its

A new cheiracanthid acanthodian from the Middle Devonian (Givetian) Orcadian Basin of Scotland and its biostratigraphic and biogeographical significance

A number of partial articulated specimens of Cheiracanthus peachi nov. sp. have been collected from the Mey Flagstone Formation and Rousay Flagstone Formation within the Orcadian Basin of northern Scotland. The new, robust-bodied species is mainly distinguished by the scale ornament of radiating grooves rather than ridges. Compared to other Cheiracanthus species in the Orcadian Basin, C. peachi nov. sp. has quite a short range making it a useful zone fossil. As well as describing the general morphology of the specimens, we have also described and figured SEM images of scales and histological sections of all elements, enabling identification of other, isolated remains. Of particular biological interest is the identification of relatively robust, tooth-like gill rakers. Finally, the species has also been identified from isolated scales in Belarus, where it appears earlier and has a longer stratigraphical range, implying the species evolved in the marine deposits of the east and migrated west into the Orcadian Basin via the river systems.




its

Very large convergent multi-fluted glacigenic deposits in the NW Highlands, Scotland

We describe two large convergent multi-fluted glacigenic deposits in the NW Highlands, Scotland, and point out their resemblance to a number of landforms emerging from presently deglaciating areas of Greenland and Antarctica. We suggest that they all result from locally sourced sediment being deposited by local ice-flow, which was laterally confined by the margins of much larger adjacent glaciers or ice-streams. The NW Highlands features thus seem likely to be the result of processes active during the latter part of the Devensian Glaciation. One of these deposits, on the peninsula between Loch Broom and Little Loch Broom, is evidently sourced from the west-facing Coire Dearg of Beinn Ghobhlach, but was emplaced in a WNW direction rather than along the WSW fall-line. This suggests that the ice that emplaced it was confined by the margins of large glaciers then occupying the adjacent valleys of Loch Broom and Little Loch Broom. The second much larger and more prominent deposit, in Applecross, is composed of bouldery Torridonian sandstone till emplaced on to glacially scoured bedrock; the only feasible source location for this material is about 12 km distant, which requires that the deposit was carried by ice across the trough of Strath Maol Chalum and emplaced while active ice-streams confined it laterally to its present-day location. This, in turn, requires that ice lay in the Inner Sound between Applecross and Skye to an elevation 400–500 m above present-day sea-level. The Wester Ross Re-advance of 15–14 ka left a fragment of lateral moraine against the most easterly flute and buried the distal end of the flutes with hummocky moraine. We hypothesize that the fluted deposits reflect the locations of the ice-stream margins that constrained deposition of locally derived ice-transported sediment, rather than the flow-lines of the ice-stream itself.




its

The South Kintyre Basin: its role in the stratigraphical and structural evolution of the Firth of Clyde region during the Devonian-Carboniferous transition

Late Devonian–Early Carboniferous rocks at the southern end of the Kintyre Peninsula closely resemble those of the Kinnesswood and Clyde Sandstone formations in more easterly portions of the Firth of Clyde. For example, a previously unrecognized thick marlstone with pedogenic calcretes is present in the Kinnesswood Formation at the south tip of the peninsula and, on the west coast, south of Machrihanish, a striking cliffed exposure includes massive phreatic calcretes developed from cross-bedded sandstones and red mudstones closely resembling those of the Clyde Sandstone on Great Cumbrae. A similar phreatic calcrete unit is present in the lower part of the Ballagan Formation in south Bute. The presence of vadose and phreatic calcrete provides valuable information concerning palaeoclimatic conditions in southwestern Scotland during the Devonian–Carboniferous transition. Overlying thick volcanic rocks are correlative with the Clyde Plateau Volcanic Formation. The sediments accumulated in the South Kintyre Basin on the west side of the Highland Boundary Fault (HBF). Formation of this basin, and the North East Arran and Cumbraes basins in the northeastern part of the Firth of Clyde, is interpreted as a response to development of a ‘locked zone’ in the HBF during an episode of sinistral faulting.




its

The Calcium Sensor CBL2 and Its Interacting Kinase CIPK6 Are Involved in Plant Sugar Homeostasis via Interacting with Tonoplast Sugar Transporter TST2

Calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK)-mediated calcium signaling has been widely reported to function in plant development and various stress responses, particularly in ion homeostasis. Sugars are the most important primary metabolites, and thus sugar homeostasis requires precise regulation. Here, we describe a CBL2-CIPK6-Tonoplast-Localized Sugar Transporter2 (TST2) molecular module in cotton (Gossypium hirsutum) that regulates plant sugar homeostasis, in particular Glc homeostasis. GhCIPK6 is recruited to the tonoplast by GhCBL2 and interacts with the tonoplast-localized sugar transporter GhTST2. Overexpression of either GhCBL2, GhCIPK6, or GhTST2 was sufficient to promote sugar accumulation in transgenic cotton, whereas RNAi-mediated knockdown of GhCIPK6 expression or CRISPR-Cas9-mediated knockout of GhTST2 resulted in significantly decreased Glc content. Moreover, mutation of GhCBL2 or GhTST2 in GhCIPK6-overexpressing cotton reinstated sugar contents comparable to wild-type plants. Heterologous expression of GhCIPK6 in Arabidopsis (Arabidopsis thaliana) also promoted Glc accumulation, whereas mutation of AtTST1/2 in GhCIPK6-overexpressing Arabidopsis similarly reinstated wild-type sugar contents, thus indicating conservation of CBL2-CIPK6-TST2-mediated sugar homeostasis among different plant species. Our characterization of the molecular players behind plant sugar homeostasis may be exploited to improve sugar contents and abiotic stress resistance in plants.




its

Risk of stroke after emergency department visits for neurologic complaints

Objective

To assess the risk of subsequent stroke among older patients discharged from an emergency department (ED) without a diagnosis of TIA or stroke.

Methods

Using electronic health record data from a large urban, university hospital and a community-based hospital, we analyzed patients aged 60–89 years discharged to home from the ED without an International Statistical Classification of Diseases and Related Health Problems, 9th or 10th Revision diagnosis of TIA or stroke. Based on the presence/absence of a head CT and the presence/absence of a chief complaint suggestive of TIA or stroke ("symptoms") during the index ED visit, we created 4 mutually exclusive groups (group 1, reference: head CT no, symptoms no; group 2: head CT no, symptoms yes; group 3: head CT yes, symptoms no; and group 4: head CT yes, symptoms yes). We calculated rates of stroke in the 30, 90, and 365 days after the index visit and used multivariable logistic regression to estimate odds ratios (ORs) for subsequent stroke.

Results

Among 35,622 patients (mean age 70 years, 59% women, and 16% African American), unadjusted rates of stroke in 365 days were as follows: group 4: 2.5%; group 3: 1.1%; group 2: 0.69%; and group 1: 0.54%. The adjusted OR for stroke was 3.30 (95% confidence interval [CI], 1.61–6.76) in group 4, 1.56 (95% CI, 1.16–2.09) in group 3, and 0.61 (95% CI, 0.22–1.67) in group 2.

Conclusions

Among patients discharged from the ED without a diagnosis of TIA or stroke, the occurrence of a head CT and/or specific neurologic symptoms established a clinically meaningful risk gradient for subsequent stroke.




its

Genetic Associations in Four Decades of Multienvironment Trials Reveal Agronomic Trait Evolution in Common Bean [Genetics of Complex Traits]

Multienvironment trials (METs) are widely used to assess the performance of promising crop germplasm. Though seldom designed to elucidate genetic mechanisms, MET data sets are often much larger than could be duplicated for genetic research and, given proper interpretation, may offer valuable insights into the genetics of adaptation across time and space. The Cooperative Dry Bean Nursery (CDBN) is a MET for common bean (Phaseolus vulgaris) grown for > 70 years in the United States and Canada, consisting of 20–50 entries each year at 10–20 locations. The CDBN provides a rich source of phenotypic data across entries, years, and locations that is amenable to genetic analysis. To study stable genetic effects segregating in this MET, we conducted genome-wide association studies (GWAS) using best linear unbiased predictions derived across years and locations for 21 CDBN phenotypes and genotypic data (1.2 million SNPs) for 327 CDBN genotypes. The value of this approach was confirmed by the discovery of three candidate genes and genomic regions previously identified in balanced GWAS. Multivariate adaptive shrinkage (mash) analysis, which increased our power to detect significant correlated effects, found significant effects for all phenotypes. Mash found two large genomic regions with effects on multiple phenotypes, supporting a hypothesis of pleiotropic or linked effects that were likely selected on in pursuit of a crop ideotype. Overall, our results demonstrate that statistical genomics approaches can be used on MET phenotypic data to discover significant genetic effects and to define genomic regions associated with crop improvement.




its

Pathogen Genetic Control of Transcriptome Variation in the Arabidopsis thaliana - Botrytis cinerea Pathosystem [Genetics of Complex Traits]

In plant–pathogen relations, disease symptoms arise from the interaction of the host and pathogen genomes. Host–pathogen functional gene interactions are well described, whereas little is known about how the pathogen genetic variation modulates both organisms’ transcriptomes. To model and generate hypotheses on a generalist pathogen control of gene expression regulation, we used the Arabidopsis thalianaBotrytis cinerea pathosystem and the genetic diversity of a collection of 96 B. cinerea isolates. We performed expression-based genome-wide association (eGWA) for each of 23,947 measurable transcripts in Arabidopsis (host), and 9267 measurable transcripts in B. cinerea (pathogen). Unlike other eGWA studies, we detected a relative absence of locally acting expression quantitative trait loci (cis-eQTL), partly caused by structural variants and allelic heterogeneity hindering their identification. This study identified several distantly acting trans-eQTL linked to eQTL hotspots dispersed across Botrytis genome that altered only Botrytis transcripts, only Arabidopsis transcripts, or transcripts from both species. Gene membership in the trans-eQTL hotspots suggests links between gene expression regulation and both known and novel virulence mechanisms in this pathosystem. Genes annotated to these hotspots provide potential targets for blocking manipulation of the host response by this ubiquitous generalist necrotrophic pathogen.




its

A Novel Variation in the FRIZZLE PANICLE (FZP) Gene Promoter Improves Grain Number and Yield in Rice [Genetics of Complex Traits]

Secondary branch number per panicle plays a crucial role in regulating grain number and yield in rice. Here, we report the positional cloning and functional characterization for SECONDARY BRANCH NUMBER7 (qSBN7), a quantitative trait locus affecting secondary branch per panicle and grain number. Our research revealed that the causative variants of qSBN7 are located in the distal promoter region of FRIZZLE PANICLE (FZP), a gene previously associated with the repression of axillary meristem development in rice spikelets. qSBN7 is a novel allele of FZP that causes an ~56% decrease in its transcriptional level, leading to increased secondary branch and grain number, and reduced grain length. Field evaluations showed that qSBN7 increased grain yield by 10.9% in a temperate japonica variety, TN13, likely due to its positive effect on sink capacity. Our findings suggest that incorporation of qSBN7 can increase yield potential and improve the breeding of elite rice varieties.




its

Deciphering Sex-Specific Genetic Architectures Using Local Bayesian Regressions [Genetics of Complex Traits]

Many complex human traits exhibit differences between sexes. While numerous factors likely contribute to this phenomenon, growing evidence from genome-wide studies suggest a partial explanation: that males and females from the same population possess differing genetic architectures. Despite this, mapping gene-by-sex (GxS) interactions remains a challenge likely because the magnitude of such an interaction is typically and exceedingly small; traditional genome-wide association techniques may be underpowered to detect such events, due partly to the burden of multiple test correction. Here, we developed a local Bayesian regression (LBR) method to estimate sex-specific SNP marker effects after fully accounting for local linkage-disequilibrium (LD) patterns. This enabled us to infer sex-specific effects and GxS interactions either at the single SNP level, or by aggregating the effects of multiple SNPs to make inferences at the level of small LD-based regions. Using simulations in which there was imperfect LD between SNPs and causal variants, we showed that aggregating sex-specific marker effects with LBR provides improved power and resolution to detect GxS interactions over traditional single-SNP-based tests. When using LBR to analyze traits from the UK Biobank, we detected a relatively large GxS interaction impacting bone mineral density within ABO, and replicated many previously detected large-magnitude GxS interactions impacting waist-to-hip ratio. We also discovered many new GxS interactions impacting such traits as height and body mass index (BMI) within regions of the genome where both male- and female-specific effects explain a small proportion of phenotypic variance (R2 < 1 x 10–4), but are enriched in known expression quantitative trait loci.




its

Dominance Effects and Functional Enrichments Improve Prediction of Agronomic Traits in Hybrid Maize [Genomic Prediction]

Single-cross hybrids have been critical to the improvement of maize (Zea mays L.), but the characterization of their genetic architectures remains challenging. Previous studies of hybrid maize have shown the contribution of within-locus complementation effects (dominance) and their differential importance across functional classes of loci. However, they have generally considered panels of limited genetic diversity, and have shown little benefit from genomic prediction based on dominance or functional enrichments. This study investigates the relevance of dominance and functional classes of variants in genomic models for agronomic traits in diverse populations of hybrid maize. We based our analyses on a diverse panel of inbred lines crossed with two testers representative of the major heterotic groups in the U.S. (1106 hybrids), as well as a collection of 24 biparental populations crossed with a single tester (1640 hybrids). We investigated three agronomic traits: days to silking (DTS), plant height (PH), and grain yield (GY). Our results point to the presence of dominance for all traits, but also among-locus complementation (epistasis) for DTS and genotype-by-environment interactions for GY. Consistently, dominance improved genomic prediction for PH only. In addition, we assessed enrichment of genetic effects in classes defined by genic regions (gene annotation), structural features (recombination rate and chromatin openness), and evolutionary features (minor allele frequency and evolutionary constraint). We found support for enrichment in genic regions and subsequent improvement of genomic prediction for all traits. Our results suggest that dominance and gene annotations improve genomic prediction across diverse populations in hybrid maize.




its

Pits and CtBP Control Tissue Growth in Drosophila melanogaster with the Hippo Pathway Transcription Repressor Tgi [Developmental and Behavioral Genetics]

The Hippo pathway is an evolutionarily conserved signaling network that regulates organ size, cell fate, and tumorigenesis. In the context of organ size control, the pathway incorporates a large variety of cellular cues, such as cell polarity and adhesion, into an integrated transcriptional response. The central Hippo signaling effector is the transcriptional coactivator Yorkie, which controls gene expression in partnership with different transcription factors, most notably Scalloped. When it is not activated by Yorkie, Scalloped can act as a repressor of transcription, at least in part due to its interaction with the corepressor protein Tgi. The mechanism by which Tgi represses transcription is incompletely understood, and therefore we sought to identify proteins that potentially operate together with Tgi. Using an affinity purification and mass-spectrometry approach we identified Pits and CtBP as Tgi-interacting proteins, both of which have been linked to transcriptional repression. Both Pits and CtBP were required for Tgi to suppress the growth of the Drosophila melanogaster eye and CtBP loss suppressed the undergrowth of yorkie mutant eye tissue. Furthermore, as reported previously for Tgi, overexpression of Pits repressed transcription of Hippo pathway target genes. These findings suggest that Tgi might operate together with Pits and CtBP to repress transcription of genes that normally promote tissue growth. The human orthologs of Tgi, CtBP, and Pits (VGLL4, CTBP2, and IRF2BP2) have previously been shown to physically and functionally interact to control transcription, implying that the mechanism by which these proteins control transcriptional repression is conserved throughout evolution.




its

Rif1 Functions in a Tissue-Specific Manner To Control Replication Timing Through Its PP1-Binding Motif [Genome Integrity and Transmission]

Replication initiation in eukaryotic cells occurs asynchronously throughout S phase, yielding early- and late-replicating regions of the genome, a process known as replication timing (RT). RT changes during development to ensure accurate genome duplication and maintain genome stability. To understand the relative contributions that cell lineage, cell cycle, and replication initiation regulators have on RT, we utilized the powerful developmental systems available in Drosophila melanogaster. We generated and compared RT profiles from mitotic cells of different tissues and from mitotic and endocycling cells of the same tissue. Our results demonstrate that cell lineage has the largest effect on RT, whereas switching from a mitotic to an endoreplicative cell cycle has little to no effect on RT. Additionally, we demonstrate that the RT differences we observed in all cases are largely independent of transcriptional differences. We also employed a genetic approach in these same cell types to understand the relative contribution the eukaryotic RT control factor, Rif1, has on RT control. Our results demonstrate that Rif1 can function in a tissue-specific manner to control RT. Importantly, the Protein Phosphatase 1 (PP1) binding motif of Rif1 is essential for Rif1 to regulate RT. Together, our data support a model in which the RT program is primarily driven by cell lineage and is further refined by Rif1/PP1 to ultimately generate tissue-specific RT programs.




its

Fast Algorithms for Conducting Large-Scale GWAS of Age-at-Onset Traits Using Cox Mixed-Effects Models [Statistical Genetics and Genomics]

Age-at-onset is one of the critical traits in cohort studies of age-related diseases. Large-scale genome-wide association studies (GWAS) of age-at-onset traits can provide more insights into genetic effects on disease progression and transitions between stages. Moreover, proportional hazards (or Cox) regression models can achieve higher statistical power in a cohort study than a case-control trait using logistic regression. Although mixed-effects models are widely used in GWAS to correct for sample dependence, application of Cox mixed-effects models (CMEMs) to large-scale GWAS is so far hindered by intractable computational cost. In this work, we propose COXMEG, an efficient R package for conducting GWAS of age-at-onset traits using CMEMs. COXMEG introduces fast estimation algorithms for general sparse relatedness matrices including, but not limited to, block-diagonal pedigree-based matrices. COXMEG also introduces a fast and powerful score test for dense relatedness matrices, accounting for both population stratification and family structure. In addition, COXMEG generalizes existing algorithms to support positive semidefinite relatedness matrices, which are common in twin and family studies. Our simulation studies suggest that COXMEG, depending on the structure of the relatedness matrix, is orders of magnitude computationally more efficient than coxme and coxph with frailty for GWAS. We found that using sparse approximation of relatedness matrices yielded highly comparable results in controlling false-positive rate and retaining statistical power for an ethnically homogeneous family-based sample. By applying COXMEG to a study of Alzheimer’s disease (AD) with a Late-Onset Alzheimer’s Disease Family Study from the National Institute on Aging sample comprising 3456 non-Hispanic whites and 287 African Americans, we identified the APOE 4 variant with strong statistical power (P = 1e–101), far more significant than that reported in a previous study using a transformed variable and a marginal Cox model. Furthermore, we identified novel SNP rs36051450 (P = 2e–9) near GRAMD1B, the minor allele of which significantly reduced the hazards of AD in both genders. These results demonstrated that COXMEG greatly facilitates the application of CMEMs in GWAS of age-at-onset traits.




its

Loss of IKK Subunits Limits NF-{kappa}B Signaling in Reovirus-Infected Cells [Virus-Cell Interactions]

Viruses commonly antagonize innate immune pathways that are primarily driven by nuclear factor kappa B (NF-B), interferon regulatory factor (IRF), and the signal transducer and activator of transcription proteins (STAT) family of transcription factors. Such a strategy allows viruses to evade immune surveillance and maximize their replication. Using an unbiased transcriptome sequencing (RNA-seq)-based approach to measure gene expression induced by transfected viral genomic RNA (vgRNA) and reovirus infection, we discovered that mammalian reovirus inhibits host cell innate immune signaling. We found that, while vgRNA and reovirus infection both induce a similar IRF-dependent gene expression program, gene expression driven by the NF-B family of transcription factors is lower in infected cells. Potent agonists of NF-B such as tumor necrosis factor alpha (TNF-α) and vgRNA failed to induce NF-B-dependent gene expression in infected cells. We demonstrate that NF-B signaling is blocked due to loss of critical members of the inhibitor of kappa B kinase (IKK) complex, NF-B essential modifier (NEMO), and IKKβ. The loss of the IKK complex components prevents nuclear translocation and phosphorylation of NF-B, thereby preventing gene expression. Our study demonstrates that reovirus infection selectively blocks NF-B, likely to counteract its antiviral effects and promote efficient viral replication.

IMPORTANCE Host cells mount a response to curb virus replication in infected cells and prevent spread of virus to neighboring, as yet uninfected, cells. The NF-B family of proteins is important for the cell to mediate this response. In this study, we show that in cells infected with mammalian reovirus, NF-B is inactive. Further, we demonstrate that NF-B is rendered inactive because virus infection results in reduced levels of upstream intermediaries (called IKKs) that are needed for NF-B function. Based on previous evidence that active NF-B limits reovirus infection, we conclude that inactivating NF-B is a viral strategy to produce a cellular environment that is favorable for virus replication.




its

Reversal of hyperactive subthalamic circuits differentially mitigates pain hypersensitivity phenotypes in parkinsonian mice [Neuroscience]

Although pain is a prevalent nonmotor symptom in Parkinson’s disease (PD), it is undertreated, in part because of our limited understanding of the underlying mechanisms. Considering that the basal ganglia are implicated in pain sensation, and that their synaptic outputs are controlled by the subthalamic nucleus (STN), we hypothesized that...




its

Large H2O solubility in dense silica and its implications for the interiors of water-rich planets [Earth, Atmospheric, and Planetary Sciences]

Sub-Neptunes are common among the discovered exoplanets. However, lack of knowledge on the state of matter in H2O-rich setting at high pressures and temperatures (P−T) places important limitations on our understanding of this planet type. We have conducted experiments for reactions between SiO2 and H2O as archetypal materials for rock...




its

Body surface temperature responses to food restriction in wild and captive great tits [RESEARCH ARTICLE]

Lucy A. Winder, Stewart A. White, Andreas Nord, Barbara Helm, and Dominic J. McCafferty

During winter at temperate and high latitudes, the low ambient temperatures, limited food supplies and short foraging periods mean small passerines show behavioural, morphological and physiological adaptations to reduce the risk of facing energy shortages. Peripheral tissues vasoconstrict in low ambient temperatures to reduce heat loss and cold injury. Peripheral vasoconstriction has been observed with food restriction in captivity but has yet to be explored in free-ranging animals. We experimentally food restricted both wild and captive great tits (Parus major) during winter months and measured surface temperatures of the bill and eye region using thermal imaging, to investigate whether birds show rapid local heterothermic responses, which may reduce their thermoregulatory costs when facing a perceived imminent food shortage. Our results of a continuously filmed wild population showed that bill temperature was immediately reduced in response to food restriction compared with when food was available ad libitum, an apparent autonomic response. Such immediacy implies a ‘pre-emptive’ response before the bird experiences any shortfalls in energy reserves. We also demonstrate temporal variation in vasoconstriction of the bill, with bill temperature gradually rising throughout the food restriction after the initial drop. Eye-region temperature in the wild birds remained at similar levels throughout food restriction compared with unrestricted birds, possibly reflecting the need to maintain steady circulation to the central nervous and visual systems. Our findings provide evidence that birds selectively allow the bill to cool when a predictable food supply is suddenly disrupted, probably as a means of minimising depletion of body reserves for a perceived future shortage in energy.




its

Limits to sustained energy intake. XXX. Constraint or restraint? Manipulations of food supply show peak food intake in lactation is constrained [RESEARCH ARTICLE]

Zhi-Jun Zhao, Davina Derous, Abby Gerrard, Jing Wen, Xue Liu, Song Tan, Catherine Hambly, and John R. Speakman

Lactating mice increase food intake 4- to 5-fold, reaching an asymptote in late lactation. A key question is whether this asymptote reflects a physiological constraint, or a maternal investment strategy (a ‘restraint’). We exposed lactating mice to periods of food restriction, hypothesizing that if the limit reflected restraint, they would compensate by breaching the asymptote when refeeding. In contrast, if it was a constraint, they would by definition be unable to increase their intake on refeeding days. Using isotope methods, we found that during food restriction, the females shut down milk production, impacting offspring growth. During refeeding, food intake and milk production rose again, but not significantly above unrestricted controls. These data provide strong evidence that asymptotic intake in lactation reflects a physiological/physical constraint, rather than restraint. Because hypothalamic neuropeptide Y (Npy) was upregulated under both states of restriction, this suggests the constraint is not imposed by limits in the capacity to upregulate hunger signalling (the saturated neural capacity hypothesis). Understanding the genetic basis of the constraint will be a key future goal and will provide us additional information on the nature of the constraining factors on reproductive output, and their potential links to life history strategies.




its

An {alpha}7-related nicotinic acetylcholine receptor mediates the ciliary arrest response in pharyngeal gill slits of Ciona [RESEARCH ARTICLE]

Kei Jokura, Junko M. Nishino, Michio Ogasawara, and Atsuo Nishino

Ciliary movement is a fundamental process to support animal life, and the movement pattern may be altered in response to external stimuli under the control of nervous systems. Juvenile and adult ascidians have ciliary arrays around their pharyngeal gill slits (stigmata), and continuous beating is interrupted for seconds by mechanical stimuli on other parts of the body. Although it has been suggested that neural transmission to evoke ciliary arrest is cholinergic, its molecular basis has not yet been elucidated in detail. We herein attempted to clarify the molecular mechanisms underlying this neurociliary transmission in the model ascidian Ciona. Acetylcholinesterase histochemical staining showed strong signals on the laterodistal ciliated cells of stigmata, hereafter referred to as trapezial cells. The direct administration of acetylcholine (ACh) and other agonists of nicotinic ACh receptors (nAChRs) onto ciliated cells reliably evoked ciliary arrest that persisted for seconds in a dose-dependent manner. Only one isoform among all nAChR subunits encoded in the Ciona genome, called nAChR-A7/8-1, a relative of vertebrate α7 nAChRs, was expressed by trapezial cells. Exogenously expressed nAChR-A7/8-1 on Xenopus oocytes responded to ACh and other agonists with consistent pharmacological traits to those observed in vivo. Further efforts to examine signaling downstream of this receptor revealed that an inhibitor of phospholipase C (PLC) hampered ACh-induced ciliary arrest. We herein propose that homomeric α7-related nAChR-A7/8-1 mediates neurociliary transmission in Ciona stigmata to elicit persistent ciliary arrest by recruiting intracellular Ca2+ signaling.




its

Limits to Sustained Energy Intake XXXI: Effect of Graded Levels of Dietary Fat on Lactation Performance in Swiss Mice [RESEARCH ARTICLE]

Yi Huang, Jazmin Osorio Mendoza, Catherine Hambly, Baoguo Li, Zengguang Jin, Li Li, Moshen Madizi, Sumei Hu, and John R. Speakman

The heat dissipation limit theory predicts lactating female mice consuming diets with lower specific dynamic action (SDA) should have enhanced lactation performance. Dietary fat has lower SDA than other macronutrients. Here we tested the effects of graded dietary fat levels on lactating Swiss mice. We fed females five diets varying in fat content from 8.3 to 66.6%. Offspring of mothers fed diets of 41.7% fat and above were heavier and fatter at weaning compared to those of 8.3% and 25% fat diets. Mice on dietary fat contents of 41.7% and above had greater metabolizable energy intake at peak lactation (8.3%: 229.4±39.6, 25%: 278.8±25.8, 41.7%: 359.6±51.5, 58.3%: 353.7±43.6, 66.6%: 346±44.7 kJ day–1), lower daily energy expenditure (8.3%: 128.5±16, 25%: 131.6±8.4, 41.7%: 124.4±10.8, 58.3%: 115.1±10.5, 66.6%: 111.2±11.5 kJ day–1) and thus delivered more milk energy to their offspring (8.3%: 100.8±27.3, 25%: 147.2±25.1, 41.7%: 225.1±49.6, 58.3%: 238.6±40.1, 66.6%: 234.8±41.1 kJ day–1). Milk fat content (%) was unrelated to dietary fat content, indicating females on higher fat diets (> 41.7%) produced more rather than richer milk. Mothers consuming diets with 41.7% fat or above enhanced their lactation performance compared to those on 25% or less, probably by diverting dietary fat directly into the milk, thereby avoiding the costs of lipogenesis. At dietary fat contents above 41.7% they were either unable to transfer more dietary fat to the milk, or they chose not to do so, potentially because of a lack of benefit to the offspring that were increasingly fatter as maternal dietary fat increased.




its

Immunosenescence and its influence on reproduction in a long-lived vertebrate [RESEARCH ARTICLE]

Jessica M. Judson, Dawn M. Reding, and Anne M. Bronikowski

Immunosenescence is a well-known phenomenon in mammal systems, but its relevance in other long-lived vertebrates is less understood. Further, the influence of age and reproductive effort on immune function in long-lived species can be challenging to assess, as long-term data are scarce and it is often difficult to sample the oldest age classes. We used the painted turtle (Chrysemys picta) to test hypotheses of immunosenescence and a trade-off between reproductive output and immune function in a population of a long-lived vertebrate that has been monitored for over 30 years. These long-term data are utilized to employ a unique approach of aging turtles with mark-recapture data and population-specific growth modeling to obtain more accurate estimates of age. We analyzed natural antibodies, lysis ability, and bactericidal competence in 126 individuals from 1 to 33 years of age captured during May and June in 2011. Older turtles exhibited greater natural antibody levels than young individuals across sexes. Young females with large clutches exhibited greater lysis ability, while older females with large clutches had decreased lysis ability, suggesting a trade-off between reproductive output and immune function conditional upon age. However, bactericidal competence increased later in the nesting season for older females. Our study rejects the hypothesis of immunosenescence in a long-lived turtle, despite evidence of actuarial and reproductive senescence in this population. Additionally, we detected mixed evidence for a trade-off between reproduction and immune health.




its

Tubular STAT3 Limits Renal Inflammation in Autosomal Dominant Polycystic Kidney Disease

Background

The inactivation of the ciliary proteins polycystin 1 or polycystin 2 leads to autosomal dominant polycystic kidney disease (ADPKD). Although signaling by primary cilia and interstitial inflammation both play a critical role in the disease, the reciprocal interactions between immune and tubular cells are not well characterized. The transcription factor STAT3, a component of the cilia proteome that is involved in crosstalk between immune and nonimmune cells in various tissues, has been suggested as a factor fueling ADPKD progression.

Method

To explore how STAT3 intersects with cilia signaling, renal inflammation, and cyst growth, we used conditional murine models involving postdevelopmental ablation of Pkd1, Stat3, and cilia, as well as cultures of cilia-deficient or STAT3-deficient tubular cell lines.

Results

Our findings indicate that, although primary cilia directly modulate STAT3 activation in vitro, the bulk of STAT3 activation in polycystic kidneys occurs through an indirect mechanism in which primary cilia trigger macrophage recruitment to the kidney, which in turn promotes Stat3 activation. Surprisingly, although inactivating Stat3 in Pkd1-deficient tubules slightly reduced cyst burden, it resulted in a massive infiltration of the cystic kidneys by macrophages and T cells, precluding any improvement of kidney function. We also found that Stat3 inactivation led to increased expression of the inflammatory chemokines CCL5 and CXCL10 in polycystic kidneys and cultured tubular cells.

Conclusions

STAT3 appears to repress the expression of proinflammatory cytokines and restrict immune cell infiltration in ADPKD. Our findings suggest that STAT3 is not a critical driver of cyst growth in ADPKD but rather plays a major role in the crosstalk between immune and tubular cells that shapes disease expression.




its

SUMOylation of the transcription factor ZFHX3 at Lys-2806 requires SAE1, UBC9, and PIAS2 and enhances its stability and function in cell proliferation [Protein Synthesis and Degradation]

SUMOylation is a posttranslational modification (PTM) at a lysine residue and is crucial for the proper functions of many proteins, particularly of transcription factors, in various biological processes. Zinc finger homeobox 3 (ZFHX3), also known as AT motif-binding factor 1 (ATBF1), is a large transcription factor that is active in multiple pathological processes, including atrial fibrillation and carcinogenesis, and in circadian regulation and development. We have previously demonstrated that ZFHX3 is SUMOylated at three or more lysine residues. Here, we investigated which enzymes regulate ZFHX3 SUMOylation and whether SUMOylation modulates ZFHX3 stability and function. We found that SUMO1, SUMO2, and SUMO3 each are conjugated to ZFHX3. Multiple lysine residues in ZFHX3 were SUMOylated, but Lys-2806 was the major SUMOylation site, and we also found that it is highly conserved among ZFHX3 orthologs from different animal species. Using molecular analyses, we identified the enzymes that mediate ZFHX3 SUMOylation; these included SUMO1-activating enzyme subunit 1 (SAE1), an E1-activating enzyme; SUMO-conjugating enzyme UBC9 (UBC9), an E2-conjugating enzyme; and protein inhibitor of activated STAT2 (PIAS2), an E3 ligase. Multiple analyses established that both SUMO-specific peptidase 1 (SENP1) and SENP2 deSUMOylate ZFHX3. SUMOylation at Lys-2806 enhanced ZFHX3 stability by interfering with its ubiquitination and proteasomal degradation. Functionally, Lys-2806 SUMOylation enabled ZFHX3-mediated cell proliferation and xenograft tumor growth of the MDA-MB-231 breast cancer cell line. These findings reveal the enzymes involved in, and the functional consequences of, ZFHX3 SUMOylation, insights that may help shed light on ZFHX3's roles in various cellular and pathophysiological processes.




its

The major subunit of widespread competence pili exhibits a novel and conserved type IV pilin fold [Protein Structure and Folding]

Type IV filaments (T4F), which are helical assemblies of type IV pilins, constitute a superfamily of filamentous nanomachines virtually ubiquitous in prokaryotes that mediate a wide variety of functions. The competence (Com) pilus is a widespread T4F, mediating DNA uptake (the first step in natural transformation) in bacteria with one membrane (monoderms), an important mechanism of horizontal gene transfer. Here, we report the results of genomic, phylogenetic, and structural analyses of ComGC, the major pilin subunit of Com pili. By performing a global comparative analysis, we show that Com pili genes are virtually ubiquitous in Bacilli, a major monoderm class of Firmicutes. This also revealed that ComGC displays extensive sequence conservation, defining a monophyletic group among type IV pilins. We further report ComGC solution structures from two naturally competent human pathogens, Streptococcus sanguinis (ComGCSS) and Streptococcus pneumoniae (ComGCSP), revealing that this pilin displays extensive structural conservation. Strikingly, ComGCSS and ComGCSP exhibit a novel type IV pilin fold that is purely helical. Results from homology modeling analyses suggest that the unusual structure of ComGC is compatible with helical filament assembly. Because ComGC displays such a widespread distribution, these results have implications for hundreds of monoderm species.




its

An arrestin-1 surface opposite of its interface with photoactivated rhodopsin engages with enolase-1 [Protein Structure and Folding]

Arrestin-1 is the arrestin family member responsible for inactivation of the G protein–coupled receptor rhodopsin in photoreceptors. Arrestin-1 is also well-known to interact with additional protein partners and to affect other signaling cascades beyond phototransduction. In this study, we investigated one of these alternative arrestin-1 binding partners, the glycolysis enzyme enolase-1, to map the molecular contact sites between these two proteins and investigate how the binding of arrestin-1 affects the catalytic activity of enolase-1. Using fluorescence quench protection of strategically placed fluorophores on the arrestin-1 surface, we observed that arrestin-1 primarily engages enolase-1 along a surface that is opposite of the side of arrestin-1 that binds photoactivated rhodopsin. Using this information, we developed a molecular model of the arrestin-1–enolase-1 complex, which was validated by targeted substitutions of charge-pair interactions. Finally, we identified the likely source of arrestin's modulation of enolase-1 catalysis, showing that selective substitution of two amino acids in arrestin-1 can completely remove its effect on enolase-1 activity while still remaining bound to enolase-1. These findings open up opportunities for examining the functional effects of arrestin-1 on enolase-1 activity in photoreceptors and their surrounding cells.




its

Recycling of heterogeneous material in the subduction factory: evidence from the sedimentary melange of the Internal Ligurian Units, Italy

In the Northern Apennine (Italy), the Internal Ligurian Units consist of Middle–Late Jurassic ophiolites covered by thick sedimentary deposits whose top is represented by the Early Paleocene Bocco Shale. This formation is characterized by mass-transport deposits interlayered with thin-bedded siliciclastic turbidites. The sedimentological and structural features of these mass-transport deposits reveal a long-lived history of recycling of heterogeneous material in a subduction setting. This history started with the frontal accretion of a fragment of oceanic crust into an accretionary prism whose lower slope was subsequently affected by tectonic erosion and consequent instability, leading to the production of mass-transport deposits and the transfer of material to the lower plate. These mass-transport deposits were subsequently underthrust and then again transferred to the base of the accretionary prism by coherent underplating, before their exhumation to the surface. The Bocco Shale is thus representative of a subduction setting where both accretionary and erosive events occurred, depending on changing boundary conditions. The reconstructed history for the Bocco Shale indicates that the sedimentary and gravitational processes both at the prism front and on the prism slope, possibly induced by alternating accretion and erosion events, are the most efficient mechanisms of lithological mixing and recycling in subduction margins.




its

Redefinition of the Ligurian Units at the Alps-Apennines junction (NW Italy) and their role in the evolution of the Ligurian accretionary wedge: constraints from melanges and broken formations

We document that the undifferentiated chaotic Ligurian Units of the Monferrato–Torino Hill sector (MO-TH) at the Alps–Apennines junction consist of three different units that are comparable with the Cassio, Caio and Sporno Units of the External Ligurian Units of the Northern Apennines. Their internal stratigraphy reflects the character of units deposited in an ocean–continent transition (OCT) zone between the northwestern termination of the Ligurian–Piedmont oceanic basin and the thinned passive margin of Adria microcontinent. The inherited wedge-shaped architecture of this OCT, which gradually closed toward the north in the present-day Canavese Zone, controlled the Late Cretaceous–early Eocene flysch deposition at the trench of the External Ligurian accretionary wedge during the oblique subduction. This favoured the formation of an accretionary wedge increasing in thickness and elevation toward the SE, from the MO-TH to the Emilia Northern Apennines. Our results therefore provide significant information on both the palaeogeographical reconstruction of the northwestern termination of the Ligurian–Piedmont oceanic basin and the role played by inherited along-strike variations (stratigraphy, structural architecture and morphology) of OCT zones in controlling subduction–accretionary processes.

Supplementary material: A spreadsheet with X-ray fluorescence spectrometry and inductively coupled plasma mass spectrometry whole-rock major and trace element composition of mantle peridotites, and photomicrographs of mantle peridotites are available at https://doi.org/10.6084/m9.figshare.c.4519643




its

A Single Intramuscular Dose of a Plant-Made Virus-Like Particle Vaccine Elicits a Balanced Humoral and Cellular Response and Protects Young and Aged Mice from Influenza H1N1 Virus Challenge despite a Modest/Absent Humoral Response [Vaccines]

Virus-like-particle (VLP) influenza vaccines can be given intramuscularly (i.m.) or intranasally (i.n.) and may have advantages over split-virion formulations in the elderly. We tested a plant-made VLP vaccine candidate bearing the viral hemagglutinin (HA) delivered either i.m. or i.n. in young and aged mice. Young adult (5- to 8-week-old) and aged (16- to 20-month-old) female BALB/c mice received a single 3-μg dose based on the HA (A/California/07/2009 H1N1) content of a plant-made H1-VLP (i.m. or i.n.) split-virion vaccine (i.m.) or were left naive. After vaccination, humoral and splenocyte responses were assessed, and some mice were challenged. Both VLP and split vaccines given i.m. protected 100% of the young animals, but the VLP group lost the least weight and had stronger humoral and cellular responses. Compared to split-vaccine recipients, aged animals vaccinated i.m. with VLP were more likely to survive challenge (80% versus 60%). The lung viral load postchallenge was lowest in the VLP i.m. groups. Mice vaccinated with VLP i.n. had little detectable immune response, but survival was significantly increased. In both age groups, i.m. administration of the H1-VLP vaccine elicited more balanced humoral and cellular responses and provided better protection from homologous challenge than the split-virion vaccine.




its

High-Resolution Epitope Positioning of a Large Collection of Neutralizing and Nonneutralizing Single-Domain Antibodies on the Enzymatic and Binding Subunits of Ricin Toxin [Clinical Immunology]

We previously produced a heavy-chain-only antibody (Ab) VH domain (VHH)-displayed phage library from two alpacas that had been immunized with ricin toxoid and nontoxic mixtures of the enzymatic ricin toxin A subunit (RTA) and binding ricin toxin B subunit (RTB) (D. J. Vance, J. M. Tremblay, N. J. Mantis, and C. B. Shoemaker, J Biol Chem 288:36538–36547, 2013, https://doi.org/10.1074/jbc.M113.519207). Initial and subsequent screens of that library by direct enzyme-linked immunosorbent assay (ELISA) yielded more than two dozen unique RTA- and RTB-specific VHHs, including 10 whose structures were subsequently solved in complex with RTA. To generate a more complete antigenic map of ricin toxin and to define the epitopes associated with toxin-neutralizing activity, we subjected the VHH-displayed phage library to additional "pannings" on both receptor-bound ricin and antibody-captured ricin. We now report the full-length DNA sequences, binding affinities, and neutralizing activities of 68 unique VHHs: 31 against RTA, 33 against RTB, and 4 against ricin holotoxin. Epitope positioning was achieved through cross-competition ELISAs performed with a panel of monoclonal antibodies (MAbs) and verified, in some instances, with hydrogen-deuterium exchange mass spectrometry. The 68 VHHs grouped into more than 20 different competition bins. The RTA-specific VHHs with strong toxin-neutralizing activities were confined to bins that overlapped two previously identified neutralizing hot spots, termed clusters I and II. The four RTB-specific VHHs with potent toxin-neutralizing activity grouped within three adjacent bins situated at the RTA-RTB interface near cluster II. These results provide important insights into epitope interrelationships on the surface of ricin and delineate regions of vulnerability that can be exploited for the purpose of vaccine and therapeutic development.




its

Groundwater and its economic nature

Groundwater is best described as an open access good: as a common pool resource others cannot be excluded from using and as a finite resource, its consumption leaves less for others to enjoy. In addition to its obvious benefits to humans and animals, it contributes in sustaining the hydro-environment and life on the planet. Scarcity causes groundwater to become an economic good and have an economic value. By and large, economic valuations respond to changes in the quantity and quality of groundwater. They are based on willingness to pay for maintaining its benefits or willingness to accept compensation for giving them up. There have been some 50 published groundwater valuation studies worldwide in the last 30 years, mostly focusing on groundwater quality and contamination. There is sparsity of valuations in Africa and Asia. The results suggest median economic values of 60–160 and mean values of 70–480 US dollars per household per year. Generally, values are higher in the USA followed by Europe, and lowest in Asia. People's income is a major factor affecting values, but this does not mean that they value groundwater less. Economic valuations and cost–benefit analysis are useful in highlighting people's priorities and choice of options. However, economics alone should not dictate actions for protecting groundwater resources from degradation and depletion.




its

Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control [RESEARCH]

Cohesin is a ring-shaped multiprotein complex that is crucial for 3D genome organization and transcriptional regulation during differentiation and development. It also confers sister chromatid cohesion and facilitates DNA damage repair. Besides its core subunits SMC3, SMC1A, and RAD21, cohesin in somatic cells contains one of two orthologous STAG subunits, STAG1 or STAG2. How these variable subunits affect the function of the cohesin complex is still unclear. STAG1- and STAG2-cohesin were initially proposed to organize cohesion at telomeres and centromeres, respectively. Here, we uncover redundant and specific roles of STAG1 and STAG2 in gene regulation and chromatin looping using HCT116 cells with an auxin-inducible degron (AID) tag fused to either STAG1 or STAG2. Following rapid depletion of either subunit, we perform high-resolution Hi-C, gene expression, and sequential ChIP studies to show that STAG1 and STAG2 do not co-occupy individual binding sites and have distinct ways by which they affect looping and gene expression. These findings are further supported by single-molecule localizations via direct stochastic optical reconstruction microscopy (dSTORM) super-resolution imaging. Since somatic and congenital mutations of the STAG subunits are associated with cancer (STAG2) and intellectual disability syndromes with congenital abnormalities (STAG1 and STAG2), we verified STAG1-/STAG2-dependencies using human neural stem cells, hence highlighting their importance in particular disease contexts.




its

c-Src Phosphorylates and Inhibits the Function of the CIC Tumor Suppressor Protein

Capicua (CIC) is a transcriptional repressor that counteracts activation of genes in response to receptor tyrosine kinase (RTK)/Ras/ERK signaling. Following activation of RTK, ERK enters the nucleus and serine-phosphorylates CIC, releasing it from its targets to permit gene expression. We recently showed that ERK triggers ubiquitin-mediated degradation of CIC in glioblastoma (GBM). In this study, we examined whether another important downstream effector of RTK/EGFR, the non-RTK c-Src, affects CIC repressor function in GBM. We found that c-Src binds and tyrosine-phosphorylates CIC on residue 1455 to promote nuclear export of CIC. On the other hand, CIC-mutant allele (CIC-Y1455F), that escapes c-Src–mediated tyrosine phosphorylation, remains localized to the nucleus and retains strong repressor function against CIC targets, the oncogenic transcription factors ETV1 and ETV5. Furthermore, we show that the orally available Src family kinase inhibitor, dasatinib, which prevents EGF-mediated tyrosine phosphorylation of CIC and attenuates elevated ETV1 and ETV5 levels, reduces viability of GBM cells and glioma stem cells (GSC), but not of their control cells with undetectable c-Src activity. In fact, GBM cells and GSC expressing the tyrosine-defective CIC mutant (Y1455F) lose sensitivity to dasatinib, further endorsing the effect of dasatinib on Src-mediated tyrosine phosphorylation of CIC. These findings elucidate important mechanisms of CIC regulation and provide the rationale to target c-Src alongside ERK pathway inhibitors as a way to fully restore CIC tumor suppressor function in neoplasms such as GBM.

Implications:

c-Src tyrosine-phosphorylates CIC exports to cytoplasm and inactivates its repressor function in GBM.




its

Circular RNA hsa_circ_0014130 Inhibits Apoptosis in Non-Small Cell Lung Cancer by Sponging miR-136-5p and Upregulating BCL2

Previous studies indicated that circular RNAs (circRNA) played vital roles in the development of non–small cell lung cancer (NSCLC). Although hsa_circ_0014130 might be a potential NSCLC biomarker, its function in NSCLC remains unknown. Thus, this study aimed to investigate the role of hsa_circ_0014130 in the progression of NSCLC. The levels of hsa_circ_0014130 in NSCLC tissues and adjacent normal tissues were determined by qRT-PCR. In addition, the expressions of Bcl-2 and cleaved caspase-3 in A549 cells were detected with Western blot analysis. Meanwhile, the dual luciferase reporter system assay was used to determine the interaction of hsa_circ_0014130 and miR-136-5p or Bcl-2 and miR-136-5p in NSCLC, respectively. The level of hsa_circ_0014130 was significantly upregulated in NSCLC tissues. Downregulation of hsa_circ_0014130 markedly inhibited the proliferation and invasion of A549 cells via inducing apoptosis. In addition, downregulation of hsa_circ_0014130 inhibited the tumorigenesis of subcutaneous A549 xenograft in mice in vivo. Meanwhile, mechanistic analysis indicated that downregulation of hsa_circ_0014130 decreased the expression of miR-136-5p–targeted gene Bcl-2 via acting as a competitive "sponge" of miR-136-5p. In this study, we found that hsa_circ_0014130 was upregulated in NSCLC tissues. In addition, hsa_circ_0014130 functions as a tumor promoter in NSCLC to promote tumor growth through upregulating Bcl-2 partially via "sponging" miR-136-5p.

Implications:

In conclusion, hsa_circ_0014130 might function as a prognostic factor for patients with NSCLC and might be a therapeutic target for the treatment of NSCLC in future.




its

Cinnamaldehyde Inhibits Inflammation of Human Synoviocyte Cells Through Regulation of Jak/Stat Pathway and Ameliorates Collagen-Induced Arthritis in Rats [Inflammation, Immunopharmacology, and Asthma]

Cinnamaldehyde (Cin), a bioactive cinnamon essential oil from traditional Chinese medicine herb Cinnamomum cassia, has been reported to have multipharmacological activities including anti-inflammation. However, its role and molecular mechanism of anti-inflammatory activity in musculoskeletal tissues remains unclear. Here, we first investigated the effects and molecular mechanisms of Cin in human synoviocyte cells. Then in vivo therapeutic effect of Cin on collagen-induced arthritis (CIA) also studied. Cell Counting Kit ‎CCK-8 assay was performed to evaluate the cell cytotoxicity. Proinflammatory cytokine expression was evaluated using quantitative polymerase chain reaction and ELISA. Protein expression was measured by western blotting. The in vivo effect of Cin (75 mg/kg per day) was evaluated in rats with CIA by gavage administration. Disease progression was assessed by clinical scoring, radiographic, and histologic examinations. Cin significantly inhibited interleukin (IL)-1β–induced IL-6, IL-8, and tumor necrosis factor-α release from human synoviocyte cells. The molecular analysis revealed that Cin impaired IL-6–induced activation of Janus kinase 2 (JAK2), signal transducer and activator of transcription 1 (STAT1), and STAT3 signaling pathway by inhibiting the phosphorylation of JAK2, STAT1, and STAT3, without affecting NF-B pathway. Cin reduced collagen-induced swollen paw volume of arthritic rats. The anti-inflammation effects of Cin were associated with decreased severity of arthritis, joint swelling, and reduced bone erosion and destruction. Furthermore, serum IL-6 level was decreased when Cin administered therapeutically to CIA rats. Cin suppresses IL-1β–induced inflammation in synoviocytes through the JAK/STAT pathway and alleviated collagen-induced arthritis in rats. These data indicated that Cin might be a potential traditional Chinese medicine–derived, disease-modifying, antirheumatic herbal drug.

SIGNIFICANCE STATEMENT

In this study, we found that cinnamaldehyde (Cin) suppressed proinflammatory cytokines secretion in rheumatology arthritis synoviocyte cells by Janus kinase/signal transducer and activator of transcription pathway. The in vivo results showed that Cin ameliorated collagen-induced arthritis in rats. These findings indicate that Cin is a potential traditional Chinese medicine–derived, disease-modifying, antirheumatic herbal drug.




its

Distinct Regulation of {sigma}1 Receptor Multimerization by Its Agonists and Antagonists in Transfected Cells and Rat Liver Membranes [Cellular and Molecular]

Extensive studies have shown that the 1 receptor (1R) interacts with and modulates the activity of multiple proteins with important biological functions. Recent crystal structures of 1R as a homotrimer differ from a dimer-tetramer model postulated earlier. It remains inconclusive whether ligand binding regulates 1R oligomerization. Here, novel nondenaturing gel methods and mutational analysis were used to examine 1R oligomerization. In transfected cells, 1R exhibited as multimers, dimers, and monomers. Overall, 1R agonists decreased, whereas 1R antagonists increased 1R multimers, suggesting that agonists and antagonists differentially affect the stability of 1R multimers. Endogenous 1R in rat liver membranes also showed similar regulation of oligomerization as in cells. Mutations at key residues lining the trimerization interface (Arg119, Asp195, Phe191, Trp136, and Gly91) abolished multimerization without disrupting dimerization. Intriguingly, truncation of the N terminus reduced 1R to apparent monomer. These results demonstrate that multiple domains play crucial roles in coordinating high-order quaternary organization of 1R. The E102Q 1R mutant implicated in juvenile amyotrophic lateral sclerosis formed dimers only, suggesting that dysregulation of 1R multimeric assembly may impair its function. Interestingly, oligomerization of 1R was pH-dependent and correlated with changes in [3H](+)-pentazocine binding affinity and Bmax. Combined with mutational analysis, it is reasoned that 1R multimers possess high-affinity and high-capacity [3H](+)-pentazocine binding, whereas monomers likely lack binding. These results suggest that 1R may exist in interconvertible oligomeric states in a dynamic equilibrium. Further exploration of ligand-regulated 1R multimerization may provide novel approaches to modulate the function of 1R and its interacting proteins.

SIGNIFICANCE STATEMENT

The 1 receptor (1R) modulates the activities of various partner proteins. Recently, crystal structures of 1R were elucidated as homotrimers. This study used novel nondenaturing gel methods to examine 1R oligomerization in transfected cells and rat liver membranes. Overall, agonist binding decreased, whereas antagonist binding increased 1R multimers, which comprised trimers and larger units. 1R multimers were shown to bind [3H](+)-pentazocine with high affinity and high capacity. Furthermore, mutational analysis revealed a crucial role of its N-terminal domain in 1R multimerization.




its

Cordycepin Inhibits Cancer Cell Proliferation and Angiogenesis through a DEK Interaction via ERK Signaling in Cholangiocarcinoma [Gastrointestinal, Hepatic, Pulmonary, and Renal]

Cholangiocarcinoma (CCA) is a malignant tumor that arises from the epithelial cells of the bile duct and is notorious for its poor prognosis. The clinical outcome remains disappointing, and thus more effective therapeutic options are urgently required. Cordycepin, a traditional Chinese medicine, provides multiple pharmacological strategies in antitumors, but its mechanisms have not been fully elucidated. In this study, we reported that cordycepin inhibited the viability and proliferation capacity of CCA cells in a time- and dose-dependent manner determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and colony formation assay. Flow cytometry and Hoechst dye showed that cordycepin induced cancer cell apoptosis via extracellular signal-regulated kinase (ERK) 1/2 deactivation. Moreover, cordycepin significantly reduced the angiogenetic capabilities of CCA in vitro as examined by tube formation assay. We also discovered that cordycepin inhibited DEK expression by using Western blot assay. DEK serves as an oncogenic protein that is overexpressed in various gastrointestinal tumors. DEK silencing inhibited CCA cell viability and angiogenesis but not apoptosis induction determined by Western blot and flow cytometry. Furthermore, cordycepin significantly inhibited tumor growth and angiogenic capacities in a xenograft model by downregulating the expression of DEK, phosphorylated ERK1/2 CD31 and von Willebrand factor (vWF). Taken together, we demonstrated that cordycepin inhibited CCA cell proliferation and angiogenesis with a DEK interaction via downregulation in ERK signaling. These data indicate that cordycepin may serve as a novel agent for CCA clinical treatment and prognosis improvement.

SIGNIFICANCE STATEMENT

Cordycepin provides multiple strategies in antitumors, but its mechanisms are not fully elucidated, especially on cholangiocarcinoma (CCA). We reported that cordycepin inhibited the viability of CCA cells, induced apoptosis via extracellular signal-regulated kinase 1/2 deactivation and DEK inhibition, and reduced the angiogenetic capabilities of CCA both in vivo and in vitro.




its

COMT-Catalyzed Palmitic Acid Methyl Ester Biosynthesis in Perivascular Adipose Tissue and its Potential Role Against Hypertension [Cardiovascular]

Decreased release of palmitic acid methyl ester (PAME), a vasodilator, from perivascular adipose tissue (PVAT) might contribute to hypertension pathogenesis. However, the PAME biosynthetic pathway remains unclear. In this study, we hypothesized that PAME is biosynthesized from palmitic acid (PA) via human catechol-O-methyltransferase (COMT) catalysis and that decreased PAME biosynthesis plays a role in hypertension pathogenesis. We compared PAME biosynthesis between age-matched normotensive Wistar Kyoto (WKY) rats and hypertensive spontaneously hypertensive rats (SHRs) and investigated the effects of losartan treatment on PAME biosynthesis. Computational molecular modeling indicated that PA binds well at the active site of COMT. Furthermore, in in vitro enzymatic assays in the presence of COMT and S-5'-adenosyl-L-methionine (AdoMet), the stable isotope [13C16]-PA was methylated to form [13C16]-PAME in incubation medium or the Krebs–Henseleit solution containing 3T3-L1 adipocytes or rat PVAT. The adipocytes and PVATs expressed membrane-bound (MB)-COMT and soluble (S)-COMT proteins. [13C16]-PA methylation to form [13C16]-PAME in 3T3-L1 adipocytes and rat PVAT was blocked by various COMT inhibitors, such as S-(5'-adenosyl)-L-homocysteine, adenosine-2',3'-dialdehyde, and tolcapone. MB- and S-COMT levels in PVATs of established SHRs were significantly lower than those in PVATs of age-matched normotensive WKY rats, with decreased [13C16]-PA methylation to form [13C16]-PAME. This decrease was reversed by losartan, an angiotensin II (Ang II) type 1 receptor antagonist. Therefore, PAME biosynthesis in rat PVAT is dependent on AdoMet, catalyzed by COMT, and decreased in SHRs, further supporting the role of PVAT/PAME in hypertension pathogenesis. Moreover, the antihypertensive effect of losartan might be due partly to its increased PAME biosynthesis.

SIGNIFICANCE STATEMENT

PAME is a key PVAT-derived relaxing factor. We for the first time demonstrate that PAME is synthesized through PA methylation via the S-5'-adenosyl-L-methionine–dependent COMT catalyzation pathway. Moreover, we confirmed PVAT dysfunction in the hypertensive state. COMT-dependent PAME biosynthesis is involved in Ang II receptor type 1–mediated blood pressure regulation, as evidenced by the reversal of decreased PAME biosynthesis in PVAT by losartan in hypertensive rats. This finding might help in developing novel therapeutic or preventive strategies against hypertension.




its

Its All About Access!

Editor’s Note: This article is adapted from a speech Ms. Youssef delivered as President, Health Care & Education of the American Diabetes Association at its 79th Scientific Sessions in San Francisco, CA, on 8 June 2019. A webcast of the speech can be viewed on ADA’s DiabetesPro website at professional.diabetes.org/webcast/president-health-care-education-address%E2%80%94it%E2%80%99s-all-about-access.




its

Recent advances in the application of mineral chemistry to exploration for porphyry copper-gold-molybdenum deposits: detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration

In the past decade, significant research efforts have been devoted to mineral chemistry studies to assist porphyry exploration. These activities can be divided into two major fields of research: (1) porphyry indicator minerals (PIMs), which are used to identify the presence of, or potential for, porphyry-style mineralization based on the chemistry of magmatic minerals such as zircon, plagioclase and apatite, or resistate hydrothermal minerals such as magnetite; and (2) porphyry vectoring and fertility tools (PVFTs), which use the chemical compositions of hydrothermal minerals such as epidote, chlorite and alunite to predict the likely direction and distance to mineralized centres, and the potential metal endowment of a mineral district. This new generation of exploration tools has been enabled by advances in and increased access to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), short-wave length infrared (SWIR), visible near-infrared (VNIR) and hyperspectral technologies. PIMs and PVFTs show considerable promise for exploration and are starting to be applied to the diversity of environments that host porphyry and epithermal deposits globally. Industry has consistently supported development of these tools, and in the case of PVFTs encouraged by several successful blind tests where deposit centres have successfully been predicted from distal propylitic settings. Industry adoption is steadily increasing but is restrained by a lack of the necessary analytical equipment and expertise in commercial laboratories, and also by the ongoing reliance on well-established geochemical exploration techniques (e.g. sediment, soil and rock chip sampling) that have aided the discovery of near-surface resources over many decades, but are now proving less effective in the search for deeply buried mineral resources and for those concealed under cover.

Thematic collection: This article is part of the Exploration 17 collection available at: https://www.lyellcollection.org/cc/exploration-17




its

Contributions of a LysR Transcriptional Regulator to Listeria monocytogenes Virulence and Identification of Its Regulons [Article]

The capacity of Listeria monocytogenes to adapt to environmental changes is facilitated by a large number of regulatory proteins encoded by its genome. Among these proteins are the uncharacterized LysR-type transcriptional regulators (LTTRs). LTTRs can work as positive and/or negative transcription regulators at both local and global genetic levels. Previously, our group determined by comparative genome analysis that one member of the LTTRs (NCBI accession no. WP_003734782) was present in pathogenic strains but absent from nonpathogenic strains. The goal of the present study was to assess the importance of this transcription factor in the virulence of L. monocytogenes strain F2365 and to identify its regulons. An L. monocytogenes strain lacking lysR (the F2365lysR strain) displayed significant reductions in cell invasion of and adhesion to Caco-2 cells. In plaque assays, the deletion of lysR resulted in a 42.86% decrease in plaque number and a 13.48% decrease in average plaque size. Furthermore, the deletion of lysR also attenuated the virulence of L. monocytogenes in mice following oral and intraperitoneal inoculation. The analysis of transcriptomics revealed that the transcript levels of 139 genes were upregulated, while 113 genes were downregulated in the F2365lysR strain compared to levels in the wild-type bacteria. lysR-repressed genes included ABC transporters, important for starch and sucrose metabolism as well as glycerolipid metabolism, flagellar assembly, quorum sensing, and glycolysis/gluconeogenesis. Conversely, lysR activated the expression of genes related to fructose and mannose metabolism, cationic antimicrobial peptide (CAMP) resistance, and beta-lactam resistance. These data suggested that lysR contributed to L. monocytogenes virulence by broad impact on multiple pathways of gene expression.

IMPORTANCE Listeria monocytogenes is the causative agent of listeriosis, an infectious and fatal disease of animals and humans. In this study, we have shown that lysR contributes to Listeria pathogenesis and replication in cell lines. We also highlight the importance of lysR in regulating the transcription of genes involved in different pathways that might be essential for the growth and persistence of L. monocytogenes in the host or under nutrient limitation. Better understanding L. monocytogenes pathogenesis and the role of various virulence factors is necessary for further development of prevention and control strategies.




its

Trends in Emergency Department Visits and Inpatient Admissions for Hyperglycemic Crises in Adults With Diabetes in the U.S., 2006-2015

OBJECTIVE

To report U.S. national population-based rates and trends in diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS) among adults, in both the emergency department (ED) and inpatient settings.

RESEARCH DESIGN AND METHODS

We analyzed data from 1 January 2006 through 30 September 2015 from the Nationwide Emergency Department Sample and National Inpatient Sample to characterize ED visits and inpatient admissions with DKA and HHS. We used corresponding year cross-sectional survey data from the National Health Interview Survey to estimate the number of adults ≥18 years with diagnosed diabetes to calculate population-based rates for DKA and HHS in both ED and inpatient settings. Linear trends from 2009 to 2015 were assessed using Joinpoint software.

RESULTS

In 2014, there were a total of 184,255 and 27,532 events for DKA and HHS, respectively. The majority of DKA events occurred in young adults aged 18–44 years (61.7%) and in adults with type 1 diabetes (70.6%), while HHS events were more prominent in middle-aged adults 45–64 years (47.5%) and in adults with type 2 diabetes (88.1%). Approximately 40% of the hyperglycemic events were in lower-income populations. Overall, event rates for DKA significantly increased from 2009 to 2015 in both ED (annual percentage change [APC] 13.5%) and inpatient settings (APC 8.3%). A similar trend was seen for HHS (APC 16.5% in ED and 6.3% in inpatient). The increase was in all age-groups and in both men and women.

CONCLUSIONS

Causes of increased rates of hyperglycemic events are unknown. More detailed data are needed to investigate the etiology and determine prevention strategies.




its

The Use of Mendelian Randomization to Determine the Role of Metabolic Traits on Urinary Albumin-to-Creatinine Ratio




its

Abnormal expression of GABAA receptor subunits and hypomotility upon loss of gabra1 in zebrafish [RESEARCH ARTICLE]

Nayeli G. Reyes-Nava, Hung-Chun Yu, Curtis R. Coughlin II, Tamim H. Shaikh, and Anita M. Quintana

We used whole-exome sequencing (WES) to determine the genetic etiology of a patient with a multi-system disorder characterized by a seizure phenotype. WES identified a heterozygous de novo missense mutation in the GABRA1 gene (c.875C>T). GABRA1 encodes the alpha subunit of the gamma-aminobutyric acid receptor A (GABAAR). The GABAAR is a ligand gated ion channel that mediates the fast inhibitory signals of the nervous system, and mutations in the subunits that compose the GABAAR have been previously associated with human disease. To understand the mechanisms by which GABRA1 regulates brain development, we developed a zebrafish model of gabra1 deficiency. gabra1 expression is restricted to the nervous system and behavioral analysis of morpholino injected larvae suggests that the knockdown of gabra1 results in hypoactivity and defects in the expression of other subunits of the GABAAR. Expression of the human GABRA1 protein in morphants partially restored the hypomotility phenotype. In contrast, the expression of the c.875C>T variant did not restore these behavioral deficits. Collectively, these results represent a functional approach to understand the mechanisms by which loss-of-function alleles cause disease.




its

Benefits of Continuing RAAS Inhibitors in Advanced CKD




its

Antibacterial Monoclonal Antibodies Do Not Disrupt the Intestinal Microbiome or Its Function [Experimental Therapeutics]

Antibiotics revolutionized the treatment of infectious diseases; however, it is now clear that broad-spectrum antibiotics alter the composition and function of the host’s microbiome. The microbiome plays a key role in human health, and its perturbation is increasingly recognized as contributing to many human diseases. Widespread broad-spectrum antibiotic use has also resulted in the emergence of multidrug-resistant pathogens, spurring the development of pathogen-specific strategies such as monoclonal antibodies (MAbs) to combat bacterial infection. Not only are pathogen-specific approaches not expected to induce resistance in nontargeted bacteria, but they are hypothesized to have minimal impact on the gut microbiome. Here, we compare the effects of antibiotics, pathogen-specific MAbs, and their controls (saline or control IgG [c-IgG]) on the gut microbiome of 7-week-old, female, C57BL/6 mice. The magnitude of change in taxonomic abundance, bacterial diversity, and bacterial metabolites, including short-chain fatty acids (SCFA) and bile acids in the fecal pellets from mice treated with pathogen-specific MAbs, was no different from that with animals treated with saline or an IgG control. Conversely, dramatic changes were observed in the relative abundance, as well as alpha and beta diversity, of the fecal microbiome and bacterial metabolites in the feces of all antibiotic-treated mice. Taken together, these results indicate that pathogen-specific MAbs do not alter the fecal microbiome like broad-spectrum antibiotics and may represent a safer, more-targeted approach to antibacterial therapy.




its

Hypermutator Pseudomonas aeruginosa Exploits Multiple Genetic Pathways To Develop Multidrug Resistance during Long-Term Infections in the Airways of Cystic Fibrosis Patients [Mechanisms of Resistance]

Pseudomonas aeruginosa exploits intrinsic and acquired resistance mechanisms to resist almost every antibiotic used in chemotherapy. Antimicrobial resistance in P. aeruginosa isolates recovered from cystic fibrosis (CF) patients is further enhanced by the occurrence of hypermutator strains, a hallmark of chronic infections in CF patients. However, the within-patient genetic diversity of P. aeruginosa populations related to antibiotic resistance remains unexplored. Here, we show the evolution of the mutational resistome profile of a P. aeruginosa hypermutator lineage by performing longitudinal and transversal analyses of isolates collected from a CF patient throughout 20 years of chronic infection. Our results show the accumulation of thousands of mutations, with an overall evolutionary history characterized by purifying selection. However, mutations in antibiotic resistance genes appear to have been positively selected, driven by antibiotic treatment. Antibiotic resistance increased as infection progressed toward the establishment of a population constituted by genotypically diversified coexisting sublineages, all of which converged to multidrug resistance. These sublineages emerged by parallel evolution through distinct evolutionary pathways, which affected genes of the same functional categories. Interestingly, ampC and ftsI, encoding the β-lactamase and penicillin-binding protein 3, respectively, were found to be among the most frequently mutated genes. In fact, both genes were targeted by multiple independent mutational events, which led to a wide diversity of coexisting alleles underlying β-lactam resistance. Our findings indicate that hypermutators, apart from boosting antibiotic resistance evolution by simultaneously targeting several genes, favor the emergence of adaptive innovative alleles by clustering beneficial/compensatory mutations in the same gene, hence expanding P. aeruginosa strategies for persistence.




its

Non-Stem Cells Seed Colorectal Cancer Metastases and Gain Stem Traits [Metastasis]

LGR5 cells seed colorectal cancer metastases and produce stemlike LGR5+ outgrowth-promoting cells.




its

Age at Diagnosis and Patient Preferences for Treatment Outcomes in AML: A Discrete Choice Experiment to Explore Meaningful Benefits

Background:

The recent expansion of treatment options in acute myeloid leukemia (AML) has necessitated a greater understanding of patient preferences for treatment benefits, about which little is known.

Methods:

We sought to quantify and assess heterogeneity of the preferences of AML patients for treatment outcomes. An AML-specific discrete choice experiment (DCE) was developed involving multiple stakeholders. Attributes included in the DCE were event-free survival (EFS), complete remission (CR), time in the hospital, short-term side effects, and long-term side effects. Continuously coded conditional, stratified, and latent-class logistic regressions were used to model preferences of 294 patients with AML.

Results:

Most patients were white (89.4%) and in remission (95.0%). A 10% improvement in the chance of CR was the most meaningful offered benefit (P < 0.001). Patients were willing to trade up to 22 months of EFS or endure 8.7 months in the hospital or a two-step increase in long-term side effects to gain a 10% increase in chance of CR. Patients diagnosed at 60 years or older (21.6%) more strongly preferred to avoid short-term side effects (P = 0.03). Latent class analysis showed significant differences of preferences across gender and insurance status.

Conclusions:

In this national sample of mostly AML survivors, patients preferred treatments that maximized chance at remission; however, significant preference heterogeneity for outcomes was identified. Age and gender may affect patients' preferences.

Impact:

Survivor preferences for outcomes can inform patient-focused drug development and shared decision-making. Further studies are necessary to investigate the use of DCEs to guide treatment for individual patients.




its

Saigon Pearl villa for sale, Compound 36 units,4 floors, area 180 sqm

Villa for sale in Saigon Pearl Compound 36 units, including 1 basement + 1 ground + 2 floors + attic, basement built up all land, with an area of 10x18m = 180sqm of land with a total used area of nearly 700sqm using the current status of the raw house.Price: 62 billion vnd ~ $2,6...




its

THE OPERA RESIDENCE AND ITS PRIME UNIQUE LOCATION AT THUTHIEM NEW URBAN - +84911 130 135

Proudly located at a unique position that no project has - adjacent to the Opera House, another masterpiece of The Metropole Thu Thiem project named The Opera Residence is ready for REFUNDABLE BOOKING to reserve the chance at the official launch this Q3. This third masterpiece of...