applying COXMEG to a study of Alzheimer’s disease (AD) with a Late-Onset Alzheimer’s Disease Family Study from the National Institute on Aging sample comprising 3456 non-Hispanic whites and 287 African Americans, we identified the APOE 4 variant with strong statistical power (P = 1e–101), far more significant than that reported in a previous study using a transformed variable and a marginal Cox model. Furthermore, we identified novel SNP rs36051450 (P = 2e–9) near GRAMD1B, the minor allele of which significantly reduced the hazards of AD in both genders. These results demonstrated that COXMEG greatly facilitates the application of CMEMs in GWAS of age-at-onset traits.




omi

Cytomegalovirus Coinfection Is Associated with Increased Vascular-Homing CD57+ CD4 T Cells in HIV Infection [INFECTIOUS DISEASE AND HOST RESPONSE]

Key Points

  • CMV coinfection promotes the generation of CD57+ CD4 Tmem in PLWH.

  • CD2/LFA-3 costimulation enhances the functionality of CD57+ CD4 Tmem.

  • IL-15 and TNF enhance chemoattraction of CD57+ CD4 Tmem to CX3CL1+ endothelial cells.




    omi

    Characterization and Genomic Analysis of ValSw3-3, a New Siphoviridae Bacteriophage Infecting Vibrio alginolyticus [Genetic Diversity and Evolution]

    A novel lytic bacteriophage, ValSw3-3, which efficiently infects pathogenic strains of Vibrio alginolyticus, was isolated from sewage water and characterized by microbiological and in silico genomic analyses. Transmission electron microscopy indicated that ValSw3-3 has the morphology of siphoviruses. This phage can infect four species in the Vibrio genus and has a latent period of 15 min and a burst size of 95 ± 2 PFU/infected bacterium. Genome sequencing results show that ValSw3-3 has a 39,846-bp double-stranded DNA genome with a GC content of 43.1%. The similarity between the genome sequences of ValSw3-3 and those of other phages recorded in the GenBank database was below 50% (42%), suggesting that ValSw3-3 significantly differs from previously reported phages at the DNA level. Multiple genome comparisons and phylogenetic analysis based on the major capsid protein revealed that phage ValSw3-3 is grouped in a clade with five other phages, including Listonella phage phiHSIC (GenBank accession no. NC_006953.1), Vibrio phage P23 (MK097141.1), Vibrio phage pYD8-B (NC_021561.1), Vibrio phage 2E1 (KX507045.1), and Vibrio phage 12G5 (HQ632860.1), and is distinct from all known genera within the Siphoviridae family that have been ratified by the International Committee on Taxonomy of Viruses (ICTV). An in silico proteomic comparison of diverse phages from the Siphoviridae family supported this clustering result and suggested that ValSw3-3, phiHSIC, P23, pYD8-B, 2E1, and 12G5 should be classified as a novel genus cluster of Siphoviridae. A subsequent analysis of core genes also revealed the common genes shared within this new cluster. Overall, these results provide a characterization of Vibrio phage ValSw3-3 and support our proposal of a new viral genus within the family Siphoviridae.

    IMPORTANCE Phage therapy has been considered a potential alternative to antibiotic therapy in treating bacterial infections. For controlling the vibriosis-causing pathogen Vibrio alginolyticus, well-documented phage candidates are still lacking. Here, we characterize a novel lytic Vibrio phage, ValSw3-3, based on its morphology, host range and infectivity, growth characteristics, stability under various conditions, and genomic features. Our results show that ValSw3-3 could be a potent candidate for phage therapy to treat V. alginolyticus infections due to its stronger infectivity and better pH and thermal stability than those of previously reported Vibrio phages. Moreover, genome sequence alignments, phylogenetic analysis, in silico proteomic comparison, and core gene analysis all support that this novel phage, ValSw3-3, and five unclassified phages form a clade distant from those of other known genera ratified by the ICTV. Thus, we propose a new viral genus within the Siphoviridae family to accommodate this clade, with ValSw3-3 as a representative member.




    omi

    Sample multiplexing for targeted pathway proteomics in aging mice [Systems Biology]

    Pathway proteomics strategies measure protein expression changes in specific cellular processes that carry out related functions. Using targeted tandem mass tags-based sample multiplexing, hundreds of proteins can be quantified across 10 or more samples simultaneously. To facilitate these highly complex experiments, we introduce a strategy that provides complete control over...




    omi

    Asking young children to &#x201C;do science&#x201D; instead of &#x201C;be scientists&#x201D; increases science engagement in a randomized field experiment [Psychological and Cognitive Sciences]

    Subtle features of common language can imply to young children that scientists are a special and distinct kind of person—a way of thinking that can interfere with the development of children’s own engagement with science. We conducted a large field experiment (involving 45 prekindergarten schools, 130 teachers, and over 1,100...




    omi

    Single-cell O2 exchange imaging shows that cytoplasmic diffusion is a dominant barrier to efficient gas transport in red blood cells [Physiology]

    Disorders of oxygen transport are commonly attributed to inadequate carrying capacity (anemia) but may also relate to inefficient gas exchange by red blood cells (RBCs), a process that is poorly characterized yet assumed to be rapid. Without direct measurements of gas exchange at the single-cell level, the barriers to O2...




    omi

    Isolation and Characterization of the Novel Phage JD032 and Global Transcriptomic Response during JD032 Infection of Clostridioides difficile Ribotype 078

    ABSTRACT

    Insights into the interaction between phages and their bacterial hosts are crucial for the development of phage therapy. However, only one study has investigated global gene expression of Clostridioides (formerly Clostridium) difficile carrying prophage, and transcriptional reprogramming during lytic infection has not been studied. Here, we presented the isolation, propagation, and characterization of a newly discovered 35,109-bp phage, JD032, and investigated the global transcriptomes of both JD032 and C. difficile ribotype 078 (RT078) strain TW11 during JD032 infection. Transcriptome sequencing (RNA-seq) revealed the progressive replacement of bacterial host mRNA with phage transcripts. The expressed genes of JD032 were clustered into early, middle, and late temporal categories that were functionally similar. Specifically, a gene (JD032_orf016) involved in the lysis-lysogeny decision was identified as an early expression gene. Only 17.7% (668/3,781) of the host genes were differentially expressed, and more genes were downregulated than upregulated. The expression of genes involved in host macromolecular synthesis (DNA/RNA/proteins) was altered by JD032 at the level of transcription. In particular, the expression of the ropA operon was downregulated. Most noteworthy is that the gene expression of some antiphage systems, including CRISPR-Cas, restriction-modification, and toxin-antitoxin systems, was suppressed by JD032 during infection. In addition, bacterial sporulation, adhesion, and virulence factor genes were significantly downregulated. This study provides the first description of the interaction between anaerobic spore-forming bacteria and phages during lytic infection and highlights new aspects of C. difficile phage-host interactions.

    IMPORTANCE C. difficile is one of the most clinically significant intestinal pathogens. Although phages have been shown to effectively control C. difficile infection, the host responses to phage predation have not been fully studied. In this study, we reported the isolation and characterization of a new phage, JD032, and analyzed the global transcriptomic changes in the hypervirulent RT078 C. difficile strain, TW11, during phage JD032 infection. We found that bacterial host mRNA was progressively replaced with phage transcripts, three temporal categories of JD032 gene expression, the extensive interplay between phage-bacterium, antiphage-like responses of the host and phage evasion, and decreased expression of sporulation- and virulence-related genes of the host after phage infection. These findings confirmed the complexity of interactions between C. difficile and phages and suggest that phages undergoing a lytic cycle may also cause different phenotypes in hosts, similar to prophages, which may inspire phage therapy for the control of C. difficile.




    omi

    In vitro-virtual-reality: an anatomically explicit musculoskeletal simulation powered by in vitro muscle using closed loop tissue-software interaction [METHODS [amp ] TECHNIQUES]

    Christopher T. Richards and Enrico A. Eberhard

    Muscle force-length dynamics are governed by intrinsic contractile properties, motor stimulation and mechanical load. Although intrinsic properties are well-characterised, physiologists lack in vitro instrumentation accounting for combined effects of limb inertia, musculoskeletal architecture and contractile dynamics. We introduce in vitro virtual-reality (in vitro-VR) which enables in vitro muscle tissue to drive a musculoskeletal jumping simulation. In hardware, muscle force from a frog plantaris was transmitted to a software model where joint torques, inertia and ground reaction forces were computed to advance the simulation at 1 kHz. To close the loop, simulated muscle strain was returned to update in vitro length. We manipulated 1) stimulation timing and, 2) the virtual muscle's anatomical origin. This influenced interactions among muscular, inertial, gravitational and contact forces dictating limb kinematics and jump performance. We propose that in vitro-VR can be used to illustrate how neuromuscular control and musculoskeletal anatomy influence muscle dynamics and biomechanical performance.




    omi

    Renal, Cardiovascular, and Safety Outcomes of Canagliflozin by Baseline Kidney Function: A Secondary Analysis of the CREDENCE Randomized Trial

    Background

    Canagliflozin reduced renal and cardiovascular events in people with type 2 diabetes in the CREDENCE trial. We assessed efficacy and safety of canagliflozin by initial estimated glomerular filtration rate (eGFR).

    Methods

    CREDENCE randomly assigned 4401 participants with an eGFR of 30 to <90 ml/min per 1.73 m2 and substantial albuminuria to canagliflozin 100 mg or placebo. We used Cox proportional hazards regression to analyze effects on renal and cardiovascular efficacy and safety outcomes within screening eGFR subgroups (30 to <45, 45 to <60, and 60 to <90 ml/min per 1.73 m2) and linear mixed effects models to analyze the effects on eGFR slope.

    Results

    At screening, 1313 (30%), 1279 (29%), and 1809 (41%) participants had an eGFR of 30 to <45, 45 to <60, and 60 to <90 ml/min per 1.73 m2, respectively. The relative benefits of canagliflozin for renal and cardiovascular outcomes appeared consistent among eGFR subgroups (all P interaction >0.11). Subgroups with lower eGFRs, who were at greater risk, exhibited larger absolute benefits for renal outcomes. Canagliflozin’s lack of effect on serious adverse events, amputations, and fractures appeared consistent among eGFR subgroups. In all subgroups, canagliflozin use led to an acute eGFR drop followed by relative stabilization of eGFR loss. Among those with an eGFR of 30 to <45 ml/min per 1.73 m2, canagliflozin led to an initial drop of 2.03 ml/min per 1.73 m2. Thereafter, decline in eGFR was slower in the canagliflozin versus placebo group (–1.72 versus –4.33 ml/min per 1.73 m2; between-group difference 2.61 ml/min per 1.73 m2).

    Conclusions

    Canagliflozin safely reduced the risk of renal and cardiovascular events, with consistent results across eGFR subgroups, including the subgroup initiating treatment with an eGFR of 30 to <45 ml/min per 1.73 m2. Absolute benefits for renal outcomes were greatest in subgroups with lower eGFR.

    Clinical Trial registry name and registration number

    Evaluation of the Effects of Canagliflozin on Renal and Cardiovascular Outcomes in Participants With Diabetic Nephropathy (CREDENCE), NCT02065791.




    omi

    Effect of Low-Sodium versus Conventional Sodium Dialysate on Left Ventricular Mass in Home and Self-Care Satellite Facility Hemodialysis Patients: A Randomized Clinical Trial

    Background

    Fluid overload in patients undergoing hemodialysis contributes to cardiovascular morbidity and mortality. There is a global trend to lower dialysate sodium with the goal of reducing fluid overload.

    Methods

    To investigate whether lower dialysate sodium during hemodialysis reduces left ventricular mass, we conducted a randomized trial in which patients received either low-sodium dialysate (135 mM) or conventional dialysate (140 mM) for 12 months. We included participants who were aged >18 years old, had a predialysis serum sodium ≥135 mM, and were receiving hemodialysis at home or a self-care satellite facility. Exclusion criteria included hemodialysis frequency >3.5 times per week and use of sodium profiling or hemodiafiltration. The main outcome was left ventricular mass index by cardiac magnetic resonance imaging.

    Results

    The 99 participants had a median age of 51 years old; 67 were men, 31 had diabetes mellitus, and 59 had left ventricular hypertrophy. Over 12 months of follow-up, relative to control, a dialysate sodium concentration of 135 mmol/L did not change the left ventricular mass index, despite significant reductions at 6 and 12 months in interdialytic weight gain, in extracellular fluid volume, and in plasma B-type natriuretic peptide concentration (ratio of intervention to control). The intervention increased intradialytic hypotension (odds ratio [OR], 7.5; 95% confidence interval [95% CI], 1.1 to 49.8 at 6 months and OR, 3.6; 95% CI, 0.5 to 28.8 at 12 months). Five participants in the intervention arm could not complete the trial because of hypotension. We found no effect on health-related quality of life measures, perceived thirst or xerostomia, or dietary sodium intake.

    Conclusions

    Dialysate sodium of 135 mmol/L did not reduce left ventricular mass relative to control, despite improving fluid status.

    Clinical Trial registry name and registration number:

    The Australian New Zealand Clinical Trials Registry, ACTRN12611000975998.




    omi

    Tubular STAT3 Limits Renal Inflammation in Autosomal Dominant Polycystic Kidney Disease

    Background

    The inactivation of the ciliary proteins polycystin 1 or polycystin 2 leads to autosomal dominant polycystic kidney disease (ADPKD). Although signaling by primary cilia and interstitial inflammation both play a critical role in the disease, the reciprocal interactions between immune and tubular cells are not well characterized. The transcription factor STAT3, a component of the cilia proteome that is involved in crosstalk between immune and nonimmune cells in various tissues, has been suggested as a factor fueling ADPKD progression.

    Method

    To explore how STAT3 intersects with cilia signaling, renal inflammation, and cyst growth, we used conditional murine models involving postdevelopmental ablation of Pkd1, Stat3, and cilia, as well as cultures of cilia-deficient or STAT3-deficient tubular cell lines.

    Results

    Our findings indicate that, although primary cilia directly modulate STAT3 activation in vitro, the bulk of STAT3 activation in polycystic kidneys occurs through an indirect mechanism in which primary cilia trigger macrophage recruitment to the kidney, which in turn promotes Stat3 activation. Surprisingly, although inactivating Stat3 in Pkd1-deficient tubules slightly reduced cyst burden, it resulted in a massive infiltration of the cystic kidneys by macrophages and T cells, precluding any improvement of kidney function. We also found that Stat3 inactivation led to increased expression of the inflammatory chemokines CCL5 and CXCL10 in polycystic kidneys and cultured tubular cells.

    Conclusions

    STAT3 appears to repress the expression of proinflammatory cytokines and restrict immune cell infiltration in ADPKD. Our findings suggest that STAT3 is not a critical driver of cyst growth in ADPKD but rather plays a major role in the crosstalk between immune and tubular cells that shapes disease expression.




    omi

    Probiotics for the Prevention of Ventilator-Associated Pneumonia: A Meta-Analysis of Randomized Controlled Trials

    BACKGROUND:Ventilator-associated pneumonia (VAP) is a common and serious complication of mechanical ventilation. We conducted a meta-analysis of published randomized controlled trials to evaluate the efficacy and safety of probiotics for VAP prevention in patients who received mechanical ventilation.METHODS:We searched a number of medical literature databases to identify randomized controlled trials that compared probiotics with controls for VAP prevention. The results were expressed as odds ratios (OR) or mean differences with accompanying 95% CIs. Study-level data were pooled by using a random-effects model. Data syntheses were accomplished by using statistical software.RESULTS:Fourteen studies that involved 1,975 subjects met our inclusion criteria. Probiotic administration was associated with a reduction in VAP incidence among all 13 studies included in the meta-analysis (OR 0.62, 95% CI 0.45–0.85; P = .003; I2 = 43%) but not among the 6 double-blinded studies (OR 0.72, 95% CI 0.44–1.19; P = .20; I2 = 55%). We found a shorter duration of antibiotic use for VAP (mean difference −1.44, 95% CI −2.88 to −0.01; P = .048, I2 = 30%) in the probiotics group than in the control group, and the finding comes from just 2 studies. No statistically significant differences were found between the groups in terms of ICU mortality (OR 0.95, 95% CI 0.67–1.34; P = .77; I2 = 0%), ICU stay (mean difference –0.77, 95% CI –2.58 to 1.04; P = .40; I2 = 43%), duration of mechanical ventilation (mean difference –0.91, 95% CI –2.20 to 0.38; P = .17; I2 = 25%), or occurrence of diarrhea (OR 0.72, 95% CI 0.45–1.15; P = .17; I2 = 41%).CONCLUSIONS:The meta-analysis results indicated that the administration of probiotics significantly reduced the incidence of VAP. Furthermore, our findings need to be verified in large-scale, well-designed, randomized, multi-center trials.




    omi

    Correction to "Quantitative Proteomics of Clinically Relevant Drug-Metabolizing Enzymes and Drug Transporters and Their Intercorrelations in the Human Small Intestine" [Errata]




    omi

    Phosphoproteomic characterization of the signaling network resulting from activation of the chemokine receptor CCR2 [Genomics and Proteomics]

    Leukocyte recruitment is a universal feature of tissue inflammation and regulated by the interactions of chemokines with their G protein–coupled receptors. Activation of CC chemokine receptor 2 (CCR2) by its cognate chemokine ligands, including CC chemokine ligand 2 (CCL2), plays a central role in recruitment of monocytes in several inflammatory diseases. In this study, we used phosphoproteomics to conduct an unbiased characterization of the signaling network resulting from CCL2 activation of CCR2. Using data-independent acquisition MS analysis, we quantified both the proteome and phosphoproteome in FlpIn-HEK293T cells stably expressing CCR2 at six time points after activation with CCL2. Differential expression analysis identified 699 significantly regulated phosphorylation sites on 441 proteins. As expected, many of these proteins are known to participate in canonical signal transduction pathways and in the regulation of actin cytoskeleton dynamics, including numerous guanine nucleotide exchange factors and GTPase-activating proteins. Moreover, we identified regulated phosphorylation sites in numerous proteins that function in the nucleus, including several constituents of the nuclear pore complex. The results of this study provide an unprecedented level of detail of CCR2 signaling and identify potential targets for regulation of CCR2 function.




    omi

    Randomized, Placebo-Controlled, Double-Blind Phase 2 Trial Comparing the Reactogenicity and Immunogenicity of a Single Standard Dose to Those of a High Dose of CVD 103-HgR Live Attenuated Oral Cholera Vaccine, with Shanchol Inactivated Oral Vaccine as an

    Reactive immunization with a single-dose cholera vaccine that could rapidly (within days) protect immunologically naive individuals during virgin soil epidemics, when cholera reaches immunologically naive populations that have not experienced cholera for decades, would facilitate cholera control. One dose of attenuated Vibrio cholerae O1 classical Inaba vaccine CVD 103-HgR (Vaxchora) containing ≥2 x 108 CFU induces vibriocidal antibody seroconversion (a correlate of protection) in >90% of U.S. adults. A previous CVD 103-HgR commercial formulation required ≥2 x 109 CFU to elicit high levels of seroconversion in populations in developing countries. We compared the vibriocidal responses of Malians (individuals 18 to 45 years old) randomized to ingest a single ≥2 x 108-CFU standard dose (n = 50) or a ≥2 x 109-CFU high dose (n = 50) of PaxVax CVD 103-HgR with buffer or two doses (n = 50) of Shanchol inactivated cholera vaccine (the immunologic comparator). To maintain blinding, participants were dosed twice 2 weeks apart; CVD 103-HgR recipients ingested placebo 2 weeks before or after ingesting vaccine. Seroconversion (a ≥4-fold vibriocidal titer rise) between the baseline and 14 days after CVD 103-HgR ingestion and following the first and second doses of Shanchol were the main outcomes measured. By day 14 postvaccination, the rates of seroconversion after ingestion of a single standard dose and a high dose of CVD 103-HgR were 71.7% (33/46 participants) and 83.3% (40/48 participants), respectively. The rate of seroconversion following the first dose of Shanchol, 56.0% (28/50 participants), was significantly lower than that following the high dose of CVD 103-HgR (P = 0.003). The vibriocidal geometric mean titer (GMT) of the high dose of CVD 103-HgR exceeded the GMT of the standard dose at day 14 (214 versus 95, P = 0.045) and was ~2-fold higher than the GMT on day 7 and day 14 following the first Shanchol dose (P > 0.05). High-dose CVD 103-HgR is recommended for accelerated evaluation in developing countries to assess its efficacy and practicality in field situations. (This study has been registered at ClinicalTrials.gov under registration no. NCT02145377.)




    omi

    Groundwater and its economic nature

    Groundwater is best described as an open access good: as a common pool resource others cannot be excluded from using and as a finite resource, its consumption leaves less for others to enjoy. In addition to its obvious benefits to humans and animals, it contributes in sustaining the hydro-environment and life on the planet. Scarcity causes groundwater to become an economic good and have an economic value. By and large, economic valuations respond to changes in the quantity and quality of groundwater. They are based on willingness to pay for maintaining its benefits or willingness to accept compensation for giving them up. There have been some 50 published groundwater valuation studies worldwide in the last 30 years, mostly focusing on groundwater quality and contamination. There is sparsity of valuations in Africa and Asia. The results suggest median economic values of 60–160 and mean values of 70–480 US dollars per household per year. Generally, values are higher in the USA followed by Europe, and lowest in Asia. People's income is a major factor affecting values, but this does not mean that they value groundwater less. Economic valuations and cost–benefit analysis are useful in highlighting people's priorities and choice of options. However, economics alone should not dictate actions for protecting groundwater resources from degradation and depletion.




    omi

    Genomic Investigation Reveals Contaminated Detergent as the Source of an Extended-Spectrum-{beta}-Lactamase-Producing Klebsiella michiganensis Outbreak in a Neonatal Unit [Bacteriology]

    Klebsiella species are problematic pathogens in neonatal units and may cause outbreaks, for which the sources of transmission may be challenging to elucidate. We describe the use of whole-genome sequencing (WGS) to investigate environmental sources of transmission during an outbreak of extended-spectrum-β-lactamase (ESBL)-producing Klebsiella michiganensis colonizing neonates. Ceftriaxone-resistant Klebsiella spp. isolated from neonates (or their mothers) and the hospital environment were included. Short-read sequencing (Illumina) and long-read sequencing (MinION; Oxford Nanopore Technologies) were used to confirm species taxonomy, to identify antimicrobial resistance genes, and to determine phylogenetic relationships using single-nucleotide polymorphism profiling. A total of 21 organisms (10 patient-derived isolates and 11 environmental isolates) were sequenced. Standard laboratory methods identified the outbreak strain as an ESBL-producing Klebsiella oxytoca, but taxonomic assignment from WGS data suggested closer identity to Klebsiella michiganensis. Strains isolated from multiple detergent-dispensing bottles were either identical or closely related by single-nucleotide polymorphism comparison. Detergent bottles contaminated by K. michiganensis had been used for washing milk expression equipment. No new cases were identified once the detergent bottles were removed. Environmental reservoirs may be an important source in outbreaks of multidrug-resistant organisms. WGS, in conjunction with traditional epidemiological investigation, can be instrumental in revealing routes of transmission and guiding infection control responses.




    omi

    Whats Special about Cefiderocol? A Micro-Comic Strip [Editorial]




    omi

    Transcriptome reconstruction and functional analysis of eukaryotic marine plankton communities via high-throughput metagenomics and metatranscriptomics [METHOD]

    Large-scale metagenomic and metatranscriptomic data analyses are often restricted by their gene-centric approach, limiting the ability to understand organismal and community biology. De novo assembly of large and mosaic eukaryotic genomes from complex meta-omics data remains a challenging task, especially in comparison with more straightforward bacterial and archaeal systems. Here, we use a transcriptome reconstruction method based on clustering co-abundant genes across a series of metagenomic samples. We investigated the co-abundance patterns of ~37 million eukaryotic unigenes across 365 metagenomic samples collected during the Tara Oceans expeditions to assess the diversity and functional profiles of marine plankton. We identified ~12,000 co-abundant gene groups (CAGs), encompassing ~7 million unigenes, including 924 metagenomics-based transcriptomes (MGTs, CAGs larger than 500 unigenes). We demonstrated the biological validity of the MGT collection by comparing individual MGTs with available references. We identified several key eukaryotic organisms involved in dimethylsulfoniopropionate (DMSP) biosynthesis and catabolism in different oceanic provinces, thus demonstrating the potential of the MGT collection to provide functional insights on eukaryotic plankton. We established the ability of the MGT approach to capture interspecies associations through the analysis of a nitrogen-fixing haptophyte-cyanobacterial symbiotic association. This MGT collection provides a valuable resource for analyses of eukaryotic plankton in the open ocean by giving access to the genomic content and functional potential of many ecologically relevant eukaryotic species.




    omi

    Nucleostemin Modulates Outcomes of Hepatocellular Carcinoma via a Tumor Adaptive Mechanism to Genomic Stress

    Hepatocellular carcinomas (HCC) are adapted to survive extreme genomic stress conditions imposed by hyperactive DNA replication and genotoxic drug treatment. The underlying mechanisms remain unclear, but may involve intensified DNA damage response/repair programs. Here, we investigate a new role of nucleostemin (NS) in allowing HCC to survive its own malignancy, as NS was previously shown to promote liver regeneration via a damage repair mechanism. We first established that a higher NS transcript level correlates with high-HCC grades and poor prognostic signatures, and is an independent predictor of shorter overall and progression-free survival specifically for HCC and kidney cancer but not for others. Immunostaining confirmed that NS is most abundantly expressed in high-grade and metastatic HCCs. Genome-wide analyses revealed that NS is coenriched with MYC target and homologous recombination (HR) repair genes in human HCC samples and functionally intersects with those involved in replication stress response and HR repair in yeasts. In support, NS-high HCCs are more reliant on the replicative/oxidative stress response pathways, whereas NS-low HCCs depend more on the mTOR pathway. Perturbation studies showed NS function in protecting human HCC cells from replication- and drug-induced DNA damage. Notably, NS depletion in HCC cells increases the amounts of physical DNA damage and cytosolic double-stranded DNA, leading to a reactive increase of cytokines and PD-L1. This study shows that NS provides an essential mechanism for HCC to adapt to high genomic stress for oncogenic maintenance and propagation. NS deficiency sensitizes HCC cells to chemotherapy but also triggers tumor immune responses.

    Implications:

    HCC employs a novel, nucleostemin (NS)-mediated-mediated adaptive mechanism to survive high genomic stress conditions, a deficiency of which sensitizes HCC cells to chemotherapy but also triggers tumor immune responses.




    omi

    Hepatic Transporter Alterations by Nuclear Receptor Agonist T0901317 in Sandwich-Cultured Human Hepatocytes: Proteomic Analysis and PBPK Modeling to Evaluate Drug-Drug Interaction Risk [Metabolism, Transport, and Pharmacogenomics]

    In vitro approaches for predicting drug-drug interactions (DDIs) caused by alterations in transporter protein regulation are not well established. However, reports of transporter regulation via nuclear receptor (NR) modulation by drugs are increasing. This study examined alterations in transporter protein levels in sandwich-cultured human hepatocytes (SCHH; n = 3 donors) measured by liquid chromatography–tandem mass spectrometry–based proteomic analysis after treatment with N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-N-(2,2,2-trifluoroethyl)benzenesulfonamide (T0901317), the first described synthetic liver X receptor agonist. T0901317 treatment (10 μM, 48 hours) decreased the levels of organic cation transporter (OCT) 1 (0.22-, 0.43-, and 0.71-fold of control) and organic anion transporter (OAT) 2 (0.38-, 0.38-, and 0.53-fold of control) and increased multidrug resistance protein (MDR) 1 (1.37-, 1.48-, and 1.59-fold of control). The induction of NR downstream gene expression supports the hypothesis that T0901317 off-target effects on farnesoid X receptor and pregnane X receptor activation are responsible for the unexpected changes in OCT1, OAT2, and MDR1. Uptake of the OCT1 substrate metformin in SCHH was decreased by T0901317 treatment. Effects of decreased OCT1 levels on metformin were simulated using a physiologically-based pharmacokinetic (PBPK) model. Simulations showed a clear decrease in metformin hepatic exposure resulting in a decreased pharmacodynamic effect. This DDI would not be predicted by the modest changes in simulated metformin plasma concentrations. Altogether, the current study demonstrated that an approach combining SCHH, proteomic analysis, and PBPK modeling is useful for revealing tissue concentration–based DDIs caused by unexpected regulation of hepatic transporters by NR modulators.

    SIGNIFICANCE STATEMENT

    This study utilized an approach combining sandwich-cultured human hepatocytes, proteomic analysis, and physiologically based pharmacokinetic modeling to evaluate alterations in pharmacokinetics (PK) and pharmacodynamics (PD) caused by transporter regulation by nuclear receptor modulators. The importance of this approach from a mechanistic and clinically relevant perspective is that it can reveal drug-drug interactions (DDIs) caused by unexpected regulation of hepatic transporters and enable prediction of altered PK and PD changes, especially for tissue concentration–based DDIs.




    omi

    Glycoconjugation as a Promising Treatment Strategy for Psoriasis [Minireviews]

    Despite the progress in the development of novel treatment modalities, a significant portion of patients with psoriasis remains undertreated relative to the severity of their disease. Recent evidence points to targeting the glucose transporter 1 and sugar metabolism as a novel therapeutic strategy for the treatment of psoriasis and other hyperproliferative skin diseases. In this review, we discuss glycoconjugation, an approach that facilitates the pharmacokinetics of cytotoxic molecules and ensures their preferential influx through glucose transporters. We propose pathways of glycoconjugate synthesis to increase effectiveness, cellular selectivity, and tolerability of widely used antipsoriatic drugs. The presented approach exploiting the heightened glucose requirement of proliferating keratinocytes bears the potential to revolutionize the management of psoriasis.

    SIGNIFICANCE STATEMENT

    Recent findings concerning the fundamental role of enhanced glucose metabolism and glucose transporter 1 overexpression in the pathogenesis of psoriasis brought to light approaches that proved successful in cancer treatment. Substantial advances in the emerging field of glycoconjugation highlight the rationale for the development of glucose-conjugated antipsoriatic drugs to increase their effectiveness, cellular selectivity, and tolerability. The presented approach offers a novel therapeutic strategy for the treatment of psoriasis and other hyperproliferative skin diseases.




    omi

    Proteasome Inhibitors Bortezomib and Carfilzomib Stimulate the Transport Activity of Human Organic Anion Transporter 1 [Articles]

    Organic anion transporter 1 (OAT1), expressed at the basolateral membrane of renal proximal tubule epithelial cells, mediates the renal excretion of many clinically important drugs. Previous study in our laboratory demonstrated that ubiquitin conjugation to OAT1 leads to OAT1 internalization from the cell surface and subsequent degradation. The current study showed that the ubiquitinated OAT1 accumulated in the presence of the proteasomal inhibitors MG132 and ALLN rather than the lysosomal inhibitors leupeptin and pepstatin A, suggesting that ubiquitinated OAT1 degrades through proteasomes. Anticancer drugs bortezomib and carfilzomib target the ubiquitin-proteasome pathway. We therefore investigate the roles of bortezomib and carfilzomib in reversing the ubiquitination-induced downregulation of OAT1 expression and transport activity. We showed that bortezomib and carfilzomib extremely increased the ubiquitinated OAT1, which correlated well with an enhanced OAT1-mediated transport of p-aminohippuric acid and an enhanced OAT1 surface expression. The augmented OAT1 expression and transport activity after the treatment with bortezomib and carfilzomib resulted from a reduced rate of OAT1 degradation. Consistent with this, we found decreased 20S proteasomal activity in cells that were exposed to bortezomib and carfilzomib. In conclusion, this study identified the pathway in which ubiquitinated OAT1 degrades and unveiled a novel role of anticancer drugs bortezomib and carfilzomib in their regulation of OAT1 expression and transport activity.

    SIGNIFICANCE STATEMENT

    Bortezomib and carfilzomib are two Food and Drug Administration–approved anticancer drugs, and proteasome is the drug target. In this study, we unveiled a new role of bortezomib and carfilzomib in enhancing OAT1 expression and transport activity by preventing the degradation of ubiquitinated OAT1 in proteasomes. This finding provides a new strategy in regulating OAT1 function that can be used to accelerate the clearance of drugs, metabolites, or toxins and reverse the decreased expression under disease conditions.




    omi

    The Most Important Thing We Give to People Is Hope: Overcoming Stigma in Diabetes and Obesity

    Editor’s Note: This article is adapted from the address Ms. Valentine delivered as the recipient of the American Diabetes Association’s (ADA’s) Outstanding Educator in Diabetes Award for 2019. She delivered the address in June 2019 at the Association’s 79th Scientific Sessions in San Francisco, CA. A webcast of this speech is available for viewing at the ADA website (professional.diabetes.org/webcast/outstanding-educator-diabetes-award-lecture%E2%80%94-most-important-thing-we-give-people-hope).




    omi

    Therapeutic Inertia in Pediatric Diabetes: Challenges to and Strategies for Overcoming Acceptance of the Status Quo

    Despite significant advances in therapies for pediatric type 1 diabetes, achievement of glycemic targets remains elusive, and management remains burdensome for patients and their families. This article identifies common challenges in diabetes management at the patient-provider and health care system levels and proposes practical approaches to overcoming therapeutic inertia to enhance health outcomes for youth with type 1 diabetes.




    omi

    About Kamlesh Khunti, MD, PHD, FRCP, FRCGP, FMEDSCI: Guest Editor, Improving Outcomes of People With Diabetes Through Overcoming Therapeutic InertiaPreface




    omi

    Improving Outcomes of People With Diabetes Through Overcoming Therapeutic InertiaPreface




    omi

    A microsimulation model to assess the economic impact of immunotherapy in non-small cell lung cancer

    Introduction

    Immunotherapy has become the standard of care in advanced non-small cell lung cancer (NSCLC). We aimed to quantify the economic impact, in France, of anti-PD-1 therapy for NSCLC.

    Methods

    We used patient-level data from the national ESCAP-2011-CPHG cohort study to estimate time to treatment failure and mean cost per patient for the four label indications approved by the European Medicines Agency (EMA) for NSCLC in May 2018. To compute the budget impact, we used a microsimulation model to estimate the target populations of anti-PD-1 therapy over a 3-year period, which were combined with the annual cost of treatment.

    Results

    Overall, 11 839 patients with NSCLC were estimated to be eligible for anti-PD-1 therapy 3 years after the introduction of anti-PD-1 therapies. The mean annual cost per patient in the control group ranged from 2671 (95% CI 2149–3194) to 6412 (95% CI 5920–6903) across the four indications. The mean annual cost of treatment for the four EMA-approved indications of anti-PD-1 therapy was estimated to be 48.7 million in the control group and at 421.8 million in the immunotherapy group. The overall budget impact in 2019 is expected to amount to 373.1 million. In the sensitivity analysis, flat doses and treatment effect had the greatest influence on the budget impact.

    Conclusion

    Anti-PD-1 agents for NSCLC treatment are associated with a substantial economic burden.




    omi

    An Extensive Meta-Metagenomic Search Identifies SARS-CoV-2-Homologous Sequences in Pangolin Lung Viromes

    ABSTRACT

    In numerous instances, tracking the biological significance of a nucleic acid sequence can be augmented through the identification of environmental niches in which the sequence of interest is present. Many metagenomic data sets are now available, with deep sequencing of samples from diverse biological niches. While any individual metagenomic data set can be readily queried using web-based tools, meta-searches through all such data sets are less accessible. In this brief communication, we demonstrate such a meta-metagenomic approach, examining close matches to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in all high-throughput sequencing data sets in the NCBI Sequence Read Archive accessible with the "virome" keyword. In addition to the homology to bat coronaviruses observed in descriptions of the SARS-CoV-2 sequence (F. Wu, S. Zhao, B. Yu, Y. M. Chen, et al., Nature 579:265–269, 2020, https://doi.org/10.1038/s41586-020-2008-3; P. Zhou, X. L. Yang, X. G. Wang, B. Hu, et al., Nature 579:270–273, 2020, https://doi.org/10.1038/s41586-020-2012-7), we note a strong homology to numerous sequence reads in metavirome data sets generated from the lungs of deceased pangolins reported by Liu et al. (P. Liu, W. Chen, and J. P. Chen, Viruses 11:979, 2019, https://doi.org/10.3390/v11110979). While analysis of these reads indicates the presence of a similar viral sequence in pangolin lung, the similarity is not sufficient to either confirm or rule out a role for pangolins as an intermediate host in the recent emergence of SARS-CoV-2. In addition to the implications for SARS-CoV-2 emergence, this study illustrates the utility and limitations of meta-metagenomic search tools in effective and rapid characterization of potentially significant nucleic acid sequences.

    IMPORTANCE Meta-metagenomic searches allow for high-speed, low-cost identification of potentially significant biological niches for sequences of interest.




    omi

    Modern deep-water agglutinated foraminifera from IODP Expedition 323, Bering Sea: ecological and taxonomic implications

    Despite the importance of the Bering Sea for subarctic oceanography and climate, relatively little is known of the foraminifera from the extensive Aleutian Basin. We report the occurrence of modern deep-water agglutinated foraminifera collected at seven sites cored during Integrated Ocean Drilling Program (IODP) Expedition 323 in the Bering Sea. Assemblages collected from core-top samples contained 32 genera and 50 species and are described and illustrated here for the first time. Commonly occurring species include typical deep-water Rhizammina, Reophax, Rhabdammina, Recurvoides and Nodulina. Assemblages from the northern sites also consist of accessory Cyclammina, Eggerelloides and Glaphyrammina, whilst those of the Bowers Ridge sites consist of other tubular genera and Martinottiella. Of the studied stations with the lowest dissolved oxygen concentrations, the potentially Bering Sea endemic Eggerelloides sp. 1 inhabits the northern slope, which has the highest primary productivity, and the potentially endemic Martinottiella sp. 3 inhabits Bowers Ridge, which has the lowest oxygen concentrations but relatively low annual productivity. Martinottiella sp. 3, with open pores on its test surface, has previously been reported in Pliocene to Recent material from Bowers Ridge. Despite relatively small sample sizes, ecological constraints may imply that the Bering Sea experienced high productivity and reduced oxygen at times since at least the Pliocene. We note the partially endemic nature of the agglutinated foraminiferal assemblages, which may at least in part be due to basin restriction, the geologically long time period of reduced oxygen, and high organic carbon flux. Our results indicate the importance of gathering further surface sample data from the Aleutian Basin.




    omi

    Effects of Continuous Glucose Monitoring on Metrics of Glycemic Control in Diabetes: A Systematic Review With Meta-analysis of Randomized Controlled Trials

    BACKGROUND

    Continuous glucose monitoring (CGM) provides important information to aid in achieving glycemic targets in people with diabetes.

    PURPOSE

    We performed a meta-analysis of randomized controlled trials (RCTs) comparing CGM with usual care for parameters of glycemic control in both type 1 and type 2 diabetes.

    DATA SOURCES

    Many electronic databases were searched for articles published from inception until 30 June 2019.

    STUDY SELECTION

    We selected RCTs that assessed both changes in HbA1c and time in target range (TIR), together with time below range (TBR), time above range (TAR), and glucose variability expressed as coefficient of variation (CV).

    DATA EXTRACTION

    Data were extracted from each trial by two investigators.

    DATA SYNTHESIS

    All results were analyzed by a random effects model to calculate the weighted mean difference (WMD) with the 95% CI. We identified 15 RCTs, lasting 12–36 weeks and involving 2,461 patients. Compared with the usual care (overall data), CGM was associated with modest reduction in HbA1c (WMD –0.17%, 95% CI –0.29 to –0.06, I2 = 96.2%), increase in TIR (WMD 70.74 min, 95% CI 46.73–94.76, I2 = 66.3%), and lower TAR, TBR, and CV, with heterogeneity between studies. The increase in TIR was significant and robust independently of diabetes type, method of insulin delivery, and reason for CGM use. In preplanned subgroup analyses, real-time CGM led to the higher improvement in mean HbA1c (WMD –0.23%, 95% CI –0.36 to –0.10, P < 0.001), TIR (WMD 83.49 min, 95% CI 52.68–114.30, P < 0.001), and TAR, whereas both intermittently scanned CGM and sensor-augmented pump were associated with the greater decline in TBR.

    LIMITATIONS

    Heterogeneity was high for most of the study outcomes; all studies were sponsored by industry, had short duration, and used an open-label design.

    CONCLUSIONS

    CGM improves glycemic control by expanding TIR and decreasing TBR, TAR, and glucose variability in both type 1 and type 2 diabetes.




    omi

    Efficacy and Safety of Liraglutide 3.0 mg in Individuals With Overweight or Obesity and Type 2 Diabetes Treated With Basal Insulin: The SCALE Insulin Randomized Controlled Trial

    OBJECTIVE

    Most individuals with type 2 diabetes also have obesity, and treatment with some diabetes medications, including insulin, can cause further weight gain. No approved chronic weight management medications have been prospectively investigated in individuals with overweight or obesity and insulin-treated type 2 diabetes. The primary objective of this study was to assess the effect of liraglutide 3.0 mg versus placebo on weight loss in this population.

    RESEARCH DESIGN AND METHODS

    Satiety and Clinical Adiposity—Liraglutide Evidence (SCALE) Insulin was a 56-week, randomized, double-blind, placebo-controlled, multinational, multicenter trial in individuals with overweight or obesity and type 2 diabetes treated with basal insulin and ≤2 oral antidiabetic drugs.

    RESULTS

    Individuals were randomized to liraglutide 3.0 mg (n = 198) or placebo (n = 198), combined with intensive behavioral therapy (IBT). At 56 weeks, mean weight change was –5.8% for liraglutide 3.0 mg versus –1.5% with placebo (estimated treatment difference –4.3% [95% CI –5.5; –3.2]; P < 0.0001). With liraglutide 3.0 mg, 51.8% of individuals achieved ≥5% weight loss versus 24.0% with placebo (odds ratio 3.41 [95% CI 2.19; 5.31]; P < 0.0001). Liraglutide 3.0 mg was associated with significantly greater reductions in mean HbA1c and mean daytime glucose values and less need for insulin versus placebo, despite a treat-to-glycemic-target protocol. More hypoglycemic events were observed with placebo than liraglutide 3.0 mg. No new safety or tolerability issues were observed.

    CONCLUSIONS

    In individuals with overweight or obesity and insulin-treated type 2 diabetes, liraglutide 3.0 mg as an adjunct to IBT was superior to placebo regarding weight loss and improved glycemic control despite lower doses of basal insulin and without increases in hypoglycemic events.