arch Accessibility of cholesterol at cell surfaces [Images in Lipid Research] By feedproxy.google.com Published On :: 2020-04-23T11:30:20-07:00 Full Article
arch Metabolic regulation of the lysosomal cofactor bis(monoacylglycero)phosphate in mice [Research Articles] By feedproxy.google.com Published On :: 2020-04-29T07:33:43-07:00 Bis(monoacylglycero)phosphate (BMP), also known as lysobisphosphatidic acid (LBPA), is a phospholipid that promotes lipid sorting in late endosomes/lysosomes by activating lipid hydrolases and lipid transfer proteins. Changes in the cellular BMP content therefore reflect an altered metabolic activity of the endo-lysosomal system. Surprisingly, little is known about the physiological regulation of BMP. In this study, we investigated the effects of nutritional and metabolic factors on BMP profiles of whole tissues and parenchymal and non-parenchymal cells. Tissue samples were obtained from fed, fasted, two-hours refed, and insulin-treated mice, as well as from mice housed at 5°C, 22°C, or 30°C. These tissues exhibited distinct BMP profiles, which were regulated by the nutritional state in a tissue-specific manner. Insulin treatment was not sufficient to mimic refeeding-induced changes in tissue BMP levels indicating that BMP metabolism is regulated by other hormonal or nutritional factors. Tissue fractionation experiments revealed that fasting drastically elevates BMP levels in hepatocytes and pancreatic cells. Furthermore, we observed that the BMP content in brown adipose tissue strongly depends on housing temperatures. In conclusion, our observations suggest that BMP concentrations adapt to the metabolic state in a tissue-and cell type-specific manner in mice. Drastic changes observed in hepatocytes, pancreatic cells, and brown adipocytes suggest that BMP possesses a role in the functional adaption to nutrient starvation and ambient temperature. Full Article
arch Catalytic residues, substrate specificity, and role in carbon starvation of the 2-hydroxy FA dioxygenase Mpo1 in yeast [Research Articles] By feedproxy.google.com Published On :: 2020-04-29T08:36:37-07:00 The yeast protein Mpo1 belongs to a protein family that is widely conserved in bacteria, fungi, protozoa, and plants, and is the only protein of this family whose function has so far been elucidated. Mpo1 is an Fe2+-dependent dioxygenase that catalyzes the α-oxidation reaction of 2-hydroxy (2-OH) long-chain FAs produced in the degradation pathway of the long-chain base phytosphingosine. However, several biochemical characteristics of Mpo1, such as its catalytic residues, membrane topology, and substrate specificity, remain unclear. Here, we report that yeast Mpo1 contains two transmembrane domains and that both its N- and C-terminal regions are exposed to the cytosol. Mutational analyses revealed that three histidine residues conserved in the Mpo1 family are especially important for Mpo1 activity, suggesting that they may be responsible for the formation of coordinate bonds with Fe2+. We found that, in addition to activity toward 2-OH long-chain FAs, Mpo1 also exhibits activity toward 2-OH very-long-chain FAs derived from the FA moiety of sphingolipids. These results indicate that Mpo1 is involved in the metabolism of long-chain to very-long-chain 2-OH FAs produced in different pathways. We noted that the growth of mpo1 cells is delayed upon carbon deprivation, suggesting that the Mpo1-mediated conversion of 2-OH FAs to non-hydroxy FAs is important for utilizing 2-OH FAs as a carbon source under carbon starvation. Our findings help to elucidate the as-yet-unknown functions and activities of other Mpo1 family members. Full Article
arch Parenteral lipids shape gut bile acid pools and microbiota profiles in the prevention of cholestasis in preterm pigs [Research Articles] By feedproxy.google.com Published On :: 2020-04-29T08:36:37-07:00 Multi-component lipid emulsions, rather than soy-oil emulsions, prevent cholestasis by an unknown mechanism. Here, we quantified liver function, bile acid pools, and gut microbial and metabolite profiles in premature, parenterally fed pigs given a soy-oil lipid emulsion, Intralipid (IL); a multi component lipid emulsion, SMOFlipid (SMOF); a novel emulsion with a modified fatty-acid composition (EXP); or a control enteral diet (ENT) for 22 days. We assayed serum cholestasis markers; measured total bile acid levels in plasma, liver, and gut contents; and analyzed colonic bacterial 16S rRNA gene sequences and metabolomic profiles. Serum cholestasis markers (i.e. bilirubin, bile acids, and g-glutamyl transferase) were highest in IL-fed pigs and normalized in those given SMOF, EXP, or ENT. Gut bile acid pools were lowest in the IL treatment and were increased in the SMOF and EXP treatments and comparable to ENT. Multiple bile acids, especially their conjugated forms, were higher in the colon contents of SMOF and EXP than in IL pigs. Colonic microbial communities of SMOF and EXP pigs had lower relative abundance of several Gram-positive anaerobes, including Clostridrium XIVa, and higher abundance of Enterobacteriaceae than those of IL and ENT pigs. Differences in lipid and microbial-derived compounds were also observed in colon metabolite profiles. These results indicate that multi-component lipid emulsions prevent cholestasis and restore enterohepatic bile flow in association with gut microbial and metabolomic changes. We conclude that sustained bile flow induced by multi-component lipid emulsions likely exerts a dominant effect in reducing bile acid–sensitive, Gram-positive bacteria. Full Article
arch Sphingolipids distribution at mitochondria-associated membranes (MAM) upon induction of apoptosis. [Research Articles] By feedproxy.google.com Published On :: 2020-04-29T08:36:37-07:00 The levels and composition of sphingolipids and related metabolites are altered in aging and common disorders such as diabetes and cancers, as well as in neurodegenerative, cardiovascular, and respiratory diseases. Changes in sphingolipids have been implicated as being an essential step in mitochondria-driven cell death. However, little is known about the precise sphingolipid composition and modulation in mitochondria or related organelles. Here, we used LC–MS/MS to analyze the presence of key components of the ceramide metabolic pathway in vivo and in vitro in purified endoplasmic reticulum (ER), mitochondria-associated membranes (MAM), and mitochondria. Specifically, we analyzed the sphingolipids in the three pathways that generate ceramide: sphinganine in the de novo ceramide pathway, sphingomyelin in the breakdown pathway, and sphingosine in the salvage pathway. We observed sphingolipid profiles in mouse liver, mouse brain, and a human glioma cell line (U251). We analyzed the quantitative and qualitative changes of these sphingolipids during staurosporine (STS)-induced apoptosis in U251 cells. Ceramide, especially C16-ceramide, levels increased during early apoptosis possibly through a conversion from mitochondrial sphinganine and sphingomyelin, but sphingosine and lactosyl- and glucosyl-ceramide levels were unaffected. We also found that ceramide generation is enhanced in mitochondria when sphingomyelin levels are decreased in the MAM. This decrease was associated with an increase in acid sphingomyelinase (ASM) activity in MAM. We conclude that meaningful sphingolipid modifications occur in MAM, the mitochondria, and ER during the early phases of apoptosis. Full Article
arch Mass spectrometry imaging and LC-MS reveal decreased cerebellar phosphoinositides in Niemann-Pick type C1-null mice [Research Articles] By feedproxy.google.com Published On :: 2020-05-05T13:30:26-07:00 Niemann-Pick disease, type C1 (NPC1) is a lipid storage disorder in which cholesterol and glycosphingolipids accumulate in late endosomal/lysosomal compartments because of mutations in the NPC1 gene. A hallmark of NPC1 is progressive neurodegeneration of the cerebellum as well as visceral organ damage; however, the mechanisms driving this disease pathology are not fully understood. Phosphoinositides are phospholipids that play distinct roles in signal transduction and vesicle trafficking. Here, we utilized consensus spectra analysis of MS imaging datasets and orthogonal LC–MS analyses to evaluate the spatial distribution of phosphoinositides and quantify them in cerebellar tissue from Npc1-null mice. Our results suggest significant depletion of multiple phosphoinositide species, including phosphatidylinositol (PI), phosphatidylinositol monophosphate (PIP), and bisphosphate (PIP2), in the cerebellum of the Npc1-null mice in both whole-tissue lysates and myelin-enriched fractions. Additionally, we observed altered levels of the regulatory enzyme phosphatidylinositol 4-kinase type 2 α (PI4K2A) in Npc1-null mice. In contrast, the levels of related kinases, phosphatases, and transfer proteins were unaltered in the Npc1-null mouse model as observed by Western blot analysis. Our discovery of phosphoinositide lipid biomarkers for NPC1 opens new perspectives on the pathophysiology underlying this fatal neurodegenerative disease. Full Article
arch Lipid sensing tips the balance for a key cholesterol synthesis enzyme [Images in Lipid Research] By feedproxy.google.com Published On :: 2020-05-05T06:33:39-07:00 Full Article
arch 2-Chlorofatty acids are biomarkers of sepsis mortality and mediators of barrier dysfunction in rats [Research Articles] By feedproxy.google.com Published On :: 2020-05-06T11:30:34-07:00 Sepsis is defined as the systemic, dysregulated host immune response to an infection that leads to injury to host organ systems, and, often, death. Complex interactions between pathogens and their hosts elicit microcirculatory dysfunction. Neutrophil myeloperoxidase (MPO) is critical for combating pathogens, but MPO-derived hypochlorous acid (HOCl) can react with host molecular species as well. Plasmalogens are targeted by HOCl, leading to the production of 2-chlorofatty acids (2-CLFAs). 2-CLFAs are associated with human sepsis mortality, decrease in vitroendothelial barrier function, and activate human neutrophil extracellular trap formation. Here, we sought to examine 2-CLFAs in an in vivorat sepsis model. Intraperitoneal cecal slurry sepsis with clinically relevant rescue therapies led to ~73% mortality and evidence of microcirculatory dysfunction. Plasma concentrations of 2-CLFAs assessed 8h after sepsis induction were lower in rats that survived sepsis than in non-survivors. 2-CLFA levels were elevated in kidney, liver, spleen, lung, colon and ileum in septic animals. In vivo, exogenous 2-CLFA treatments increased kidney permeability, and in in vitroexperiments 2-CLFA also increased epithelial surface expression of vascular cell adhesion molecule 1 and decreased epithelial barrier function. Collectively, these studies support a role of free 2-CLFAs as biomarkers of sepsis mortality, potentially mediated, in part, by 2-CLFA-elicited endothelial and epithelial barrier dysfunction. Full Article
arch In Search of the American State By feedproxy.google.com Published On :: Mon, 06 Apr 2020 12:42:29 +0000 6 April 2020 Dr Leslie Vinjamuri Dean, Queen Elizabeth II Academy for Leadership in International Affairs; Director, US and the Americas Programme @londonvinjamuri Google Scholar The urgent need for US leadership to drive forward a coordinated international response to coronavirus is developing rapidly alongside snowballing demands for Washington to step up its efforts at home. 2020-04-06-US-covid-washington Exercising in front of a deserted Lincoln Memorial in Washington, DC. Photo by Win McNamee/Getty Images. As the US surgeon general warns Americans to brace for ‘our Pearl Harbor moment’, the US faces a week in which it may see the worst of the global pandemic. The absence of US leadership at the global level has enabled the Security Council’s inaction. And at the G7, President Trump actively obstructed efforts to agree a joint statement.US efforts to increase its support of international aid to the tune of $274million are minimal, not least in light of a 50% reduction in its support for the World Health Organization (WHO) and radically diminished support for other global health programmes as well. International coordination is essential to mitigate unregulated competition for critical medical supplies, manage border closures, and guarantee international economic stability.True, it won’t be possible to control the epidemic at home if the global effort to defeat the pandemic fails. But the absence of leadership from Washington at home is palpable. And what happens at home sets a natural limit on America’s internationalism.Both solution and problemIn response to the coronavirus crisis, the US state is proving to be a solution - and a problem. The dramatic response to the economic crisis is evident with the $2.3trillion stimulus package signed into law by President Trump boldly supported by both Democrats and Republicans in the most significant piece of bipartisan legislation passed in decades.America’s political economy is unrecognisable, moving left and looking increasingly more European each week as Congress and the executive branch agree a series of stimulus packages designed to protect citizens and businesses. Some elements of this legislation were more familiar to Americans, notably $200bn in corporate tax breaks.But Congress also agreed unemployment insurance, and cheques - one in April, one in May – to be sent directly to those Americans most directly hit by the economic impact of COVID-19. In effect, this is adopting a temporary universal basic income.The stimulus plan also dedicated $367bn to keep small businesses afloat for as long as the economy is shuttered. Already the government is negotiating a fourth stimulus package, but the paradox is that without rigorous steps to halt the health crisis, no level of state intervention designed to solve the economic response will be sufficient.The scale of the state’s economic intervention is unprecedented, but it stands in stark contrast to Washington’s failure to coordinate a national response to America’s health crisis. An unregulated market for personal protective equipment and ventilators is driving up competition between cities, states, and even the federal government.In some cases, cities and states are reaching out directly beyond national borders to international organisations, foreign firms and even America’s geopolitical competitors as they search for suppliers. In late March, the city of New York secured a commitment from the United Nations to donate 250,000 protective face masks.Now Governor Cuomo has announced New York has secured a shipment of 140 ventilators from the state of Oregon, and 1,000 ventilators from China. The Patriots even sent their team plane to China to pick up medical supplies for the state of Massachusetts. And following a phone call between President Putin and President Trump, Russia sent a plane with masks and medical equipment to JFK airport in New York.Networks of Chinese-Americans in the United States are rapidly mobilising their networks to access supplies and send them to doctors and nurses in need. And innovative and decisive action by governors, corporates, universities and mayors drove America’s early response to coronavirus.This was critical to slowing the spread of COVID-19 by implementing policies that rapidly drove social distancing. But the limits of decentralized and uncoordinated action are now coming into sharp focus. President Trump has so far refused to require stay-at-home orders across all states, leaving this authority to individual governors. Unregulated competition has driven up prices with the consequence that critical supplies are going to the highest bidder, not those most in need.Governor Cuomo’s call for a nationwide buying consortium has so far gone unheeded and, although the Federal Emergency Management Agency has attempted to deliver supplies to states most in need, the Strategic National Stockpile is depleting fast. Without critical action, the federal government risks hindering the ability of cities and states to get the supplies they need.But President Trump is reluctant to fully deploy his powers under the Defense Production Act (DPA). In March, he did invoke the DPA to require certain domestic manufacturers to produce ventilators. But calls for it to be used to require manufacturers to produce PPE (personal protective equipment), control costs, and manage allocations has so far gone unheeded by a president generally opposed to state interventions for managing the economy.It is true that federalism and a deep belief in competition are critical to the fabric of US history and politics, and innovations made possible by market values of entrepreneurism and competition cannot be underestimated. In the search for a vaccine, this could still prove to be key.But with current estimates that more Americans will die from coronavirus than were killed in the Korean and Vietnam wars combined, it is clear now is the time to reimagine and reinvent the role of the American state.In the absence of a coordinated effort driven by the White House, governors are working together to identify the areas of greatest need. Whether this will lead to a recasting of the American state and greater demand for a deeper and more permanent social safety net is a key question in the months ahead.In the short-term the need for coordinated state action at the national level is self-evident. US leadership globally, to manage the health crisis and its economic impacts, is also vital. But this is unlikely to be forthcoming until America gets its own house in order. Full Article
arch WITHDRAWN: Quantitative mass spectrometry analysis of PD-L1 protein expression, N-glycosylation and expression stoichiometry with PD-1 and PD-L2 in human melanoma [Research] By feedproxy.google.com Published On :: 2017-04-28T07:30:39-07:00 This article has been withdrawn by the authors. We discovered an error after this manuscript was published as a Paper in Press. Specifically, we learned that the structures of glycans presented for the PD-L1 peptide were drawn and labeled incorrectly. We wish to withdraw this article and submit a corrected version for review. Full Article
arch Translating Divergent Environmental Stresses into a Common Proteome Response through Hik33 in a Model Cyanobacterium [Research] By feedproxy.google.com Published On :: 2017-05-12T06:53:48-07:00 The histidine kinase Hik33 plays important roles in mediating cyanobacterial response to divergent types of abiotic stresses including cold, salt, high light (HL), and osmotic stresses. However, how these functions are regulated by Hik33 remains to be addressed. Using a hik33-deficient strain (hik33) of Synechocystis sp. PCC 6803 (Synechocystis) and quantitative proteomics, we found that Hik33 depletion induces differential protein expression highly similar to that induced by divergent types of stresses. This typically includes downregulation of proteins in photosynthesis and carbon assimilation that are necessary for cell propagation, and upregulation of heat shock proteins, chaperons, and proteases that are important for cell survival. This observation indicates that depletion of Hik33 alone mimics divergent types of abiotic stresses, and that Hik33 could be important for preventing abnormal stress response in the normal condition. Moreover, we found the majority of proteins of plasmid origin were significantly upregulated in hik33, though their biological significance remains to be addressed. Together, the systematically characterized Hik33-regulated cyanobacterial proteome, which is largely involved in stress responses, builds the molecular basis for Hik33 as a general regulator of stress responses. Full Article
arch WITHDRAWN: Heralds of parallel MS: Data-independent acquisition surpassing sequential identification of data dependent acquisition in proteomics [Research] By feedproxy.google.com Published On :: 2017-05-26T10:39:04-07:00 This article has been withdrawn by the authors. This article did not comply with the editorial guidelines of MCP. Specifically, single peptide based protein identifications of 9-19% were included in the analysis and discussed in the results and conclusions. We wish to withdraw this article and resubmit a clarified, corrected manuscript for review. Full Article
arch Selection of features with consistent profiles improves relative protein quantification in mass spectrometry experiments [Research] By feedproxy.google.com Published On :: 2020-03-31T13:35:14-07:00 In bottom-up mass spectrometry-based proteomics, relative protein quantification is often achieved with data-dependent acquisition (DDA), data-independent acquisition (DIA), or selected reaction monitoring (SRM). These workflows quantify proteins by summarizing the abundances of all the spectral features of the protein (e.g., precursor ions, transitions or fragments) in a single value per protein per run. When abundances of some features are inconsistent with the overall protein profile (for technological reasons such as interferences, or for biological reasons such as post-translational modifications), the protein-level summaries and the downstream conclusions are undermined. We propose a statistical approach that automatically detects spectral features with such inconsistent patterns. The detected features can be separately investigated, and if necessary removed from the dataset. We evaluated the proposed approach on a series of benchmark controlled mixtures and biological investigations with DDA, DIA and SRM data acquisitions. The results demonstrated that it can facilitate and complement manual curation of the data. Moreover, it can improve the estimation accuracy, sensitivity and specificity of detecting differentially abundant proteins, and reproducibility of conclusions across different data processing tools. The approach is implemented as an option in the open-source R-based software MSstats. Full Article
arch Immediate adaptation analysis implicates BCL6 as an EGFR-TKI combination therapy target in NSCLC [Research] By feedproxy.google.com Published On :: 2020-03-31T09:35:18-07:00 Drug resistance is a major obstacle to curative cancer therapies, and increased understanding of the molecular events contributing to resistance would enable better prediction of therapy response, as well as contribute to new targets for combination therapy. Here we have analyzed the early molecular response to epidermal growth factor receptor (EGFR) inhibition using RNA sequencing data covering 13 486 genes and mass spectrometry data covering 10 138 proteins. This analysis revealed a massive response to EGFR inhibition already within the first 24 hours, including significant regulation of hundreds of genes known to control downstream signaling, such as transcription factors, kinases, phosphatases and ubiquitin E3-ligases. Importantly, this response included upregulation of key genes in multiple oncogenic signaling pathways that promote proliferation and survival, such as ERBB3, FGFR2, JAK3 and BCL6, indicating an early adaptive response to EGFR inhibition. Using a library of more than 500 approved and experimental compounds in a combination therapy screen, we could show that several kinase inhibitors with targets including JAK3 and FGFR2 increased the response to EGFR inhibitors. Further, we investigated the functional impact of BCL6 upregulation in response to EGFR inhibition using siRNA-based silencing of BCL6. Proteomics profiling revealed that BCL6 inhibited transcription of multiple target genes including p53, resulting in reduced apoptosis which implicates BCL6 upregulation as a new EGFR inhibitor treatment escape mechanism. Finally, we demonstrate that combined treatment targeting both EGFR and BCL6 act synergistically in killing lung cancer cells. In conclusion, or data indicates that multiple different adaptive mechanisms may act in concert to blunt the cellular impact of EGFR inhibition, and we suggest BCL6 as a potential target for EGFR inhibitor-based combination therapy. Full Article
arch Proteome and phosphoproteome analysis of brown adipocytes reveals that RICTOR loss dampens global insulin/AKT signaling [Research] By feedproxy.google.com Published On :: 2020-04-06T05:35:14-07:00 Stimulating brown adipose tissue (BAT) activity represents a promising therapy for overcoming metabolic diseases. mTORC2 is important for regulating BAT metabolism, but its downstream targets have not been fully characterized. In this study, we apply proteomics and phosphoproteomics to investigate the downstream effectors of mTORC2 in brown adipocytes. We compare wild-type controls to isogenic cells with an induced knockout of the mTORC2 subunit RICTOR (Rictor-iKO) by stimulating each with insulin for a 30-minute time course. In Rictor-iKO cells, we identify decreases to the abundance of glycolytic and de novo lipogenesis enzymes, and increases to mitochondrial proteins as well as a set of proteins known to increase upon interferon stimulation. We also observe significant differences to basal phosphorylation due to chronic RICTOR loss including decreased phosphorylation of the lipid droplet protein perilipin-1 in Rictor-iKO cells, suggesting that RICTOR could be involved with regulating basal lipolysis or droplet dynamics. Finally, we observe mild dampening of acute insulin signaling response in Rictor-iKO cells, and a subset of AKT substrates exhibiting statistically significant dependence on RICTOR. Full Article
arch Investigation of inter- and intra-tumoral heterogeneity of glioblastoma using TOF-SIMS [Research] By feedproxy.google.com Published On :: 2020-04-06T19:35:13-07:00 Glioblastoma (GBM) is one of the most aggressive human cancers with a median survival of less than two years. A distinguishing pathological feature of GBM is a high degree of inter- and intratumoral heterogeneity. Intertumoral heterogeneity of GBM has been extensively investigated on genomic, methylomic, transcriptomic, proteomic and metabolomics levels, however only a few studies describe intratumoral heterogeneity due to the lack of methods allowing to analyze GBM samples with high spatial resolution. Here, we applied TOF-SIMS (Time-of-flight secondary ion mass spectrometry) for the analysis of single cells and clinical samples such as paraffin and frozen tumor sections obtained from 57 patients. We developed a technique that allows us to simultaneously detect the distribution of proteins and metabolites in glioma tissue with 800 nm spatial resolution. Our results demonstrate that according to TOF-SIMS data glioma samples can be subdivided into clinically relevant groups and distinguished from the normal brain tissue. In addition, TOF-SIMS was able to elucidate differences between morphologically distinct regions of GBM within the same tumor. By staining GBM sections with gold-conjugated antibodies against Caveolin-1 we could visualize border between zones of necrotic and cellular tumor and subdivide glioma samples into groups characterized by different survival of the patients. Finally, we demonstrated that GBM contains cells that are characterized by high levels of Caveolin-1 protein and cholesterol. This population may partly represent a glioma stem cells. Collectively, our results show that the technique described here allows to analyze glioma tissues with a spatial resolution beyond reach of most of other omics approaches and the obtained data may be used to predict clinical behavior of the tumor. Full Article
arch Characterization of signaling pathways associated with pancreatic {beta}-cell adaptive flexibility in compensation of obesity-linked diabetes in db/db mice [Research] By feedproxy.google.com Published On :: 2020-04-07T14:34:38-07:00 The onset of obesity-linked type 2 diabetes (T2D) is marked by an eventual failure in pancreatic β-cell function and mass that is no longer able to compensate for the inherent insulin resistance and increased metabolic load intrinsic to obesity. However, in a commonly used model of T2D, the db/db mouse, β-cells have an inbuilt adaptive flexibility enabling them to effectively adjust insulin production rates relative to the metabolic demand. Pancreatic β-cells from these animals have markedly reduced intracellular insulin stores, yet high rates of (pro)insulin secretion, together with a substantial increase in proinsulin biosynthesis highlighted by expanded rough endoplasmic reticulum and Golgi apparatus. However, when the metabolic overload and/or hyperglycemia is normalized, β-cells from db/db mice quickly restore their insulin stores and normalize secretory function. This demonstrates the β-cell’s adaptive flexibility and indicates that therapeutic approaches applied to encourage β-cell rest are capable of restoring endogenous β-cell function. However, mechanisms that regulate β-cell adaptive flexibility are essentially unknown. To gain deeper mechanistic insight into the molecular events underlying β-cell adaptive flexibility in db/db β-cells, we conducted a combined proteomic and post-translational modification specific proteomic (PTMomics) approach on islets from db/db mice and wild-type controls (WT) with or without prior exposure to normal glucose levels. We identified differential modifications of proteins involved in redox homeostasis, protein refolding, K48-linked deubiquitination, mRNA/protein export, focal adhesion, ERK1/2 signaling, and renin-angiotensin-aldosterone signaling, as well as sialyltransferase activity, associated with β-cell adaptive flexibility. These proteins are all related to proinsulin biosynthesis and processing, maturation of insulin secretory granules, and vesicular trafficking—core pathways involved in the adaptation of insulin production to meet metabolic demand. Collectively, this study outlines a novel and comprehensive global PTMome signaling map that highlights important molecular mechanisms related to the adaptive flexibility of β-cell function, providing improved insight into disease pathogenesis of T2D. Full Article
arch Modulation of natural HLA-B*27:05 ligandome by ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 2 (ERAP2) [Research] By feedproxy.google.com Published On :: 2020-04-07T08:35:14-07:00 The human leucocyte antigen (HLA)-B*27:05 allele and the endoplasmic reticulum-resident aminopeptidases are strongly associated with ankylosing spondylitis (AS), a chronic inflammatory spondyloarthropathy. This study examined the effect of endoplasmic reticulum aminopeptidase 2 (ERAP2) in the generation of the natural HLA-B*27:05 ligandome in live cells. Complexes of HLA-B*27:05-bound peptide pools were isolated from human ERAP2-edited cell clones and the peptides were identified using high throughput mass spectrometry analyses. The relative abundance of thousand ligands was established by quantitative tandem mass spectrometry and bioinformatics analysis. The residue frequencies at different peptide position, identified in presence or absence of ERAP2, determined structural features of ligands and their interactions with specific pockets of antigen binding site of HLA-B*27:05 molecule. Sequence alignment of ligands identified with species of bacteria associated with HLA-B*27-dependent reactive arthritis was performed. In the absence of ERAP2, peptides with N-terminal basic residues, and minority canonical P2 residues are enriched in the natural ligandome. Further, alterations of residue frequencies and hydrophobicity profile at P3, P7, and P positions were detected. In addition, several ERAP2-dependent cellular peptides were highly similar to protein sequences of arthritogenic bacteria, including one human HLA-B*27:05 ligand fully conserved in a protein from Campylobacter jejuni. These findings highlight the pathogenic role of this aminopeptidase in the triggering of AS autoimmune disease. Full Article
arch Characterization of Prenylated C-terminal Peptides Using a Thiopropyl-based Capture Technique and LC-MS/MS [Research] By feedproxy.google.com Published On :: 2020-04-13T10:35:29-07:00 Post-translational modifications play a critical and diverse role in regulating cellular activities. Despite their fundamentally important role in cellular function, there has been no report to date of an effective generalized approach to the targeting, extraction and characterization of the critical c-terminal regions of natively prenylated proteins. Various chemical modification and metabolic labelling strategies in cell culture have been reported. However, their applicability is limited to cell culture systems and does not allow for analysis of tissue samples. The chemical characteristics (hydrophobicity, low abundance, highly basic charge) of many of the c-terminal regions of prenylated proteins have impaired the use of standard proteomic workflows. In this context, we sought a direct approach to the problem in order to examine these proteins in tissue without the use of labelling. Here we demonstrate that prenylated proteins can be captured on chromatographic resins functionalized with mixed disulfide functions. Protease treatment of resin-bound proteins using chymotryptic digestion revealed peptides from many known prenylated proteins. Exposure of the protease-treated resin to reducing agents and hydro organic mixtures released c-terminal peptides with intact prenyl groups along with other enzymatic modifications expected in this protein family. Database and search parameters were selected to allow for c-terminal modifications unique to these molecules such as CAAX box processing and c-terminal methylation. In summary, we present a direct approach to enrich and obtain information at a molecular level of detail about prenylation of proteins from tissue and cell extracts using high performance LCMS without the need for metabolic labeling and derivatization. Full Article
arch Quantitative proteomics of human heart samples collected in vivo reveal the remodeled protein landscape of dilated left atrium without atrial fibrillation [Research] By feedproxy.google.com Published On :: 2020-04-14T13:35:16-07:00 Genetic and genomic research has greatly advanced our understanding of heart disease. Yet, comprehensive, in-depth, quantitative maps of protein expression in hearts of living humans are still lacking. Using samples obtained during valve replacement surgery in patients with mitral valve prolapse (MVP), we set out to define inter-chamber differences, the intersect of proteomic data with genetic or genomic datasets, and the impact of left atrial dilation on the proteome of patients with no history of atrial fibrillation (AF). We collected biopsies from right atria (RA), left atria (LA) and left ventricle (LV) of seven male patients with mitral valve regurgitation with dilated LA but no history of AF. Biopsy samples were analyzed by high-resolution mass spectrometry (MS), where peptides were pre-fractionated by reverse phase high-pressure liquid chromatography prior to MS measurement on a Q-Exactive-HF Orbitrap instrument. We identified 7,314 proteins based on 130,728 peptides. Results were confirmed in an independent set of biopsies collected from three additional individuals. Comparative analysis against data from post-mortem samples showed enhanced quantitative power and confidence level in samples collected from living hearts. Our analysis, combined with data from genome wide association studies suggested candidate gene associations to MVP, identified higher abundance in ventricle for proteins associated with cardiomyopathies and revealed the dilated LA proteome, demonstrating differential representation of molecules previously associated with AF, in non-AF hearts. This is the largest dataset of cardiac protein expression from human samples collected in vivo. It provides a comprehensive resource that allows insight into molecular fingerprints of MVP and facilitates novel inferences between genomic data and disease mechanisms. We propose that over-representation of proteins in ventricle is consequent not to redundancy but to functional need, and conclude that changes in abundance of proteins known to associate with AF are not sufficient for arrhythmogenesis. Full Article
arch Dysregulation of Exosome Cargo by Mutant Tau Expressed in Human-Induced Pluripotent Stem Cell (iPSC) Neurons Revealed by Proteomics Analyses [Research] By feedproxy.google.com Published On :: 2020-04-15T09:35:42-07:00 Accumulation and propagation of hyperphosphorylated tau (p-tau) is a common neuropathological hallmark associated with neurodegeneration of Alzheimer's disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and related tauopathies. Extracellular vesicles, specifically exosomes, have recently been demonstrated to participate in mediating tau propagation in brain. Exosomes produced by human induced pluripotent stem cell (iPSC)-derived neurons expressing mutant Tau (mTau), containing the P301L and V337M Tau mutations of FTDP-17, possess the ability to propagate p-tau pathology after injection into mouse brain. To gain an understanding of the mTau exosome cargo involved in tau pathogenesis, these pathogenic exosomes were analyzed by proteomics and bioinformatics. The data showed that mTau expression dysregulates the exosome proteome to result in (1) proteins uniquely present only in mTau, and not control exosomes, (2) the absence of proteins in mTau exosomes, uniquely present in control exosomes, and (3) shared proteins which were significantly up-regulated or down-regulated in mTau compared to control exosomes. Notably, mTau exosomes (not control exosomes) contain ANP32A (also known as I1PP2A), an endogenous inhibitor of the PP2A phosphatase which regulates the phosphorylation state of p-tau. Several of the mTau exosome-specific proteins have been shown to participate in AD mechanisms involving lysosomes, inflammation, secretases, and related processes. Furthermore, the mTau exosomes lacked a substantial portion of proteins present in control exosomes involved in pathways of localization, vesicle transport, and protein binding functions. The shared proteins present in both mTau and control exosomes represented exosome functions of vesicle-mediated transport, exocytosis, and secretion processes. These data illustrate mTau as a dynamic regulator of the biogenesis of exosomes to result in acquisition, deletion, and up- or down-regulation of protein cargo to result in pathogenic mTau exosomes capable of in vivo propagation of p-tau neuropathology in mouse brain. Full Article
arch Proteaphagy in mammalian cells can function independent of ATG5/ATG7 [Research] By feedproxy.google.com Published On :: 2020-04-16T07:35:14-07:00 The degradation of intra- and extracellular proteins is essential in all cell types and mediated by two systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway. This study investigates the changes in autophagosomal and lysosomal proteomes upon inhibition of proteasomes by bortezomib (BTZ) or MG132. We find an increased abundance of more than 50 proteins in lysosomes of cells in which the proteasome is inhibited. Among those are dihydrofolate reductase (DHFR), ß-Catenin and 3-hydroxy-3-methylglutaryl-coenzym-A (HMGCoA)-reductase. Since these proteins are known to be degraded by the proteasome they seem to be compensatorily delivered to the autophagosomal pathway when the proteasome is inactivated. Surprisingly, most of the proteins which show increased amounts in the lysosomes of BTZ or MG132 treated cells are proteasomal subunits. Thus an inactivated, non-functional proteasome is delivered to the autophagic pathway. Native gel electrophoresis shows that the proteasome reaches the lysosome intact and not disassembled. Adaptor proteins, which target proteasomes to autophagy, have been described in Arabidopsis, Saccharomyces and upon starvation in mammalians. However, in cell lines deficient of these proteins or their mammalian orthologues, respectively, the transfer of proteasomes to the lysosome is not impaired. Obviously, these proteins do not play a role as autophagy adaptor proteins in mammalian cells. We can also show that chaperone-mediated autophagy (CMA) does not participate in the proteasome delivery to the lysosomes. In autophagy-related (ATG)-5 and ATG7 deficient cells the delivery of inactivated proteasomes to the autophagic pathway was only partially blocked, indicating the existence of at least two different pathways by which inactivated proteasomes can be delivered to the lysosome in mammalian cells. Full Article
arch Seminal Plasma Proteome as an Indicator of Sperm Dysfunction and Low Sperm Motility [Research] By feedproxy.google.com Published On :: 2020-04-20T08:36:49-07:00 Molecular mechanisms underlying sperm motility have not been fully explained, particularly in chickens. The objective was to identify seminal plasma proteins associated with chicken sperm motility by comparing the seminal plasma proteomic profile of roosters with low sperm motility (LSM, n = 4) and high sperm motility (HSM, n = 4). Using a label-free MS-based method, a total of 522 seminal plasma proteins were identified, including 386 (~74%) previously reported and 136 novel ones. A total of 70 differentially abundant proteins were defined, including 48 more-abundant, 15 less-abundant, and seven proteins unique to the LSM group (specific proteins). Key secretory proteins like less-abundant ADGRG2 and more-abundant SPINK2 in the LSM suggested that the corresponding secretory tissues played a crucial role in maintaining sperm motility. Majority (80%) of the more-abundant and five specific proteins were annotated to the cytoplasmic domain which might be a result of higher plasma membrane damage and acrosome dysfunction in LSM. Additionally, more-abundant mitochondrial proteins were detected in LSM seminal plasma associated with lower spermatozoa mitochondrial membrane potential (m) and ATP concentrations. Further studies showed that the spermatozoa might be suffering from oxidative stress, as the amount of spermatozoa reactive oxygen species (ROS) were largely enhanced, seminal malondialdehyde (MDA) concentrations were increased, and the seminal plasma total antioxidant capacity (T-AOC) were decreased. Our study provides an additional catalog of chicken seminal plasma proteome and supports the idea that seminal plasma could be as an indicator of spermatozoa physiology. More-abundant of acrosome, mitochondria and sperm cytoskeleton proteins in the seminal plasma could be a marker of sperm dysfunction and loss of motility. The degeneration of spermatozoa caused the reduced seminal T-AOC and enhanced oxidative stress might be potential determinants of low sperm motility. These results could extend our understanding of sperm motility and sperm physiology regulation. Full Article
arch HIGD2A is required for assembly of the COX3 module of human mitochondrial complex IV [Research] By feedproxy.google.com Published On :: 2020-04-21T08:36:14-07:00 Assembly factors play a critical role in the biogenesis of mitochondrial respiratory chain complexes I-IV where they assist in the membrane insertion of subunits, attachment of co-factors, and stabilization of assembly intermediates. The major fraction of complexes I, III and IV are present together in large molecular structures known as respiratory chain supercomplexes. A number of assembly factors have been proposed as required for supercomplex assembly, including the hypoxia inducible gene 1 domain family member HIGD2A. Using gene-edited human cell lines and extensive steady state, translation and affinity enrichment proteomics techniques we show that loss of HIGD2A leads to defects in the de novo biogenesis of mtDNA-encoded COX3, subsequent accumulation of complex IV intermediates and turnover of COX3 partner proteins. Deletion of HIGD2A also leads to defective complex IV activity. The impact of HIGD2A loss on complex IV was not altered by growth under hypoxic conditions, consistent with its role being in basal complex IV assembly. While in the absence of HIGD2A we show that mitochondria do contain an altered supercomplex assembly, we demonstrate it to harbor a crippled complex IV lacking COX3. Our results redefine HIGD2A as a classical assembly factor required for building the COX3 module of complex IV. Full Article
arch Robust summarization and inference in proteome-wide label-free quantification [Research] By feedproxy.google.com Published On :: 2020-04-22T13:36:37-07:00 Label-Free Quantitative mass spectrometry based workflows for differential expression (DE) analysis of proteins impose important challenges on the data analysis due to peptide-specific effects and context dependent missingness of peptide intensities. Peptide-based workflows, like MSqRob, test for DE directly from peptide intensities and outperform summarization methods which first aggregate MS1 peptide intensities to protein intensities before DE analysis. However, these methods are computationally expensive, often hard to understand for the non-specialised end-user, and do not provide protein summaries, which are important for visualisation or downstream processing. In this work, we therefore evaluate state-of-the-art summarization strategies using a benchmark spike-in dataset and discuss why and when these fail compared to the state-of-the-art peptide based model, MSqRob. Based on this evaluation, we propose a novel summarization strategy, MSqRobSum, which estimates MSqRob’s model parameters in a two-stage procedure circumventing the drawbacks of peptide-based workflows. MSqRobSum maintains MSqRob’s superior performance, while providing useful protein expression summaries for plotting and downstream analysis. Summarising peptide to protein intensities considerably reduces the computational complexity, the memory footprint and the model complexity, and makes it easier to disseminate DE inferred on protein summaries. Moreover, MSqRobSum provides a highly modular analysis framework, which provides researchers with full flexibility to develop data analysis workflows tailored towards their specific applications. Full Article
arch Flow-induced reorganization of laminin-integrin networks within the endothelial basement membrane uncovered by proteomics [Research] By feedproxy.google.com Published On :: 2020-04-24T09:36:17-07:00 The vessel wall is continuously exposed to hemodynamic forces generated by blood flow. Endothelial mechanosensors perceive and translate mechanical signals via cellular signaling pathways into biological processes that control endothelial development, phenotype and function. To assess the hemodynamic effects on the endothelium on a system-wide level, we applied a quantitative mass spectrometry approach combined with cell surface chemical footprinting. SILAC-labeled endothelial cells were subjected to flow-induced shear stress for 0, 24 or 48 hours, followed by chemical labeling of surface proteins using a non-membrane permeable biotin label, and analysis of the whole proteome and the cell surface proteome by LC-MS/MS analysis. These studies revealed that of the >5000 quantified proteins 104 were altered, which were highly enriched for extracellular matrix proteins and proteins involved in cell-matrix adhesion. Cell surface proteomics indicated that LAMA4 was proteolytically processed upon flow-exposure, which corresponded to the decreased LAMA4 mass observed on immunoblot. Immunofluorescence microscopy studies highlighted that the endothelial basement membrane was drastically remodeled upon flow exposure. We observed a network-like pattern of LAMA4 and LAMA5, which corresponded to the localization of laminin-adhesion molecules ITGA6 and ITGB4. Furthermore, the adaptation to flow-exposure did not affect the inflammatory response to tumor necrosis factor α, indicating that inflammation and flow trigger fundamentally distinct endothelial signaling pathways with limited reciprocity and synergy. Taken together, this study uncovers the blood flow-induced remodeling of the basement membrane and stresses the importance of the subendothelial basement membrane in vascular homeostasis. Full Article
arch A cross-linking mass spectrometry approach defines protein interactions in yeast mitochondria [Research] By feedproxy.google.com Published On :: 2020-04-24T09:36:17-07:00 Protein cross-linking and the analysis of cross-linked peptides by mass spectrometry is currently receiving much attention. Not only is this approach applied to isolated complexes to provide information about spatial arrangements of proteins but it is also increasingly applied to entire cells and their organelles. As in quantitative proteomics, the application of isotopic labelling further makes it possible to monitor quantitative changes in the protein-protein interactions between different states of a system. Here, we cross-linked mitochondria from Saccharomyces cerevisiae grown on either glycerol- or glucose-containing medium to monitor protein-protein interactions under non-fermentative and fermentative conditions. We investigated qualitatively the protein-protein interactions of the 400 most abundant proteins applying stringent data-filtering criteria, i.e. a minimum of two cross-linked peptide spectrum matches and a cut-off in the spectrum scoring of the used search engine. The cross-linker BS3 proved to be equally suited for connecting proteins in all compartments of mitochondria when compared with its water-insoluble but membrane-permeable derivative DSS. We also applied quantitative cross-linking to mitochondria of both the growth conditions using stable-isotope labelled BS3. Significant differences of cross-linked proteins under glycerol and glucose conditions were detected, however, mainly due to the different copy numbers of these proteins in mitochondria under both the conditions. Results obtained from the glycerol condition indicate that the internal NADH:ubiquinone oxidoreductase Ndi1 is part of an electron transport chain supercomplex. We have also detected several hitherto uncharacterized proteins and identified their interaction partners. Among those, Min8 was found to be associated with cytochrome c oxidase. BN-PAGE analyses of min8 mitochondria suggest that Min8 promotes the incorporation of Cox12 into cytochrome c oxidase. Full Article
arch The DNA sensor cGAS is decorated by acetylation and phosphorylation modifications in the context of immune signaling [Research] By feedproxy.google.com Published On :: 2020-04-28T18:38:31-07:00 The cyclic GMP-AMP synthase (cGAS) protein is a pattern-recognition receptor of the mammalian innate immune system that is recognized as a main cytosolic sensor of pathogenic or damaged DNA. cGAS DNA binding initiates catalytic production of the second messenger, cyclic GMP-AMP, which activates the STING-TBK1-IRF3 signaling axis to induce cytokine expression. Post-translational modification (PTM) has started to be recognized as a critical component of cGAS regulation, yet the extent of these modifications remains unclear. Here, we report the identification and functional analysis of cGAS phosphorylations and acetylations in several cell types under basal and immune-stimulated conditions. cGAS was enriched by immunoaffinity purification from human primary fibroblasts prior to and after infection with herpes simplex virus type 1 (HSV-1), as well as from immune-stimulated STING-HEK293T cells. Six phosphorylations and eight acetylations were detected, of which eight PTMs were not previously documented. PTMs were validated by parallel reaction monitoring (PRM) mass spectrometry in fibroblasts, HEK293T cells, and THP-1 macrophage-like cells. Primary sequence and structural analysis of cGAS highlighted a subset of PTM sites with elevated surface accessibility and high evolutionary sequence conservation. To assess the functional relevance of each PTM, we generated a series of single-point cGAS mutations. Stable cell lines were constructed to express cGAS with amino acid substitutions that prevented phosphorylation (Ser-to-Ala) and acetylation (Lys-to-Arg) or that mimicked the modification state (Ser-to-Asp and Lys-to-Gln). cGAS-dependent apoptotic and immune signaling activities were then assessed for each mutation. Our results show that acetyl-mimic mutations at Lys384 and Lys414 inhibit the ability of cGAS to induce apoptosis. In contrast, the Lys198 acetyl-mimic mutation increased cGAS-dependent interferon signaling when compared to the unmodified charge-mimic. Moreover, targeted PRM quantification showed that Lys198 acetylation is decreased upon infections with two herpesviruses—HSV-1 and human cytomegalovirus (HCMV), highlighting this residue as a regulatory point during virus infection. Full Article
arch Proteomics of Campylobacter jejuni growth in deoxycholate reveals Cj0025c as a cystine transport protein required for wild-type human infection phenotypes [Research] By feedproxy.google.com Published On :: 2020-05-06T13:56:38-07:00 Campylobacter jejuni is a major cause of food-borne gastroenteritis. Proteomics by label-based two-dimensional liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) identified proteins associated with growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts), and system-wide validation was performed by data-independent acquisition (DIA-SWATH-MS). LC-MS/MS quantified 1326 proteins (~82% of the predicted C. jejuni proteome), of which 1104 were validated in additional biological replicates by DIA-SWATH-MS. DOC resulted in a profound proteome shift with 512 proteins showing significantly altered abundance. Induced proteins were associated with flagellar motility and antibiotic resistance; and these correlated with increased DOC motility and resistance to polymyxin B and ciprofloxacin. DOC also increased human Caco-2 cell adherence and invasion. Abundances of proteins involved in nutrient transport were altered by DOC and aligned with intracellular changes to their respective carbon sources. DOC increased intracellular levels of sulfur-containing amino acids (cysteine and methionine) and the dipeptide cystine (Cys-Cys), which also correlated with reduced resistance to oxidative stress. A DOC induced transport protein was Cj0025c, which has sequence similarity to bacterial Cys-Cys transporters. Deletion of cj0025c (cj0025c) resulted in proteome changes consistent with sulfur starvation, as well as attenuated invasion, reduced motility, atypical morphology, increased antimicrobial susceptibility and poor biofilm formation. Targeted metabolomics showed cj0025c was capable of utilizing known C. jejuni amino and organic acid substrates commensurate with wild-type. Medium Cys-Cys levels however, were maintained in cj0025c relative to wild-type. A toxic Cys-Cys mimic (selenocystine) inhibited wild-type growth, but not cj0025c. Provision of an alternate sulfur source (2 mM thiosulfate) restored cj0025c motility. Our data confirm that Cj0025c is a Cys-Cys transporter that we have named TcyP consistent with the nomenclature of homologous proteins in other species. Full Article
arch Perlecan knockdown significantly alters extracellular matrix composition and organization during cartilage development [Research] By feedproxy.google.com Published On :: 2020-05-07T06:36:04-07:00 Perlecan is a critical proteoglycan found in the extracellular matrix (ECM) of cartilage. In healthy cartilage, perlecan regulates cartilage biomechanics and we previously demonstrated perlecan deficiency leads to reduced cellular and ECM stiffness in vivo. This change in mechanics may lead to the early onset osteoarthritis seen in disorders resulting from perlecan knockdown such as Schwartz-Jampel syndrome (SJS). To identify how perlecan knockdown affects the material properties of developing cartilage, we used imaging and liquid chromatography–tandem mass spectrometry (LC-MS/MS) to study the ECM in a murine model of SJS, Hspg2C1532Y-Neo. Perlecan knockdown led to defective pericellular matrix formation, whereas the abundance of bulk ECM proteins, including many collagens, increased. Post-translational modifications and ultrastructure of collagens were not significantly different; however, LC-MS/MS analysis showed more protein was secreted by Hspg2C1532Y-Neo cartilage in vitro, suggesting that the incorporation of newly synthesized ECM was impaired. In addition, glycosaminoglycan deposition was atypical, which may explain the previously observed decrease in mechanics. Overall, these findings provide insight into the influence of perlecan on functional cartilage assembly and the progression of osteoarthritis in SJS. Full Article
arch Metallopeptidase Stp1 activates the transcription factor Sre1 in the carotenogenic yeast Xanthophyllomyces dendrorhous [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 Xanthophyllomyces dendrorhous is a basidiomycete yeast known as a natural producer of astaxanthin, a carotenoid of commercial interest because of its antioxidant properties. Recent studies indicated that X. dendrorhous has a functional SREBP pathway involved in the regulation of isoprenoid compound biosynthesis, which includes ergosterol and carotenoids. SREBP is a major regulator of sterol metabolism and homeostasis in mammals; characterization in fungi also provides information about its role in the hypoxia adaptation response and virulence. SREBP protease processing is required to activate SREBP pathway functions in fungi. Here, we identified and described the STP1 gene, which encodes a metallopeptidase of the M50 family involved in the proteolytic activation of the transcription factor Sre1 of the SREBP pathway, in X. dendrorhous. We assessed STP1 function in stp1 strains derived from the wild-type and a mutant of ergosterol biosynthesis that overproduces carotenoids and sterols. Bioinformatic analysis of the deduced protein predicted the presence of characteristic features identified in homologs from mammals and fungi. The stp1 mutation decreased yeast growth in the presence of azole drugs and reduced transcript levels of Sre1-dependent genes. This mutation also negatively affected the carotenoid- and sterol-overproducing phenotype. Western blot analysis demonstrated that Sre1 was activated in the yeast ergosterol biosynthesis mutant and that the stp1 mutation introduced in this strain prevented Sre1 proteolytic activation. Overall, our results demonstrate that STP1 encodes a metallopeptidase involved in proteolytic activation of Sre1 in X. dendrorhous, contributing to our understanding of fungal SREBP pathways. Full Article
arch Effects of omega-O-acylceramide structures and concentrations in healthy and diseased skin barrier lipid membrane models [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 Ceramides (Cers) with ultralong (~32-carbon) chains and -esterified linoleic acid, composing a subclass called omega-O-acylceramides (acylCers), are indispensable components of the skin barrier. Normal barriers typically contain acylCer concentrations of ~10 mol%; diminished concentrations, along with altered or missing long periodicity lamellar phase (LPP), and increased permeability accompany an array of skin disorders, including atopic dermatitis, psoriasis, and ichthyoses. We developed model membranes to investigate the effects of the acylCer structure and concentration on skin lipid organization and permeability. The model membrane systems contained six to nine Cer subclasses as well as fatty acids, cholesterol, and cholesterol sulfate; acylCer content—namely, acylCers containing sphingosine (Cer EOS), dihydrosphingosine (Cer EOdS), and phytosphingosine (Cer EOP) ranged from zero to 30 mol%. Systems with normal physiologic concentrations of acylCer mixture mimicked the permeability and nanostructure of human skin lipids (with regard to LPP, chain order, and lateral packing). The models also showed that the sphingoid base in acylCer significantly affects the membrane architecture and permeability and that Cer EOP, notably, is a weaker barrier component than Cer EOS and Cer EOdS. Membranes with diminished or missing acylCers displayed some of the hallmarks of diseased skin lipid barriers (i.e., lack of LPP, less ordered lipids, less orthorhombic chain packing, and increased permeability). These results could inform the rational design of new and improved strategies for the barrier-targeted treatment of skin diseases. Full Article
arch Endocytosis of very low-density lipoproteins: an unexpected mechanism for lipid acquisition by breast cancer cells [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 We previously described the expression of CD36 and LPL by breast cancer (BC) cells and tissues and the growth-promoting effect of VLDL observed only in the presence of LPL. We now report a model in which LPL is bound to a heparan sulfate proteoglycan motif on the BC cell surface and acts in concert with the VLDL receptor to internalize VLDLs via receptor-mediated endocytosis. We also demonstrate that gene-expression programs for lipid synthesis versus uptake respond robustly to triglyceride-rich lipoprotein availability. The literature emphasizes de novo FA synthesis and exogenous free FA uptake using CD36 as paramount mechanisms for lipid acquisition by cancer cells. We find that the uptake of intact lipoproteins is also an important mechanism for lipid acquisition and that the relative reliance on lipid synthesis versus uptake varies among BC cell lines and in response to VLDL availability. This metabolic plasticity has important implications for the development of therapies aimed at the lipid dependence of many types of cancer, in that the inhibition of FA synthesis may elicit compensatory upregulation of lipid uptake. Moreover, the mechanism that we have elucidated provides a direct connection between dietary fat and tumor biology.. Full Article
arch A nematode sterol C4{alpha}-methyltransferase catalyzes a new methylation reaction responsible for sterol diversity [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 Primitive sterol evolution plays an important role in fossil record interpretation and offers potential therapeutic avenues for human disease resulting from nematode infections. Recognizing that C4-methyl stenol products [8(14)-lophenol] can be synthesized in bacteria while C4-methyl stanol products (dinosterol) can be synthesized in dinoflagellates and preserved as sterane biomarkers in ancient sedimentary rock is key to eukaryotic sterol evolution. In this regard, nematodes have been proposed to convert dietary cholesterol to 8(14)-lophenol by a secondary metabolism pathway that could involve sterol C4 methylation analogous to the C2 methylation of hopanoids (radicle-type mechanism) or C24 methylation of sterols (carbocation-type mechanism). Here, we characterized dichotomous cholesterol metabolic pathways in Caenorhabditis elegans that generate 3-oxo sterol intermediates in separate paths to lophanol (4-methyl stanol) and 8(14)-lophenol (4-methyl stenol). We uncovered alternate C3-sterol oxidation and 7 desaturation steps that regulate sterol flux from which branching metabolite networks arise, while lophanol/8(14)-lophenol formation is shown to be dependent on a sterol C4α-methyltransferse (4-SMT) that requires 3-oxo sterol substrates and catalyzes a newly discovered 3-keto-enol tautomerism mechanism linked to S-adenosyl-l-methionine-dependent methylation. Alignment-specific substrate-binding domains similarly conserved in 4-SMT and 24-SMT enzymes, despite minimal amino acid sequence identity, suggests divergence from a common, primordial ancestor in the evolution of methyl sterols. The combination of these results provides evolutionary leads to sterol diversity and points to cryptic C4-methyl steroidogenic pathways of targeted convergence that mediate lineage-specific adaptations. Full Article
arch Lipid droplet-associated kinase STK25 regulates peroxisomal activity and metabolic stress response in steatotic liver [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are emerging as leading causes of liver disease worldwide and have been recognized as one of the major unmet medical needs of the 21st century. Our recent translational studies in mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine kinase (STK)25 as a protein that coats intrahepatocellular lipid droplets (LDs) and critically regulates liver lipid homeostasis and progression of NAFLD/NASH. Here, we studied the mechanism-of-action of STK25 in steatotic liver by relative quantification of the hepatic LD-associated phosphoproteome from high-fat diet-fed Stk25 knockout mice compared with their wild-type littermates. We observed a total of 131 proteins and 60 phosphoproteins that were differentially represented in STK25-deficient livers. Most notably, a number of proteins involved in peroxisomal function, ubiquitination-mediated proteolysis, and antioxidant defense were coordinately regulated in Stk25–/– versus wild-type livers. We confirmed attenuated peroxisomal biogenesis and protection against oxidative and ER stress in STK25-deficient human liver cells, demonstrating the hepatocyte-autonomous manner of STK25’s action. In summary, our results suggest that regulation of peroxisomal function and metabolic stress response may be important molecular mechanisms by which STK25 controls the development and progression of NAFLD/NASH. Full Article
arch Quantification of bile acids: a mass spectrometry platform for studying gut microbe connection to metabolic diseases [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 Bile acids (BAs) serve multiple biological functions, ranging from the absorption of lipids and fat-soluble vitamins to serving as signaling molecules through the direct activation of dedicated cellular receptors. Synthesized by both host and microbial pathways, BAs are increasingly understood as participating in the regulation of numerous pathways relevant to metabolic diseases, including lipid and glucose metabolism, energy expenditure, and inflammation. Quantitative analyses of BAs in biological matrices can be problematic due to their unusual and diverse physicochemical properties, making optimization of a method that shows good accuracy, precision, efficiency of extraction, and minimized matrix effects across structurally distinct human and murine BAs challenging. Herein we develop and clinically validate a stable-isotope-dilution LC/MS/MS method for the quantitative analysis of numerous primary and secondary BAs in both human and mouse biological matrices. We also utilize this tool to investigate gut microbiota participation in the generation of structurally specific BAs in both humans and mice. We examine circulating levels of specific BAs and in a clinical case-control study of age- and gender-matched type 2 diabetes mellitus (T2DM) versus nondiabetics. BAs whose circulating levels are associated with T2DM include numerous 12α-hydroxyl BAs (taurocholic acid, taurodeoxycholic acid, glycodeoxycholic acid, deoxycholic acid, and 3-ketodeoxycholic acid), while taurohyodeoxycholic acid was negatively associated with diabetes. The LC/MS/MS-based platform described should serve as a robust, high-throughput investigative tool for studying the potential involvement of structurally specific BAs and the gut microbiome on both physiological and disease processes. Full Article
arch Macrophage polarization is linked to Ca2+-independent phospholipase A2{beta}-derived lipids and cross-cell signaling in mice [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 Phospholipases A2 (PLA2s) catalyze hydrolysis of the sn-2 substituent from glycerophospholipids to yield a free fatty acid (i.e., arachidonic acid), which can be metabolized to pro- or anti-inflammatory eicosanoids. Macrophages modulate inflammatory responses and are affected by Ca2+-independent phospholipase A2 (PLA2)β (iPLA2β). Here, we assessed the link between iPLA2β-derived lipids (iDLs) and macrophage polarization. Macrophages from WT and KO (iPLA2β–/–) mice were classically M1 pro-inflammatory phenotype activated or alternatively M2 anti-inflammatory phenotype activated, and eicosanoid production was determined by ultra-performance LC ESI-MS/MS. As a genotypic control, we performed similar analyses on macrophages from RIP.iPLA2β.Tg mice with selective iPLA2β overexpression in β-cells. Compared with WT, generation of select pro-inflammatory prostaglandins (PGs) was lower in iPLA2β–/–, and that of a specialized pro-resolving lipid mediator (SPM), resolvin D2, was higher; both changes are consistent with the M2 phenotype. Conversely, macrophages from RIP.iPLA2β.Tg mice exhibited an opposite landscape, one associated with the M1 phenotype: namely, increased production of pro-inflammatory eicosanoids (6-keto PGF1α, PGE2, leukotriene B4) and decreased ability to generate resolvin D2. These changes were not linked with secretory PLA2 or cytosolic PLA2α or with leakage of the transgene. Thus, we report previously unidentified links between select iPLA2β-derived eicosanoids, an SPM, and macrophage polarization. Importantly, our findings reveal for the first time that β-cell iPLA2β-derived signaling can predispose macrophage responses. These findings suggest that iDLs play critical roles in macrophage polarization, and we posit that they could be targeted therapeutically to counter inflammation-based disorders. Full Article
arch Novel GPR120 agonist TUG891 modulates fat taste perception and preference and activates tongue-brain-gut axis in mice [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 GPR120 is implicated as a lipid receptor in the oro-sensory detection of dietary fatty acids. However, the effects of GPR120 activation on dietary fat intake or obesity are not clearly understood. We investigated to determine whether the binding of TUG891, a novel GPR120 agonist, to lingual GPR120 modulates fat preference in mice. We explored the effects of TUG891 on obesity-related hormones and conducted behavioral choice tests on mice to better understand the physiologic relevance of the action of TUG891. In cultured mouse and human taste bud cells (TBCs), TUG891 induced a rapid increase in Ca2+ by acting on GPR120. A long-chain dietary fatty acid, linoleic acid (LA), also recruited Ca2+ via GPR120 in human and mouse TBCs. Both TUG891 and LA induced ERK1/2 phosphorylation and enhanced in vitro release of glucagon-like peptide-1 from cultured human and mouse TBCs. In situ application of TUG891 onto the tongue of anesthetized mice triggered the secretion of pancreatobiliary juice, probably via the tongue-brain-gut axis. Furthermore, lingual application of TUG891 altered circulating concentrations of cholecystokinin and adipokines, associated with decreased circulating LDL, in conscious mice. In behavioral tests, mice exhibited a spontaneous preference for solutions containing either TUG891 or LA instead of a control. However, addition of TUG891 to a solution containing LA significantly curtailed fatty acid preference. Our study demonstrates that TUG891 binds to lingual GPR120 receptors, activates the tongue-brain-gut axis, and modulates fat preference. These findings may support the development of new fat taste analogs that can change the approach to obesity prevention and treatment. Full Article
arch High density lipoprotein and its apolipoprotein-defined subspecies and risk of dementia [Patient-Oriented and Epidemiological Research] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Whether HDL is associated with dementia risk is unclear. In addition to apoA1, other apolipoproteins are found in HDL, creating subspecies of HDL that may have distinct metabolic properties. We measured apoA1, apoC3, and apoJ levels in plasma and apoA1 levels in HDL that contains or lacks apoE, apoJ, or apoC3 using a modified sandwich ELISA in a case-cohort study nested within the Ginkgo Evaluation of Memory Study. We included 995 randomly selected participants and 521 participants who developed dementia during a mean of 5.1 years of follow-up. The level of total apoA1 was not significantly related to dementia risk, regardless of the coexistence of apoC3, apoJ, or apoE. Higher levels of total plasma apoC3 were associated with better cognitive function at baseline (difference in Modified Mini-Mental State Examination scores tertile 3 vs. tertile 1: 0.60; 95% CI: 0.23, 0.98) and a lower dementia risk (adjusted hazard ratio tertile 3 vs. tertile 1: 0.73; 95% CI: 0.55, 0.96). Plasma concentrations of apoA1 in HDL and its apolipoprotein-defined subspecies were not associated with cognitive function at baseline or with the risk of dementia during follow-up. Similar studies in other populations are required to better understand the association between apoC3 and Alzheimer’s disease pathology. Full Article
arch Nonsynonymous SNPs in LPA homologous to plasminogen deficiency mutants represent novel null apo(a) alleles [Patient-Oriented and Epidemiological Research] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Plasma lipoprotein (a) [Lp(a)] levels are largely determined by variation in the LPA gene, which codes for apo(a). Genome-wide association studies (GWASs) have identified nonsynonymous variants in LPA that associate with low Lp(a) levels, although their effect on apo(a) function is unknown. We investigated two such variants, R990Q and R1771C, which were present in four null Lp(a) individuals, for structural and functional effects. Sequence alignments showed the R990 and R1771 residues to be highly conserved and homologous to each other and to residues associated with plasminogen deficiency. Structural modeling showed both residues to make several polar contacts with neighboring residues that would be ablated on substitution. Recombinant expression of the WT and R1771C apo(a) in liver and kidney cells showed an abundance of an immature form for both apo(a) proteins. A mature form of apo(a) was only seen with the WT protein. Imaging of the recombinant apo(a) proteins in conjunction with markers of the secretory pathway indicated a poor transit of R1771C into the Golgi. Furthermore, the R1771C mutant displayed a glycosylation pattern consistent with ER, but not Golgi, glycosylation. We conclude that R1771 and the equivalent R990 residue facilitate correct folding of the apo(a) kringle structure and mutations at these positions prevent the proper folding required for full maturation and secretion. To our knowledge, this is the first example of nonsynonymous variants in LPA being causative of a null Lp(a) phenotype. Full Article
arch Exon 9-deleted CETP inhibits full length-CETP synthesis and promotes cellular triglyceride storage [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Cholesteryl ester transfer protein (CETP) exists as full-length (FL) and exon 9 (E9)-deleted isoforms. The function of E9-deleted CETP is poorly understood. Here, we investigated the role of E9-deleted CETP in regulating the secretion of FL-CETP by cells and explored its possible role in intracellular lipid metabolism. CETP overexpression in cells that naturally express CETP confirmed that E9-deleted CETP is not secreted, and showed that cellular FL- and E9-deleted CETP form an isolatable complex. Coexpression of CETP isoforms lowered cellular levels of both proteins and impaired FL-CETP secretion. These effects were due to reduced synthesis of both isoforms; however, the predominate consequence of FL- and E9-deleted CETP coexpression is impaired FL-CETP synthesis. We reported previously that reducing both CETP isoforms or overexpressing FL-CETP impairs cellular triglyceride (TG) storage. To investigate this further, E9-deleted CETP was expressed in SW872 cells that naturally synthesize CETP and in mouse 3T3-L1 cells that do not. E9-deleted CETP overexpression stimulated SW872 triglyceride synthesis and increased stored TG 2-fold. Expression of E9-deleted CETP in mouse 3T3-L1 cells produced a similar lipid phenotype. In vitro, FL-CETP promotes the transfer of TG from ER-enriched membranes to lipid droplets. E9-deleted CETP also promoted this transfer, although less effectively, and it inhibited the transfer driven by FL-CETP. We conclude that FL- and E9-deleted CETP isoforms interact to mutually decrease their intracellular levels and impair FL-CETP secretion by reducing CETP biosynthesis. E9-deleted CETP, like FL-CETP, alters cellular TG metabolism and storage but in a contrary manner. Full Article
arch Deficiency in ZMPSTE24 and resulting farnesyl-prelamin A accumulation only modestly affect mouse adipose tissue stores [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Zinc metallopeptidase STE24 (ZMPSTE24) is essential for the conversion of farnesyl–prelamin A to mature lamin A, a key component of the nuclear lamina. In the absence of ZMPSTE24, farnesyl–prelamin A accumulates in the nucleus and exerts toxicity, causing a variety of disease phenotypes. By ~4 months of age, both male and female Zmpste24–/– mice manifest a near-complete loss of adipose tissue, but it has never been clear whether this phenotype is a direct consequence of farnesyl–prelamin A toxicity in adipocytes. To address this question, we generated a conditional knockout Zmpste24 allele and used it to create adipocyte-specific Zmpste24–knockout mice. To boost farnesyl–prelamin A levels, we bred in the "prelamin A–only" Lmna allele. Gene expression, immunoblotting, and immunohistochemistry experiments revealed that adipose tissue in these mice had decreased Zmpste24 expression along with strikingly increased accumulation of prelamin A. In male mice, Zmpste24 deficiency in adipocytes was accompanied by modest changes in adipose stores (an 11% decrease in body weight, a 23% decrease in body fat mass, and significantly smaller gonadal and inguinal white adipose depots). No changes in adipose stores were detected in female mice, likely because prelamin A expression in adipose tissue is lower in female mice. Zmpste24 deficiency in adipocytes did not alter the number of macrophages in adipose tissue, nor did it alter plasma levels of glucose, triglycerides, or fatty acids. We conclude that ZMPSTE24 deficiency in adipocytes, and the accompanying accumulation of farnesyl–prelamin A, reduces adipose tissue stores, but only modestly and only in male mice. Full Article
arch Monitoring the itinerary of lysosomal cholesterol in Niemann-Pick Type C1-deficient cells after cyclodextrin treatment [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Niemann-Pick disease type C (NPC) disease is a lipid-storage disorder that is caused by mutations in the genes encoding NPC proteins and results in lysosomal cholesterol accumulation. 2-Hydroxypropyl-β-cyclodextrin (CD) has been shown to reduce lysosomal cholesterol levels and enhance sterol homeostatic responses, but CD’s mechanism of action remains unknown. Recent work provides evidence that CD stimulates lysosomal exocytosis, raising the possibility that lysosomal cholesterol is released in exosomes. However, therapeutic concentrations of CD do not alter total cellular cholesterol, and cholesterol homeostatic responses at the ER are most consistent with increased ER membrane cholesterol. To address these disparate findings, here we used stable isotope labeling to track the movement of lipoprotein cholesterol cargo in response to CD in NPC1-deficient U2OS cells. Although released cholesterol was detectable, it was not associated with extracellular vesicles. Rather, we demonstrate that lysosomal cholesterol trafficks to the plasma membrane (PM), where it exchanges with lipoprotein-bound cholesterol in a CD-dependent manner. We found that in the absence of suitable extracellular cholesterol acceptors, cholesterol exchange is abrogated, cholesterol accumulates in the PM, and reesterification at the ER is increased. These results support a model in which CD promotes intracellular redistribution of lysosomal cholesterol, but not cholesterol exocytosis or efflux, during the restoration of cholesterol homeostatic responses. Full Article
arch The citrus flavonoid nobiletin confers protection from metabolic dysregulation in high-fat-fed mice independent of AMPK [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Obesity, dyslipidemia, and insulin resistance, the increasingly common metabolic syndrome, are risk factors for CVD and type 2 diabetes that warrant novel therapeutic interventions. The flavonoid nobiletin displays potent lipid-lowering and insulin-sensitizing properties in mice with metabolic dysfunction. However, the mechanisms by which nobiletin mediates metabolic protection are not clearly established. The central role of AMP-activated protein kinase (AMPK) as an energy sensor suggests that AMPK is a target of nobiletin. We tested the hypothesis that metabolic protection by nobiletin required phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in mouse hepatocytes, in mice deficient in hepatic AMPK (Ampkβ1–/–), in mice incapable of inhibitory phosphorylation of ACC (AccDKI), and in mice with adipocyte-specific AMPK deficiency (iβ1β2AKO). We fed mice a high-fat/high-cholesterol diet with or without nobiletin. Nobiletin increased phosphorylation of AMPK and ACC in primary mouse hepatocytes, which was associated with increased FA oxidation and attenuated FA synthesis. Despite loss of ACC phosphorylation in Ampkβ1–/– hepatocytes, nobiletin suppressed FA synthesis and enhanced FA oxidation. Acute injection of nobiletin into mice did not increase phosphorylation of either AMPK or ACC in liver. In mice fed a high-fat diet, nobiletin robustly prevented obesity, hepatic steatosis, dyslipidemia, and insulin resistance, and it improved energy expenditure in Ampkβ1–/–, AccDKI, and iβ1β2AKO mice to the same extent as in WT controls. Thus, the beneficial metabolic effects of nobiletin in vivo are conferred independently of hepatic or adipocyte AMPK activation. These studies further underscore the therapeutic potential of nobiletin and begin to clarify possible mechanisms. Full Article
arch Role of angiopoietin-like protein 3 in sugar-induced dyslipidemia in rhesus macaques: suppression by fish oil or RNAi [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Angiopoietin-like protein 3 (ANGPTL3) inhibits lipid clearance and is a promising target for managing cardiovascular disease. Here we investigated the effects of a high-sugar (high-fructose) diet on circulating ANGPTL3 concentrations in rhesus macaques. Plasma ANGPTL3 concentrations increased ~30% to 40% after 1 and 3 months of a high-fructose diet (both P < 0.001 vs. baseline). During fructose-induced metabolic dysregulation, plasma ANGPTL3 concentrations were positively correlated with circulating indices of insulin resistance [assessed with fasting insulin and the homeostatic model assessment of insulin resistance (HOMA-IR)], hypertriglyceridemia, adiposity (assessed as leptin), and systemic inflammation [C-reactive peptide (CRP)] and negatively correlated with plasma levels of the insulin-sensitizing hormone adropin. Multiple regression analyses identified a strong association between circulating APOC3 and ANGPTL3 concentrations. Higher baseline plasma levels of both ANGPTL3 and APOC3 were associated with an increased risk for fructose-induced insulin resistance. Fish oil previously shown to prevent insulin resistance and hypertriglyceridemia in this model prevented increases of ANGPTL3 without affecting systemic inflammation (increased plasma CRP and interleukin-6 concentrations). ANGPTL3 RNAi lowered plasma concentrations of ANGPTL3, triglycerides (TGs), VLDL-C, APOC3, and APOE. These decreases were consistent with a reduced risk of atherosclerosis. In summary, dietary sugar-induced increases of circulating ANGPTL3 concentrations after metabolic dysregulation correlated positively with leptin levels, HOMA-IR, and dyslipidemia. Targeting ANGPTL3 expression with RNAi inhibited dyslipidemia by lowering plasma TGs, VLDL-C, APOC3, and APOE levels in rhesus macaques. Full Article
arch Alirocumab, evinacumab, and atorvastatin triple therapy regresses plaque lesions and improves lesion composition in mice [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Atherosclerosis-related CVD causes nearly 20 million deaths annually. Most patients are treated after plaques develop, so therapies must regress existing lesions. Current therapies reduce plaque volume, but targeting all apoB-containing lipoproteins with intensive combinations that include alirocumab or evinacumab, monoclonal antibodies against cholesterol-regulating proprotein convertase subtilisin/kexin type 9 and angiopoietin-like protein 3, may provide more benefit. We investigated the effect of such lipid-lowering interventions on atherosclerosis in APOE*3-Leiden.CETP mice, a well-established model for hyperlipidemia. Mice were fed a Western-type diet for 13 weeks and thereafter matched into a baseline group (euthanized at 13 weeks) and five groups that received diet alone (control) or with treatment [atorvastatin; atorvastatin and alirocumab; atorvastatin and evinacumab; or atorvastatin, alirocumab, and evinacumab (triple therapy)] for 25 weeks. We measured effects on cholesterol levels, plaque composition and morphology, monocyte adherence, and macrophage proliferation. All interventions reduced plasma total cholesterol (37% with atorvastatin to 80% with triple treatment; all P < 0.001). Triple treatment decreased non-HDL-C to 1.0 mmol/l (91% difference from control; P < 0.001). Atorvastatin reduced atherosclerosis progression by 28% versus control (P < 0.001); double treatment completely blocked progression and diminished lesion severity. Triple treatment regressed lesion size versus baseline in the thoracic aorta by 50% and the aortic root by 36% (both P < 0.05 vs. baseline), decreased macrophage accumulation through reduced proliferation, and abated lesion severity. Thus, high-intensive cholesterol-lowering triple treatment targeting all apoB-containing lipoproteins regresses atherosclerotic lesion area and improves lesion composition in mice, making it a promising potential approach for treating atherosclerosis. Full Article
arch Role of pyruvate kinase M2 in oxidized LDL-induced macrophage foam cell formation and inflammation [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Pyruvate kinase M2 (PKM2) links metabolic and inflammatory dysfunction in atherosclerotic coronary artery disease; however, its role in oxidized LDL (Ox-LDL)-induced macrophage foam cell formation and inflammation is unknown and therefore was studied. In recombinant mouse granulocyte-macrophage colony-stimulating factor-differentiated murine bone marrow-derived macrophages, early (1–6 h) Ox-LDL treatment induced PKM2 tyrosine 105 phosphorylation and promotes its nuclear localization. PKM2 regulates aerobic glycolysis and inflammation because PKM2 shRNA or Shikonin abrogated Ox-LDL-induced hypoxia-inducible factor-1α target genes lactate dehydrogenase, glucose transporter member 1, interleukin 1β (IL-1β) mRNA expression, lactate, and secretory IL-1β production. PKM2 inhibition significantly increased Ox-LDL-induced ABCA1 and ABCG1 protein expression and NBD-cholesterol efflux to apoA1 and HDL. PKM2 shRNA significantly inhibited Ox-LDL-induced CD36, FASN protein expression, DiI-Ox-LDL binding and uptake, and cellular total cholesterol, free cholesterol, and cholesteryl ester content. Therefore, PKM2 regulates lipid uptake and efflux. DASA-58, a PKM2 activator, downregulated LXR-α, ABCA1, and ABCG1, and augmented FASN and CD36 protein expression. Peritoneal macrophages showed similar results. Ox-LDL induced PKM2- SREBP-1 interaction and FASN expression in a PKM2-dependent manner. Therefore, this study suggests a role for PKM2 in Ox-LDL-induced aerobic glycolysis, inflammation, and macrophage foam cell formation. Full Article
arch Hepatic PLIN5 signals via SIRT1 to promote autophagy and prevent inflammation during fasting [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Lipid droplets (LDs) are energy-storage organelles that are coated with hundreds of proteins, including members of the perilipin (PLIN) family. PLIN5 is highly expressed in oxidative tissues, including the liver, and is thought to play a key role in uncoupling LD accumulation from lipotoxicity; however, the mechanisms behind this action are incompletely defined. We investigated the role of hepatic PLIN5 in inflammation and lipotoxicity in a murine model under both fasting and refeeding conditions and in hepatocyte cultures. PLIN5 ablation with antisense oligonucleotides triggered a pro-inflammatory response in livers from mice only under fasting conditions. Similarly, PLIN5 mitigated lipopolysaccharide- or palmitic acid-induced inflammatory responses in hepatocytes. During fasting, PLIN5 was also required for the induction of autophagy, which contributed to its anti-inflammatory effects. The ability of PLIN5 to promote autophagy and prevent inflammation were dependent upon signaling through sirtuin 1 (SIRT1), which is known to be activated in response to nuclear PLIN5 under fasting conditions. Taken together, these data show that PLIN5 signals via SIRT1 to promote autophagy and prevent FA-induced inflammation as a means to maintain hepatocyte homeostasis during periods of fasting and FA mobilization. Full Article
arch Serum amyloid A is not incorporated into HDL during HDL biogenesis [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Liver-derived serum amyloid A (SAA) is present in plasma where it is mainly associated with HDL and from which it is cleared more rapidly than are the other major HDL-associated apolipoproteins. Although evidence suggests that lipid-free and HDL-associated forms of SAA have different activities, the pathways by which SAA associates and disassociates with HDL are poorly understood. In this study, we investigated SAA lipidation by hepatocytes and how this lipidation relates to the formation of nascent HDL particles. We also examined hepatocyte-mediated clearance of lipid-free and HDL-associated SAA. We prepared hepatocytes from mice injected with lipopolysaccharide or an SAA-expressing adenoviral vector. Alternatively, we incubated primary hepatocytes from SAA-deficient mice with purified SAA. We analyzed conditioned media to determine the lipidation status of endogenously produced and exogenously added SAA. Examining the migration of lipidated species, we found that SAA is lipidated and forms nascent particles that are distinct from apoA-I-containing particles and that apoA-I lipidation is unaltered when SAA is overexpressed or added to the cells, indicating that SAA is not incorporated into apoA-I-containing HDL during HDL biogenesis. Like apoA-I formation, generation of SAA-containing particles was dependent on ABCA1, but not on scavenger receptor class B type I. Hepatocytes degraded significantly more SAA than apoA-I. Taken together, our results indicate that SAA’s lipidation and metabolism by the liver is independent of apoA-I and that SAA is not incorporated into HDL during HDL biogenesis. Full Article
arch Model systems for studying the assembly, trafficking, and secretion of apoB lipoproteins using fluorescent fusion proteins [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 apoB exists as apoB100 and apoB48, which are mainly found in hepatic VLDLs and intestinal chylomicrons, respectively. Elevated plasma levels of apoB-containing lipoproteins (Blps) contribute to coronary artery disease, diabetes, and other cardiometabolic conditions. Studying the mechanisms that drive the assembly, intracellular trafficking, secretion, and function of Blps remains challenging. Our understanding of the intracellular and intraorganism trafficking of Blps can be greatly enhanced, however, with the availability of fusion proteins that can help visualize Blp transport within cells and between tissues. We designed three plasmids expressing human apoB fluorescent fusion proteins: apoB48-GFP, apoB100-GFP, and apoB48-mCherry. In Cos-7 cells, transiently expressed fluorescent apoB proteins colocalized with calnexin and were only secreted if cells were cotransfected with microsomal triglyceride transfer protein. The secreted apoB-fusion proteins retained the fluorescent protein and were secreted as lipoproteins with flotation densities similar to plasma HDL and LDL. In a rat hepatoma McA-RH7777 cell line, the human apoB100 fusion protein was secreted as VLDL- and LDL-sized particles, and the apoB48 fusion proteins were secreted as LDL- and HDL-sized particles. To monitor lipoprotein trafficking in vivo, the apoB48-mCherry construct was transiently expressed in zebrafish larvae and was detected throughout the liver. These experiments show that the addition of fluorescent proteins to the C terminus of apoB does not disrupt their assembly, localization, secretion, or endocytosis. The availability of fluorescently labeled apoB proteins will facilitate the exploration of the assembly, degradation, and transport of Blps and help to identify novel compounds that interfere with these processes via high-throughput screening. Full Article