vehicle

Behavior control device for a combination vehicle

There is provided a behavior control device for the prevention of a jackknife phenomenon of a combination vehicle including a tractor and a trailer pivotably coupled with the tractor, taking into account that the relative pivoting action of the trailer and tractor varies according to the magnitudes of a vehicle speed or a deceleration. The inventive behavior control device comprises a braking-driving force control portion which controls a braking-driving force of the tractor or the trailer to reduce a difference between a yaw rate of the tractor and a yaw rate of the trailer and a judgment portion which judges whether or not a braking-driving force control of the tractor or the trailer by the braking-driving force control portion is necessary; wherein the judgment portion changes based on a vehicle speed or a deceleration of the vehicle the judgment of whether or not the braking-driving force control is necessary.




vehicle

Vehicle side airbag device

A deployment guiding cloth is wound from an outside in the vehicle width direction, on an outer peripheral portion of a folded side airbag. This deployment guiding cloth extends toward a vehicle front side and is interposed between the side airbag that is partially deployed and a vehicle cabin side portion (a center pillar garnish and a door trim) before the side airbag is fully deployed.




vehicle

Work vehicle

A work vehicle includes an engine, an idling stop execution portion, a determination portion, a counting portion, and an idling stop time period adjustment portion. The engine can rotate in a first idling state and a second idling state in which the engine rotates at the number of rotations higher than a prescribed number of rotations. The idling stop execution portion performs an idling stop operation for stopping the engine. The determination portion determines whether or not stop has been made from the second idling state. The counting portion counts the number of times of stop of the engine from the second idling state. An idling stop time period adjustment portion makes a prescribed time period of the second idling state longer than a current time period, when the number of times of stop of the engine is equal to or greater than the prescribed number of times.




vehicle

Brake actuating unit for actuating a motor vehicle braking system of the “brake-by-wire” type, and method for operating a motor vehicle braking system by means of such a brake actuating unit

A brake actuating unit for actuating a motor vehicle braking system of the “brake-by-wire” type having a brake booster. In order to provide a brake actuating unit for actuating a motor vehicle braking system of the “brake-by-wire” type, which on the one hand fulfills the statutory requirements care and which on the other hand is inexpensive to produce, it is proposed according to aspects of the invention, that the brake booster be provided as a travel-controlled brake booster, so that when not in the “brake-by-wire” operating mode the brake pedal is decoupled from feedback forces of the brake actuating unit, and the return force is simulated by the pedal travel simulator even when not in the “brake-by-wire” operating mode.




vehicle

Electromotive actuator for a closing part, in particular for a window or a sliding roof in a motor vehicle

A geared motor actuator having a simplified mechanical structure for driving a closing part, such as a vehicle window, moved as far as at least one end position by an electric motor (MO) via a gear (G), preferably a worm gear. Shortly before the end position is reached, switch-off of the electric motor (MO) is performed in accordance with a control device (ST). The gear (G) is drive-connected to an output driver of the closing part without any damping means. The worm wheel (4) of the worm gear, being a solid, integral component that is preferably injection-molded from plastic, is preferably designed to include the output driver as part of the integral component, and provided with a drive pinion (4.1).




vehicle

Vehicle front structure

Provided is a vehicle front structure including a front bumper and a lower grille. The front bumper includes a front-bumper lower surface extending in a vehicle rear direction, the front-bumper lower surface having a pair of bottom surface portions at respective side portions and a recessed surface at a center portion, the recessed surface extending from the pair of bottom surface portions and being recessed in an upper direction. The lower grille includes an annular portion arranged at the lower side of a rear end of the recessed surface and forming an opening, a protruding portion protruding from a lower portion of the annular portion so as to protrude in a front direction and oppose to the recessed surface, and a reinforcing portion extending from an upper portion of the annular portion to a back surface of the recessed surface and reinforcing the front-bumper lower surface.




vehicle

Vehicle body structure

There is provided a vehicle body structure that can improve collision performance at the time of a rear collision. The vehicle body structure includes first and second crash boxes that are provided at rear ends of rear side members. Further, the second crash boxes are disposed at positions different from the positions of the first crash boxes in a vertical direction of the vehicle. The second crash boxes, which are disposed at the positions different from the positions of the first crash boxes, can absorb a load applied from bumper reinforcement of another vehicle. Since a load at the time of a rear collision is absorbed by the second crash boxes, it is possible to suppress the deformation of a trunk that is provided at the rear portion of a vehicle body.




vehicle

Drying apparatus for vehicle using vehicle induced wind

Disclosed herein is a drying apparatus for a vehicle using vehicle induced wind. The drying apparatus is capable of drying a wet object using vehicle induced wind generated by the driving of the vehicle. The apparatus includes a storage cover that is rotatably coupled to a rear bumper cover via a hinge module, to form a storage space between the storage cover and the rear bumper cover. In addition the apparatus includes an inlet cover that is coupled to the rear bumper cover to form an inlet passage through which the vehicle induced wind flows into the storage space when the vehicle is being driven. A plurality of outlet holes are formed in the rear bumper cover, and are configured to operate as a passage to allow air to be discharged from the storage space to an exterior of the vehicle.




vehicle

Structure for absorbing frontal collision energy of vehicle

A structure for absorbing frontal collision energy of a vehicle absorbs frontal collision energy of a vehicle using both front side members configured to support a bumper beam disposed at a front side of a vehicle body, a shock absorber housing panel disposed outside the front side member, and a fender apron member disposed outside the shock absorber housing panel, and the structure includes: an enlarged member installed to be inclined between an outer surface of the front side member and a rear surface of the fender apron member so as to be spaced forward and apart from the outer surface of the front side member; and an enlarged frame engaged between a lower side of the fender apron member and a front mounting portion of a sub-frame.




vehicle

Pedestrian-friendly structure for motor vehicle front end

A pedestrian-friendly forward structure of a motor vehicle includes a grill opening reinforcement (GOR), a front fascia located forward of and spaced from the GOR, and a support bracket extending transversely to the vehicle forward of the GOR and rearward of the front fascia. The support bracket has a transverse cross-bar and left and right legs extending rearward from a cross-bar adjacent opposite ends thereof. The legs are attached to respective outboard positions on the GOR, and the cross-bar has an upper flange underlying an upper rear panel of the front fascia. If a pedestrian strikes the forward structure, the fascia and support bracket yield rearward in an injury-reducing manner.




vehicle

Vehicle bumpers having oval cross-section members

A vehicle bumper for use with police and other emergency vehicles for pushing another vehicle which is fabricated of a tubular loop defining a generally oval cross-section. The oval cross-section tubular loop is oriented such that the major axis of the oval cross-section extends front to back with respect to the host vehicle while the minor axis extends up and down. The vehicle bumper further supports a plurality of resilient pads to aid in controlling the pushed vehicle and to cushion impact transfer between the bumper and the pushed vehicle. The inventive vehicle bumper is substantially stronger and substantially lighter in weight while simultaneously providing a more attractive front view cross-section when mounted on a host vehicle. A plurality of attachments are secured to the tubular loop and are used in securing the vehicle bumper to a suitable portion of a host vehicle.




vehicle

Vehicle bumper

A bumper absorber (9) has a squared U-shaped cross section formed of: a vertical face (11) extending in a top-bottom direction and a vehicle width direction, and a top face (12) and a bottom face (13) respectively extending rearward from a top end and a bottom end of the vertical face (11). The bumper absorber (9) is configured such that the top face (12) and the bottom face (13) thereof are supported by the bumper reinforcement (10) via multiple attachment members (23 to 27), and an interval between the attachment members adjacent to each other in the vehicle width direction is set to decrease from end portions (9b) in the vehicle width direction toward a central portion (9a) in the vehicle width direction.




vehicle

Vehicle bumper assembly

The invention relates to a vehicle bumper assembly (1) having a bumper cross-member (2) and at least two energy-absorption components (3), which are arranged at a distance from one another and which are connected to the rear side of the bumper cross-member (2) and supported thereon by means of a first end. The energy-absorption components have an x-direction absorption effective direction oriented perpendicular to the y-axes longitudinal extension of the bumper. The energy-absorption components (3) are designed to be supported on a chassis part (4) of a vehicle by means of the end of the energy-absorption components pointing away from the bumper cross-member, wherein the energy-absorption component (3) has a slanted end face (5) in the direction toward the bumper cross-member (2). According to the invention, the entire or substantially the entire end face (5) of the energy-absorption component (3) is supported on the rear side of the bumper cross-member (2), and the plane of the end face (5) of the energy-absorption component (3) facing the bumper, and thus the bumper cross-member (2), is oriented such that the front side thereof is arranged at an angle to the plane extending orthogonally to the force application direction of the AZT structure test.




vehicle

Motor vehicles having bumper counter rotation brackets

A motor vehicle includes a first side member having first lower and upper darts. The motor vehicle also includes a second side member parallel with and spaced apart from the first side member, the second side member having second lower and upper darts. The upper darts are positioned between the lower darts and end portions of the respective first or second side members. The motor vehicle further includes first and second bumper brackets coupled to the end portion of the respective first or second side members, a bumper reinforcement member coupled to the first and second bumper brackets, and a counter rotation bracket coupled to the bumper reinforcement member and extending upwards from the bumper reinforcement member. The lower darts and the upper darts form a preferential buckling zone of the first and the second side members.




vehicle

Vehicle bumper beam

A vehicle bumper beam including: a resin beam having an elongate body extending along a vehicle-width direction, two tubular shock-absorbing portions disposed at the beam body's opposite longitudinal end portions extending in front-rear direction, the beam body and shock-absorbing portions being formed with each other; a metal beam disposed outside the resin beam in the front-rear direction, fixedly fitted to the resin beam. Further, flat attachment portions, formed with inner end portions of the shock-absorbing portions in front-rear direction; bent portions bent in a crank extending from attachment portions outward in front-rear direction, the beam body being to attachment portions via bent portions, the metal beam fixedly fitted to an outer surface of the beam body's intermediate portion; metal beam's opposite end portions extending beyond bent portions covering the right and left sides, fixedly fitted to distal end portions; each space defined by shock-absorbing portion, metal beam and bent portion.




vehicle

Vehicle frame component

A body on frame vehicle includes a vehicle frame having a small offset impact load management system including upper and lower rear blocker structures and a reinforcement blocker structure for managing impact loads applied to the wheel and tire of the vehicle from being directed further toward the body. The reinforcement blocker structure includes a base member welded to openings in the frame side rail and extending angularly outwardly and located rearward and distal the wheel and tire and proximal a longitudinal cross frame member for transferring the small offset impact loads transferred by the wheel and tire in a cross vehicle direction.




vehicle

Laminate bumper for material handling vehicles

A material handling vehicle includes a laminated bumper that provides both durability and reduced energy transmissibility. The laminated bumper includes at least a first bumper layer and a second bumper layer, such that at least one of the first bumper layer and second bumper layer of the laminate bumper are allowed to translate upon bumper contact with an object.




vehicle

Vehicle-body structure of vehicle

A panel member having a U-shaped cross section includes step portions at an upper face portion and a lower face portion, and a distance, in a vehicle longitudinal direction, of the step potions from a panel member formed substantially in a flat-plate shape, is configured such that the distance at a central portion, in the vehicle width direction, of a bumper reinforcement is the maximum and the distance decreases gradually toward an outward direction of the vehicle. Accordingly, the vehicle-body structure which can properly ensure the bending strength and also attain the light weight of the bumper reinforcement, improving the load transmission from the bumper reinforcement to crash cans, can be provided.




vehicle

System for pedestrian leg protection in vehicle impact

A system for protecting a pedestrian during impact with a vehicle, the system having a bumper adapted for attachment to an end of the vehicle, wherein the bumper is comprised of a plurality of air sacs, wherein the bumper has a horizontal thickness extends from the end of the vehicle, wherein at least some of the plurality of air sacs stretch and then burst during impact between the bumper and a pedestrian causing deceleration along the horizontal width of the bumper during the impact, wherein the bumper undergoes plastic deformation during impact with the pedestrian as the at least some of the air sacs burst during impact, and wherein the bursting of some of the plurality of air sacs reduces spring back of the bumper on the pedestrian.




vehicle

Deflector-catcher for small overlap vehicle impacts

A front-end assembly including a deflector and a catcher bracket. The V-shaped deflector is attached to a bumper of a vehicle, a rear leg of the deflector has a distal end disposed adjacent to the frame rail. In a collision, the distal end of the rear leg engages the catcher bracket to reduce intrusion into the passenger compartment of the vehicle.




vehicle

Vehicle attachable carrier device

The vehicle attachable carrier device includes a mounting bracket assembly for movably mounting a guard frame to a vehicle that includes a bracket coupled to the vehicle. A frame is movably coupled to the bracket. The frame may guard the vehicle. The frame is positionable between a stored position and an extended position.




vehicle

Airflow control device for an automotive vehicle

An airflow control device is mounted to the front end of an automotive vehicle and includes an upper air scoop section having a scoop channel disposed rearward of a bumper assembly and oriented to direct airflow entering a bumper intake opening toward an air-receiving powertrain component. A lower air dam section extends downwardly from the upper section to be positioned below a lower extent of the bumper assembly to deflect airflow away from an underside of the vehicle.




vehicle

Telescoping vehicle safety guard

A safety guard for a vehicle, such as a school or transit bus, tractor trailer or the like-type vehicle, includes a front guard positioned at an angle in front of a wheel of the vehicle that will function to push individuals and other animate objects lying in the path of the vehicle out of the path of the wheels for safety purposes, while being mounted for telescoping movement to protect the safety guard from damage upon abutting an inanimate object during operation of the vehicle.




vehicle

Vehicle front structure

When a collision load is transmitted to a gusset, the load is transmitted to an inner side in a vehicle width direction via an inclined wall. Accordingly, moment that causes a front side member to be projected and bent inward to the inner side in the vehicle width direction with an intersection being a starting point acts on the front side member. Then, the front side member, which has been projected and bent inward, collides with a power unit that is disposed in an engine compartment from an outer side in the vehicle width direction. Accordingly, a lateral force to the inner side in the vehicle width direction can be obtained for a vehicle.




vehicle

Vehicle-body front structure of vehicle

A first projection portion projecting outward, in a vehicle width direction, from a front side frame is provided. A front end of the first projection portion is located at the same position, in the vehicle longitudinal direction, as a connection portion of a crash can to the front side frame or located in back of the connection portion. An outward side face of the first projection portion is configured to slant rearward and inward in a plan view. The first projection portion and a power unit are arranged to overlap each other in the vehicle longitudinal direction. Accordingly, an impact transmitted to a vehicle-compartment side in a small overlap collision can be reduced, restraining repair costs of the crash can broken in a low-speed collision as well as maintaining appropriate design flexibility of a vehicle-body front portion.




vehicle

Vehicle bumper mounting structure

A fender front-side step portion has first and second fender front-side fixing portions that engage with and fasten a bumper spacer. The bumper spacer is provided with: a spacer body; a bumper-spacer reinforcing portion that extends toward a fender lower-end portion of a fender panel from the bottom end of the spacer body; and a bumper-spacer rear-side fixing portion which is disposed on the bumper-spacer reinforcing portion, and which overlaps with and fastens the front of the fender lower-end portion. The bumper-spacer rear-side fixing portion is disposed in a position further to the rear than the fender front-side step portion in the longitudinal direction of a vehicle.




vehicle

Middle buffer coupling for rail-bound vehicles

What is described is a middle buffer coupling for rail-bound vehicles, comprising two coupling halves (2, 2') to be coupled together attached to vehicle parts (A, B), each of said coupling halves (2, 2') comprising a coupling rod (8, 8') with a coupling head (12, 12'), and comprising a connecting element (16) for manually connecting the two coupling heads (12, 12'). Disposed at each coupling head (12, 12') is an electrical contact element (32, 34) for contacting with the contact element of the other respective coupling head (12, 12') when the two coupling halves (2, 2') are coupled. Routed within each coupling rod (8, 8') are electrical lines (18, 18') that lead from the contact elements (32, 34) of the associated coupling head (12, 12') to the vehicle part (A, B) to which the coupling halves (2, 2') comprising said coupling rods (8, 8') are attached, respectively.




vehicle

Electrical contact coupling for a track-borne vehicle, particularly a railway vehicle

An electrical contact coupling for a track-borne vehicle has a coupling housing and a protective flap articulated to the coupling housing. In order to ensure a reliable sealing of the coupling housing in the closed state of the electrical contact coupling, a seal is utilized which exhibits an upper sealing area running parallel to the axis of rotation and a lower sealing area running parallel to the axis of rotation. The upper sealing area associates with a sealing face aligned perpendicular to the housing end face and the lower sealing area associates with a sealing face aligned substantially parallel to the housing end face.




vehicle

Coupling arrangement for the front of a tracked vehicle

A coupling arrangement for the front of a tracked vehicle is disclosed, comprising a central buffer coupling having a gladhand, a coupling shaft supporting the gladhand and a bearing, via which the coupling shaft can be joined with the undercarriage of the vehicle pivotable in a horizontal and/or vertical direction. An energy consuming device allocated to the central buffer coupling having at least one energy consuming element with a destructive design is provided. To ensure maximum energy consumption in a crash with a course of events definable in advance, the coupling arrangement additionally comprises a supporting structure with two longitudinal beams arranged on the sides of the central buffer coupling and a crossbeam joined with the two longitudinal beams, said crossbeam beam being arranged above the central buffer coupling such that a vertical deflection of the coupling shaft relative to the undercarriage of the vehicle is limited by the crossbeam.




vehicle

Articulated coupling between a first car and a second car of a vehicle, especially a railway vehicle

The invention relates to an articulated coupling between a first car (3) and a second car of a vehicle, especially a railway vehicle, having at least two cars, said articulated coupling including a first element (33) capable of being connected to said first car (3) and a second element (35) capable of being connected to said second car, a device for moving said second element (35) in translation relative to said first element (33) in the event of an impact, and an energy absorber capable of being arranged between said first (3) and second (19) cars. The energy absorber is arranged between said first (33) and second (35) elements, and in the first element (33) is designed to allow persons to pass between said first car (3) and said second car.




vehicle

Lightweight compound cab structure for a rail vehicle

An integrated self-supporting and deformation-resistant modular driver's cabin structure for mounting to the front end of a rail vehicle body and for providing a driver space and a windshield opening, is composed of a composite sandwich structure with a single, common, continuous outer skin layer, a single, common, continuous inner skin layer and an internal structure wholly covered with and bonded to the inner and outer skin layers, the internal structure comprising a plurality of core elements. The driver's cabin structure comprises at least: side pillars each having a lower end and an upper end, and an undercarriage structure at the lower end of each of the side pillars. The fiber-reinforced sandwich located in the side pillars is provided with several layers of fibers oriented to provide a high bending stiffness. The fiber-reinforced sandwich of the undercarriage structure is such to transfer static and crash loads without flexural buckling.




vehicle

Under-way transfer vehicles and system

This is a vehicle transfer system to connect a roadway vehicle such as a bus to and from a train either when stopped or moving. It mounts the bus end or ends each on the swivel end of a railway car. The bus end which couples a railway car has wheels that retract to clear from the track. All wheels of the bus are lifted if the bus is supported on a railway car at each end. Automatic couplers are provided to couple to a moving train. If the bus is only supported at the front on a swivel coupling car it can have hi-rail retractable swivel truck wheels lowered to the rails to guide the rear of the bus around sharp tram curves.




vehicle

Railway vehicle having front coupling cover

A railway vehicle has a cover for a front coupling of the railway vehicle. The cover is formed of at least one displaceable front hatch that can be displaced by a drive between an opened and a closed end position. A displacement of the at least one front hatch is guided such that the displacement takes place along a circular segment path about a rotary axis.




vehicle

Gas filling system, gas filling method, and vehicle

A gas filling system (1) includes a gas tank (30); a gas filling device (2) that fills gas into the gas tank (30); and a controller (24) that calculates a temperature increase ΔT and a pressure increase ΔP in the gas tank (30) during a predetermined period of time (t seconds) that elapses from a start of gas filling. The controller (24) selects a filling rate map (Ma, Mb) from a prepared filling rate map group on the basis of the calculated temperature increase ΔT and the calculated pressure increase ΔP. The gas filling device (2) carries out gas filling using the filling rate map selected by the controller (24).




vehicle

Remote controlled aerial reconnaissance vehicle

A radio controlled UAV is disclosed. The UAV includes a parachute, with a cylindrical power and control module suspended vertically below the parachute. In one embodiment, a propulsion source is mounted on top of the power and control module with control lines connected to the module below the propulsion source, and in another embodiment the power and control module is suspended from a point above a propulsion source. The UAV is controlled by radio controls from a hand held controller, with actuators retracting and letting out control lines attached to the parachute in order to control direction of the parachute. The UAV may be launched from a tube using a pressurized tank with a nozzle expelling gas from the tank, the tank and nozzle towing a canister from which the UAV is deployed.




vehicle

Safety seat and method for reducing stress on an occupant of a motor vehicle

In a method for reducing the impact of a force upon a person seated in a safety seat of a motor vehicle at least a seat unit of the safety seat is restrained at least in part by at least one support strap. The support strap is formed with an extension piece configured to lengthen when exposed to a load as a result of an accident or explosion. A winding unit holds the support strap to shorten an effective length of the support strap and to build up a force to maintain the support strap under tension after the support strap underwent a lengthening in an area of the extension piece as a result of a load caused by a force resulting from an accident or explosion so as to reestablish an effective length of the support strap for lengthening during a subsequent force impact.




vehicle

Height adjusting device for vehicle suspension seat

A height adjusting device for a vehicle suspension seat includes: a control valve having an air injection pin and an air discharge pin formed therein; a first push support having one end rotatably coupled to the control valve and pressurizing the air injection pin when rotated in one direction; a second push support having one end rotatably coupled to the control vale, pressurizing the air discharge pin when rotated in one direction, and disposed to correspond to the first push support; a first push rod pressurizing the other end of the first push support so as to rotate the first push support; and a second push rod pressurizing the other end of the second push support so as to rotate the second push support, and disposed to correspond to the first push rod.




vehicle

Rectifying device of vehicle alternator

A highly reliable rectifying device of a vehicle alternator capable of improving the vibration resistance of a diode. A connection lead 33d of a diode 33 included in a rectifying device includes a linear part 33f extended in parallel from a metallic base 33b, and a bent part 33g bent 90° or more substantially like an arc from the linear part 33f. The bending radius R of the bent part 33g is set to a value larger than a separation distance w in a horizontal direction between the terminal of the linear part 33f and the distal part of the connection lead 33d.




vehicle

Vehicle crane

A vehicle crane—in particular an articulated-arm crane—includes a lifting arm and one or more articulated arms, and the geometry of the crane arms can be changed with respect to one another. A load cable can be guided or is guided on the crane arms. A compensation device allows the tension in the load cable to be controlled or regulated upon a change in the geometry of the crane arms with respect to one another.




vehicle

Vehicle mountable arm for valve operating machine

A valve operating device includes a mounting for attachment to a vehicle and an elongate arm, the free end of which is only moveable across the underlying ground. The joints of the arm pivot around vertical axes and the arm is locked into a desired orientation by a brake at each joint. A valve turning machine is at the free end of the arm. The brakes are engaged and released by a control on the valve turning machine.




vehicle

Plastic composite spring for vehicle suspension and apparatus and method for manufacturing the same

Disclosed is a corrugated plastic composite spring for a vehicle suspension and an apparatus and method for manufacturing the same. The apparatus includes a corrugated extrusion part, a braiding part, and a pultrusion part. The corrugated extrusion part forms a preform having a hollow corrugated structure. The braiding part weaves a three-dimensional woven fabric on the preform. The pultrusion part impregnates the three-dimensional woven fabric with thermosetting resin.




vehicle

Energy-absorbing textile structure, in particular for use in vehicle construction and method for producing said structure

Energy-absorbing textile structure, in particular for use in vehicle construction, which has high-tensile yarns for absorbing force, is formed by a braided fabric (2) with standing ends (3) in the force input direction and in that the textile structure has at least one region (4) with local modification of the fiber structure (2, 3).




vehicle

System and method for vehicle communication, vehicle control, and/or route inspection

In a system and method for communicating data in a locomotive consist or other vehicle consist (comprising at least first and second linked vehicles), a first electronic component in the first vehicle of the vehicle consist is monitored to determine if the component is in (or enters) a failure state. In the failure state, the first electronic component is unable to perform a designated function. Upon determining the failure state, data is transmitted from the first vehicle to a second electronic component on the second vehicle, over a communication channel linking the first vehicle and the second vehicle. The second electronic component is operated based on the transmitted data, with the second electronic component performing the designated function that the first electronic component is unable to perform.




vehicle

Vehicle coupling fault detecting system

A vehicle coupling fault detecting system is disclosed. The system may include first and second selectively-pressurized fluid conduits containing first and second communication cables that are communicatively coupled when the first and second fluid conduits are connected together. A pressure sensor may detect a pressure within the fluid conduits when the conduits are connected together, and communicate a signal indicative of the pressure through at least one of the first and second communication cables. A controller may receive the signal and determine from the signal whether there is a fault in the connection between the first and second selectively-pressurized fluid conduits.




vehicle

Graduated vehicle braking

A method for automatically controlling braking of a powered system or consist includes automatically applying a first degree of braking to a consist during a first time period when a powered unit of the consist is being locally or remotely controlled via an onboard control system in an absence of control inputs from an onboard operator. The first degree of braking is based on a first deceleration force selected so that the consist is slowed in a manner effective to limit a peak deceleration rate experienced by the consist sufficient for reducing unintended movement of at least one of one or more riders or cargo onboard the consist. The method also includes automatically applying a second degree of braking to the consist during a second time period following the first time period.




vehicle

Method and apparatus for positioning a rail vehicle or rail vehicle consist

A tower control system, under an indexing mode of operation, receives a first signal from rail yard equipment. In response to the first signal, the tower control system establishes a positioning mode of operation. Under the positioning mode of operation, and in response to actuation of an interface of the tower control system, the tower control system sends a second signal to a lead powered rail vehicle of a consist. The second signal includes a first command to adjust a throttle setting of the lead powered rail vehicle, along with a second command to idle a throttle of any remote powered rail vehicle of the consist.




vehicle

Method for improving operation density of rail vehicles and preventing head-on collision and rear-ending collision

The present invention provides a method for improving operation density of rail vehicles and for preventing head-on collision and rear-ending collision. Said method divides a rail line into equidistant electronic zones, the length of a zone being greater than the shortest safe distance between two running vehicles. Said method installs a locomotive passing detection alarm device in each zone, when a locomotive travels at high speed on the rail, the locomotive passing detection alarm device corresponding to the zone occupied by the locomotive itself will simultaneously access adjacent front and back zones, and determine whether the two adjacent zones are simultaneously occupied by locomotives. If the two adjacent. zones are simultaneously occupied by locomotives, the locomotive passing alarm device will send an alarm signal to the locomotives to warn or otherwise take measures. The aforesaid method can avoid locomotive head-on collision and rear-end collision and increase transportation density according to the vehicle speed and distance at the same time, thus improving the transportation efficiency.




vehicle

System and method for determining a slack condition of a vehicle system

A method for determining a slack condition of a vehicle system includes determining when each of first and second vehicles reaches a designated location along a route. The method also includes communicating a response message from the second vehicle to the first vehicle responsive to the second vehicle reaching the designated location, calculating a separation distance between the first vehicle and the second vehicle based on a time delay between a first time when the first vehicle reached the designated location and a second time when the second vehicle reached the designated location, and determining a slack condition of the vehicle system based on the separation distance. The slack condition is representative of an amount of slack in the vehicle system between the first and second vehicles.




vehicle

System and method for determining dynamically changing distributions of vehicles in a vehicle system

A system and method for determining dynamically changing distributions of vehicles in a vehicle system are disclosed. The system and method determine handling parameters of the vehicle system. The handling parameters are determined for different distributions of the vehicles among different groups at different potential change points along a route. The system and method also determine whether to change the distributions at potential change points based on the handling parameters. Based on determining that the distributions are to change, a selected sequence of changes to the distributions is determined at one or more of the potential change points along the route. Change indices are generated based on the selected sequence. The change indices designate times and/or the one or more potential change points at which the distributions changes. The vehicles included in a common group have common designated operational settings while the vehicles are in the common group.




vehicle

Vehicle

Described herein are devices and methods for controlling inclination in a vehicle. In certain aspects, inclination of the vehicle can be controlled with an inclination control processing section that includes a first control value limiting processing section which calculates a moving amount of the centroid, calculates a maximum angular acceleration, and limits a variation of the control value for inclination control on the basis of the maximum angular acceleration.