ac Is a 'Universal' Flu Vaccine on the Horizon? By www.medicinenet.com Published On :: Tue, 10 Mar 2020 00:00:00 PDT Title: Is a 'Universal' Flu Vaccine on the Horizon?Category: Health NewsCreated: 3/9/2020 12:00:00 AMLast Editorial Review: 3/10/2020 12:00:00 AM Full Article
ac Replace That Old Carpet to Shield Your Kids From Toxins By www.medicinenet.com Published On :: Thu, 30 Apr 2020 00:00:00 PDT Title: Replace That Old Carpet to Shield Your Kids From ToxinsCategory: Health NewsCreated: 4/29/2020 12:00:00 AMLast Editorial Review: 4/30/2020 12:00:00 AM Full Article
ac Bacterial Blood Infections Tied to Heightened Colon Cancer Risk By www.medicinenet.com Published On :: Thu, 23 Apr 2020 00:00:00 PDT Title: Bacterial Blood Infections Tied to Heightened Colon Cancer RiskCategory: Health NewsCreated: 4/22/2020 12:00:00 AMLast Editorial Review: 4/23/2020 12:00:00 AM Full Article
ac Obamacare May Have Boosted Use of Mammograms By www.medicinenet.com Published On :: Mon, 4 May 2020 00:00:00 PDT Title: Obamacare May Have Boosted Use of MammogramsCategory: Health NewsCreated: 5/1/2020 12:00:00 AMLast Editorial Review: 5/4/2020 12:00:00 AM Full Article
ac Unplugging From Social Media on Vacation? It's Tough at First By www.medicinenet.com Published On :: Wed, 14 Aug 2019 00:00:00 PDT Title: Unplugging From Social Media on Vacation? It's Tough at FirstCategory: Health NewsCreated: 8/14/2019 12:00:00 AMLast Editorial Review: 8/14/2019 12:00:00 AM Full Article
ac Health Tip: Planning a Stress-Reducing Vacation By www.medicinenet.com Published On :: Fri, 18 Oct 2019 00:00:00 PDT Title: Health Tip: Planning a Stress-Reducing VacationCategory: Health NewsCreated: 10/18/2019 12:00:00 AMLast Editorial Review: 10/18/2019 12:00:00 AM Full Article
ac Some Cities' Smog Can Ruin Your Vacation By www.medicinenet.com Published On :: Tue, 3 Dec 2019 00:00:00 PDT Title: Some Cities' Smog Can Ruin Your VacationCategory: Health NewsCreated: 12/3/2019 12:00:00 AMLast Editorial Review: 12/3/2019 12:00:00 AM Full Article
ac Using Pot to Help You Sleep? It Could Backfire By www.medicinenet.com Published On :: Wed, 15 Apr 2020 00:00:00 PDT Title: Using Pot to Help You Sleep? It Could BackfireCategory: Health NewsCreated: 4/14/2020 12:00:00 AMLast Editorial Review: 4/15/2020 12:00:00 AM Full Article
ac CDK9 Blockade Exploits Context-dependent Transcriptional Changes to Improve Activity and Limit Toxicity of Mithramycin for Ewing Sarcoma By mct.aacrjournals.org Published On :: 2020-05-04T05:39:42-07:00 There is a need to develop novel approaches to improve the balance between efficacy and toxicity for transcription factor–targeted therapies. In this study, we exploit context-dependent differences in RNA polymerase II processivity as an approach to improve the activity and limit the toxicity of the EWS-FLI1–targeted small molecule, mithramycin, for Ewing sarcoma. The clinical activity of mithramycin for Ewing sarcoma is limited by off-target liver toxicity that restricts the serum concentration to levels insufficient to inhibit EWS-FLI1. In this study, we perform an siRNA screen of the druggable genome followed by a matrix drug screen to identify mithramycin potentiators and a synergistic "class" effect with cyclin-dependent kinase 9 (CDK9) inhibitors. These CDK9 inhibitors enhanced the mithramycin-mediated suppression of the EWS-FLI1 transcriptional program leading to a shift in the IC50 and striking regressions of Ewing sarcoma xenografts. To determine whether these compounds may also be liver protective, we performed a qPCR screen of all known liver toxicity genes in HepG2 cells to identify mithramycin-driven transcriptional changes that contribute to the liver toxicity. Mithramycin induces expression of the BTG2 gene in HepG2 but not Ewing sarcoma cells, which leads to a liver-specific accumulation of reactive oxygen species (ROS). siRNA silencing of BTG2 rescues the induction of ROS and the cytotoxicity of mithramycin in these cells. Furthermore, CDK9 inhibition blocked the induction of BTG2 to limit cytotoxicity in HepG2, but not Ewing sarcoma cells. These studies provide the basis for a synergistic and less toxic EWS-FLI1–targeted combination therapy for Ewing sarcoma. Full Article
ac Elucidation of Pelareorep Pharmacodynamics in A Phase I Trial in Patients with KRAS-Mutated Colorectal Cancer By mct.aacrjournals.org Published On :: 2020-05-04T05:39:42-07:00 KRAS mutation is a negative predictive biomarker of anti-EGFR agents in patients with metastatic colorectal cancer (mCRC), and remains an elusive target. Pelareorep, a double-stranded RNA virus selectively replicates in KRAS-mutated cells, and is synergistic with irinotecan. A dose escalation trial of FOLFIRI/bevacizumab [irinotecan (150–180 mg/m2) and pelareorep (1 x 1010 TCID50–3 x 1010 TCID50)] was implemented in adult patients with oxaliplatin refractory/intolerant, KRAS-mutant mCRC. Pelareorep was administered intravenously over 1 hour on days 1–5 every 4 weeks. Additional studies included pharmacokinetics, tumor morphology, and immune responses. Among FOLFIRI-naïve patients, the highest dose of FOLFIRI/bevacizumab (180 mg/m2 irinotecan) and pelareorep (3 x 1010 TCID50) was well tolerated, without a dose-limiting toxicity. At the recommended phase II dose, 3 of 6 patients (50%) had a partial response; the median progression-free and overall survival (PFS, OS) were 65.6 weeks and 25.1 months, respectively. Toxicities included myelosuppression, fatigue, and diarrhea. Transmission electron microscopy revealed viral factories (viral collections forming vesicular structures), at various stages of development. Immunogold staining against viral capsid -1 protein demonstrated viral "homing" in the tumor cells. The nucleus displayed sufficient euchromatin regions suggestive of active transcription. Flow cytometry revealed rapid dendritic cell maturation (48 hours) with subsequent activation of cytotoxic T cells (7 days). The combination of pelareorep with FOLFIRI/bevacizumab is safe. The PFS and OS data are encouraging and deserve further exploration. Pelareorep leads to a clear recurrent immune stimulatory response with cytotoxic T-cell activation, and homes and replicates in the tumor. Full Article
ac Therapeutic and Prophylactic Antitumor Activity of an Oral Inhibitor of Fucosylation in Spontaneous Mammary Cancers By mct.aacrjournals.org Published On :: 2020-05-04T05:39:42-07:00 2-fluorofucose (2FF) inhibits protein and cellular fucosylation. Afucosylation of IgG antibodies enhances antibody-dependent cell-mediated cytotoxicity by modulating antibody affinity for FcRIIIa, which can impact secondary T-cell activation. Immune responses toward most common solid tumors are dominated by a humoral immune response rather than the presence of tumor-infiltrating cytotoxic T cells. IgG antibodies directed against numerous tumor-associated proteins are found in the sera of both patients with breast cancer and transgenic mice bearing mammary cancer. We questioned whether 2FF would have antitumor activity in two genetically distinct transgenic models; TgMMTV-neu (luminal B) and C3(1)-Tag (basal) mammary cancer. 2FF treatment significantly improved overall survival. The TgMMTV-neu doubled survival time compared with controls [P < 0.0001; HR, 7.04; 95% confidence interval (CI), 3.31–15.0], and survival was significantly improved in C3(1)-Tag (P = 0.0013; HR, 3.36; 95% CI, 1.58–7.14). 2FF treated mice, not controls, developed delayed-type hypersensitivity and T-cell responses specific for syngeneic tumor lysates (P < 0.0001). Serum IgG from 2FF-treated mice enhanced tumor lysis more efficiently than control sera (P = 0.004). Administration of 2FF for prophylaxis, at two different doses, significantly delayed tumor onset in both TgMMTV-neu; 20 mmol/L (P = 0.0004; HR, 3.55; 95% CI, 1.60–7.88) and 50 mmol/L (P = 0.0002; HR: 3.89; 95% CI, 1.71–8.86) and C3(1)-Tag; 20 mmol/L (P = 0.0020; HR, 2.51; 95% CI, 1.22–5.18), and 50 mmol/L (P = 0.0012; HR, 3.36; 95% CI, 1.57–7.18). Mammary cancer was prevented in 33% of TgMMTV-neu and 26% of C3(1)-Tag. 2FF has potent antitumor effects in mammary cancer models. The agent shows preclinical efficacy for both cancer treatment and prevention. Full Article
ac Pharmacologic Inhibitor of DNA-PK, M3814, Potentiates Radiotherapy and Regresses Human Tumors in Mouse Models By mct.aacrjournals.org Published On :: 2020-05-04T05:39:42-07:00 Physical and chemical DNA-damaging agents are used widely in the treatment of cancer. Double-strand break (DSB) lesions in DNA are the most deleterious form of damage and, if left unrepaired, can effectively kill cancer cells. DNA-dependent protein kinase (DNA-PK) is a critical component of nonhomologous end joining (NHEJ), one of the two major pathways for DSB repair. Although DNA-PK has been considered an attractive target for cancer therapy, the development of pharmacologic DNA-PK inhibitors for clinical use has been lagging. Here, we report the discovery and characterization of a potent, selective, and orally bioavailable DNA-PK inhibitor, M3814 (peposertib), and provide in vivo proof of principle for DNA-PK inhibition as a novel approach to combination radiotherapy. M3814 potently inhibits DNA-PK catalytic activity and sensitizes multiple cancer cell lines to ionizing radiation (IR) and DSB-inducing agents. Inhibition of DNA-PK autophosphorylation in cancer cells or xenograft tumors led to an increased number of persistent DSBs. Oral administration of M3814 to two xenograft models of human cancer, using a clinically established 6-week fractionated radiation schedule, strongly potentiated the antitumor activity of IR and led to complete tumor regression at nontoxic doses. Our results strongly support DNA-PK inhibition as a novel approach for the combination radiotherapy of cancer. M3814 is currently under investigation in combination with radiotherapy in clinical trials. Full Article
ac Erratum for 'The Chalk Group (Upper Cretaceous) of the Northern Province, eastern England - a review, Proceedings of the Yorkshire Geological Society, 62, 153-177 By pygs.lyellcollection.org Published On :: 2019-11-22T06:43:26-08:00 Full Article
ac Glacial lake terraces at the eastern end of the Vale of Pickering, North Yorkshire, UK By pygs.lyellcollection.org Published On :: 2019-11-22T06:43:26-08:00 Detailed landform mapping of key areas in the Vale of Pickering, supported by LiDAR interpretation, has produced sufficient evidence to establish a reinterpretation of the Mid to Late Pleistocene chronology of the Vale of Pickering by defining the margins of two temporally distinct proglacial lakes and reaching a new understanding of the origin of some well-documented geomorphological features. The main significance of the mapping has been to establish that the Hutton Buscel terrace probably originated by lateral erosion along the southern edge of the Corallian Group dip slope of the North York Moors prior to deposition of a broad alluvial plain below a 70 m strandline. Traces of a comparable feature were also located below the Chalk Group escarpment on the southern side of the Vale of Pickering. Perhaps of equal significance has been confirmation that the younger of the two lakes, which has a 45 m shoreline, was possibly connected to Lake Humber in the Vale of York through the Derwent Valley. Evidence for such a lake was provided by mapped shorelines at Malton and Pickering that appear compatible with shorelines in Lake Humber. To account for deep erosion of the Derwent and Mere valleys and the occurrence of laminated clays at c. 65 m, below a 70 m shoreline above Crambe, regional uplift has been evoked post the older 70 m lake. In-valley alluvial fans have been mapped for the first time in Newton Dale and Thornton Dale. Full Article
ac Two previously unrecorded xiphosurid trace fossils, Selenichnites rossendalensis and Crescentichnus tesiltus, from the Middle Jurassic of Yorkshire, UK By pygs.lyellcollection.org Published On :: 2019-11-22T06:43:26-08:00 The invertebrate trace fossils Selenichnites rossendalensis and Crescentichnus tesiltus are recorded and described from the Middle Jurassic Gristhorpe Member of the Cloughton Formation of the Cleveland Basin. This is the first record of these ichnospecies from the basin and now completes the occurrence of these and other traces assumed to have been made by limulids from all three non-marine formations of the Ravenscar Group. Full Article
ac Age of the Acadian deformation and Devonian granites in northern England: a review By pygs.lyellcollection.org Published On :: 2019-11-22T06:43:26-08:00 Field evidence shows that emplacement of Devonian granites in northern England overlaps in space and time with the end of the supposed Acadian deformation in their country rocks. The age of this Acadian event in England and Wales is in need of review because of revised Rb-Sr and K-Ar decay constants and recently acquired radiometric ages on the granites. Published K-Ar and Ar-Ar cleavage ages recalculated to the new decay constants range from 404 to 394 Ma (Emsian, Early Devonian). Emplacement of the Skiddaw and Weardale granites at 398.8 ± 0.4 and 399.3 ± 0.7 Ma respectively is indicated by U-Pb zircon ages, and is compatible with the field evidence. However, emplacement of the Shap Granite at a Re-Os molybdenite age of 405.2 ± 1.8 Ma and at the youngest U-Pb zircon age of 403 ± 8 Ma matches the field evidence less well. The apparent paradox in these ages is resolved if the K-Ar ages record only the end of millions of years of cleavage formation. An earlier cluster of K-Ar and Ar-Ar cleavage ages at 426–420 Ma (Ludlow to Přídolí, late Silurian) dates a pre-Acadian resetting event soon after Iapetus closure, an event of uncertain significance. Ion microprobe U-Pb zircon ages for the Shap Granite have a mean of 415.6 ± 1.4 Ma but a range of 428–403 Ma, compatible with a long magmatic history. Thermal considerations suggest that this history was not at the upper crustal emplacement site but in a mid-crustal mush zone, now preserved at about 10 km depth as a component of the Lake District and North Pennine batholiths. Full Article
ac Emplacement of oil in the Devonian Weardale Granite of northern England By pygs.lyellcollection.org Published On :: 2019-11-22T06:43:26-08:00 Oil residues occur as solid bitumen in mineralized zones within the Devonian Weardale Granite of the northern Pennines, northern England. Comparable residues are present in the overlying Mississippian rocks and were probably derived from a Carboniferous source, i.e. during later mineralization of the granite. The bitumen was already solidified during fluorite mineralization, which does not contain oil inclusions. The residues do not show the high thermal maturity of organic matter in the region altered by the earliest Permian Whin Sill. Like the sulphide-fluorite mineralization, oil emplacement post-dated intrusion of the sill. Pyrite associated with the oil residues is enriched in trace elements including lead, silver, gold, selenium and tellurium, which suggests that mineralizing fluids at least shared pathways with migrating hydrocarbons and possibly also suggests undiscovered valuable metal resources. Full Article
ac Impact of Collaborative Leadership in Dental School Team Clinics By www.jdentaled.org Published On :: 2019-12-01T06:00:18-08:00 Dental students’ ability to critique team performance in dental school team clinics is a key component of dental education. The aim of this study was to determine if students’ perceptions of their team leaders’ openness of communication, cooperative decision making, and well-defined goals were positively related to the students’ improvement-oriented voice behavior and willingness to raise concerns in the clinical environment. This study used a voluntary 12-question survey, distributed via email to all 311 students at the University of Nevada, Las Vegas School of Dental Medicine after completion of the spring 2017 semester. Eighty-seven students responded, for a response rate of 28%. Responses were stratified by team, class year, and gender, and the quantitative distribution of answers to each question was correlated with each other. Team leader collaborative qualities, which included openness for communication, cooperative decision making, and well-defined goals, were found to have a significant positive relationship with students’ willingness to both raise concerns and make suggestions. Additionally, when measured by class year and gender, team differences in voice behavior assessment by students across the teams were found to be independent of class year, and no significant differences were found by gender. These results suggested that, to maintain high levels of communication, proper reporting of concerns, and a high standard of care, dental schools should encourage team leaders to enhance their capacity to present active collaborative behaviors in the school’s clinic. The study also highlighted potential opportunities for further study of faculty traits and development in the dental school team model. Full Article
ac Examining the Case for Dental Hygienists Teaching Predoctoral Dental Students: A Two-Part Study By www.jdentaled.org Published On :: 2019-12-01T06:00:18-08:00 Dental students in North American dental schools are exposed to faculty members with various professional backgrounds. These faculty members may include dentists, dental hygienists, and scientists without clinical dental credentials. The practice of dental hygienists’ educating predoctoral dental students has not been well documented. The aims of this two-part study were to investigate the parameters of didactic, preclinical, and clinical instruction of dental students by dental hygienist faculty members in North American dental schools and to explore dental students’ perceptions of this form of teaching. In part one, a survey was sent electronically to the clinical or academic affairs deans of all 76 American Dental Education Association (ADEA) member dental schools in 2017. Twenty-nine responded, for a 38.2% response rate. In 76% of the responding schools, dental hygienists were teaching dental students. Most respondents reported that, in their schools, the minimum degree required to teach didactically was a master’s, while a bachelor’s degree was required for preclinical and clinical courses. There was no significant association between dental hygienists’ instructing dental students and having a dental hygiene educational program at the institution. In part two of the study, a questionnaire was completed by 102 graduating dental students (85% response rate) at one U.S. university to evaluate the impact of dental hygienist educators. Among the respondents, 87% reported feeling that dental hygienists were very effective educators. There were no significant differences in responses between traditional and advanced standing international dental students. This study found that dental hygienists were educating dental students in many North American dental schools and were doing so in curricular content beyond periodontics and that their educational contributions at a sample school were valued by the dental students there. Full Article
ac Learning and Teaching Together to Advance Evidence-Based Clinical Education: A Faculty Learning Community By www.jdentaled.org Published On :: 2019-12-01T06:00:18-08:00 Clinical teaching is a cornerstone of health sciences education; it is also the most challenging aspect. The University of Pittsburgh Schools of Dental Medicine, Nursing, and Pharmacy developed a new evidence-based interprofessional course framed as a faculty learning community (FLC) around the principles of learning in a clinical environment. The aim of this study was to assess the overall effectiveness of this two-semester FLC at four health professions schools in academic year 2014-15. The assessment included anonymous participant surveys in each session and an anonymous end-of-course survey. Thirty-five faculty members from dental, health and rehabilitation sciences, nursing, and pharmacy enrolled in the FLC, with six to 32 enrollees attending each session. All attendees at each session completed the session evaluation surveys, but the attendance rate at each session ranged from 17.1% to 91.4%. Sixteen participants (46%) completed the end-of-course survey. The results showed overall positive responses to the FLC and changes in the participants’ self-reported knowledge. Session surveys showed that the participants found the FLC topics helpful and appreciated the opportunity to learn from each other and the interprofessional nature of the FLC. Responses to the end-of-course survey were in alignment with the individual session surveys and cited specific benefits as being the content, teaching materials, and structured discussions. In additional feedback, participants reported interest to continue as a cohort and to extend the peer-support system beyond the FLC. This outcomes assessment of the first round of the FLC confirmed that this cohort-based faculty development in an interprofessional setting was well received by its participants. Their feedback provided valuable insights for changes to future offerings. Full Article
ac Evaluation of Faculty Mentoring Practices in Seven U.S. Dental Schools By www.jdentaled.org Published On :: 2019-12-01T06:00:18-08:00 The aim of this cross-sectional study was to examine the faculty mentoring practices in seven dental schools in the U.S. A 34-item survey was administered electronically to dental faculty members of all ranks, tracks, and job categories in seven dental schools using faculty listservs. Survey questions addressed current mentoring practices in which the faculty members were involved; their perceptions of those mentoring practices; their perceived characteristics of an ideal mentoring program, mentor, and mentee; perceived best practices; and respondents’ demographics. The survey was conducted from October 2017 to February 2018. A total of 154 surveys were completed (response rate 22%). Over 58% (90/154) of the respondents reported receiving no mentoring; 31.9% (49/154) said they received informal mentoring; and 9.7% (15/154) received formal mentoring. Of the 64 respondents who received mentoring, both formal and informal, 92.2% (59/64) were full-time faculty, and 7.8% (5/64) were part-time faculty (p=0.001). Approximately 39% of the respondents indicated that their mentoring program was not overseen by anyone and that participation was voluntary. The top three perceived benefits of mentoring were increased overall professional development, development of a career plan, and increased professional networks. The three most important characteristics of an ideal mentoring program for the respondents were a program based on the needs of the mentee, a mentor who has the desire to help the mentee, and a mentee who is eager to learn. The results of this study showed a very low level of formal or informal faculty mentoring programs in the dental schools surveyed. Future studies are needed to determine best practices and strategies to expand and enhance mentoring of faculty members. Full Article
ac Entrustable Professional Activities in Oral Health for Primary Care Providers Based on a Scoping Review By www.jdentaled.org Published On :: 2019-12-01T06:00:18-08:00 Despite advances in oral health care, inequalities in oral health outcomes persist due to problems in access. With proper training, primary care providers can mitigate this inequality by providing oral health education, screening, and referral to advanced dental treatment. Diverging sets of oral health competencies and guidelines have been released or endorsed by multiple primary care disciplines. The aim of this study was to transform multiple sets of competencies into Entrustable Professional Activities (EPAs) for oral health integration into primary care training. A scoping review of the literature between January 2000 and December 2016 was conducted according to PRISMA methodology to identify all existing sets of competencies. The following primary care disciplines were included in the search: allopathic/osteopathic medical schools and residency programs in family medicine, internal medicine, and pediatrics; physician assistant programs; and nurse practitioner programs. Competencies were compared using the Health Resources and Services Administration Integration of Oral Health and Primary Care Practice competencies as the foundational set and translated into EPAs. The resulting EPAs were tested with a reactor panel. The scoping review produced 1,466 references, of which 114 were selected for full text review. Fourteen competencies were identified as being central to the integration of oral health into primary care. These were converted to seven EPAs for oral health integration into primary care and were mapped onto Accreditation Council for Graduate Medical Education residency competency domains as well to the Association of American Medical Colleges EPAs for graduating medical students. The resulting EPAs delineate the essential, observable work required of primary care providers to ensure that oral health is treated as a critical determinant of overall health. Full Article
ac The Additive Effects of Cell Phone Use and Dental Hygiene Practice on Finger Muscle Strength: A Pilot Study By jdh.adha.org Published On :: 2020-04-30T12:39:03-07:00 Purpose: The purpose of this study was to determine strength of muscles involved with instrumentation (scaling) by dental hygienists and the additive effects of cellular (mobile) phone usage, as indicated by measurements of muscular force generation.Methods: A convenience sample of licensed dental hygienists currently in clinical practice (n=16) and an equal number of individuals not currently using devices/tools repetitively for work (n=16), agreed to participate in this pilot study. All participants completed a modified cell phone usage questionnaire to determine their use pattern and frequency. Upon completion of the questionnaire, participants' force production in six muscle groups was measured using a hand-held dynamometer. Descriptive statistics were used to analyze the data.Results: A total of 16 licensed dental hygienists (n=16) and 16 participants with no history of using tools/devices repetitively for work (n=16), comprised the experimental and control groups, repectively. The control group generated greater muscle force than the experimental group for the abductor pollicis longus (p=0.045). Significant differences were identified when comparing the low mobile phone users in the experimental group to the control group for the flexor pollicis brevis (p=0.031), abductor pollicis longus (p=0.031), and flexor digitorum (p=0.006), with the control group demonstrating higher muscle force. Years in clinical practice and mobile phone use was shown to have a significant effect on muscular force generation for the flexor pollicis brevis (F=3.645, df=3, p=0.020) and flexor digitorum (F=3.560, df=3, p=0.022); subjects who practiced dental hygiene the longest produced the least amount of muscle force.Conclusion: Results from this pilot study indicate there are no significant additive effects of cell phone use and dental hygiene practice on finger muscles used for instrumentation. However, results indicate that dental hygiene practice demonstrated significant effects on muscular strength as compared to individuals who do not use tools/devices repetitively for work. The small sample size may have impacted results and the study should be repeated with a larger sample. Full Article
ac Knowledge, Attitudes and Practices of Dental Hygienists Regarding Diabetes Risk Assessments and Screenings By jdh.adha.org Published On :: 2020-04-30T12:39:03-07:00 Purpose: Untreated and poorly controlled diabetes causes increased levels of blood glucose associated with poor periodontal disease outcomes. Dental hygienists can play a significant role in screening patients for diabetes mellitus, leading to referral and early diagnosis. The purpose of this study was to determine the knowledge, attitudes, practices, and barriers faced by clinical dental hygienists regarding diabetes risk assessment and screenings.Methods: A mixed method design was used with a convenience sample of dental hygienists in clinical practice (n=316). A 32 item, electronic survey was validated at item-level, and participants were recruited through multiple dental hygiene Facebook groups. Descriptive statistics were used to analyze the data. The survey also included two open-ended attitude questions that were interpreted using thematic analysis to pinpoint common patterns within the data.Results: Dental hygienists had high knowledge scores regarding diabetes and oral health, although many were unaware of their states' specific statutes and regulations for screening practices. Nearly all (95.9%), were likely to educate and refer patients (82%), although fewer than half (40.9%), were likely to perform chairside screening for diabetes. Emergent themes for barriers to screening were time, money, patient acceptance/willingness, lack of education, not having the proper tools, and states' rules and regulations.Conclusion: Despite high knowledge scores regarding diabetes and oral health, there is a gap in regards to dental hygienists' willingness to perform diabetes screenings in a clinical setting. Dental hygienists should be capable of integrating chairside diabetes screening practices into the process of care with proper training. Full Article
ac Measuring Oral Health Literacy of Refugees: Associations with Dental Care Utilization and Oral Health Self-Efficacy By jdh.adha.org Published On :: 2020-04-30T12:39:03-07:00 Purpose: The purpose of this study was to analyze associations between the oral health literacy of refugees and two oral health outcomes: dental care utilization and oral health self-efficacy.Methods: A convenience sample of refugees in the greater Los Angeles area attending English as a second language (ESL) classes sponsored by two refugee assistance organizations was used for this cross-sectional, correlational study. Participants responded to a questionnaire using items from the Health Literacy in Dentistry (HeLD) scale, in addition to items concerning dental care utilization and oral health self-efficacy. Descriptive statistics, chi-square and Fisher's Exact tests were used to analyze results.Results: Sixty-two refugees volunteered to participate (n=62). A majority of the respondents were female from Iraq or Syria, and selected the item “with little difficulty” for all oral health literacy tasks. In regards to dental care utilization, more than half of the respondents were considered high utilizers (63%, n=34) meaning they had visited a dental office within the last year; while a little more than one-third (37%, n=20), were low utilizers, indicating they had either never been to a dental office or it had been more than one year since they had dental treatment. Statistical analysis showed associations between oral health literacy and dental care utilization. However, few associations between oral health literacy and oral health self-efficacy were identified (p=0.0045).Conclusions: Results support the provision of easily obtainable and understandable oral health information to increase oral health literacy and dental care utilization among refugee populations. Future research is needed to examine the oral health literacy among refugees resettling in the United States. Full Article
ac Challenges with Adherence to Clinical Practice Guidelines: Lessons for Implementation Science By jdh.adha.org Published On :: 2020-04-30T12:39:03-07:00 Full Article
ac SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:28-07:00 Membrane-bound proteins have been proposed to mediate the transport of long-chain FA (LCFA) transport through the plasma membrane (PM). These proposals are based largely on reports that PM transport of LCFAs can be blocked by a number of enzymes and purported inhibitors of LCFA transport. Here, using the ratiometric pH indicator (2',7'-bis-(2-carboxyethyl)-5-(and-6-)-carboxyfluorescein and acrylodated intestinal FA-binding protein-based dual fluorescence assays, we investigated the effects of nine inhibitors of the putative FA transporter protein CD36 on the binding and transmembrane movement of LCFAs. We particularly focused on sulfosuccinimidyl oleate (SSO), reported to be a competitive inhibitor of CD36-mediated LCFA transport. Using these assays in adipocytes and inhibitor-treated protein-free lipid vesicles, we demonstrate that rapid LCFA transport across model and biological membranes remains unchanged in the presence of these purported inhibitors. We have previously shown in live cells that CD36 does not accelerate the transport of unesterified LCFAs across the PM. Our present experiments indicated disruption of LCFA metabolism inside the cell within minutes upon treatment with many of the "inhibitors" previously assumed to inhibit LCFA transport across the PM. Furthermore, using confocal microscopy and a specific anti-SSO antibody, we found that numerous intracellular and PM-bound proteins are SSO-modified in addition to CD36. Our results support the hypothesis that LCFAs diffuse rapidly across biological membranes and do not require an active protein transporter for their transmembrane movement. Full Article
ac Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:28-07:00 Geranylgeranoic acid (GGA) originally was identified in some animals and has been developed as an agent for preventing second primary hepatoma. We previously have also identified GGA as an acyclic diterpenoid in some medicinal herbs. Recently, we reported that in human hepatoma-derived HuH-7 cells, GGA is metabolically labeled from 13C-mevalonate. Several cell-free experiments have demonstrated that GGA is synthesized through geranylgeranial by oxygen-dependent oxidation of geranylgeraniol (GGOH), but the exact biochemical events giving rise to GGA in hepatoma cells remain unclear. Monoamine oxidase B (MOAB) has been suggested to be involved in GGOH oxidation. Here, using two human hepatoma cell lines, we investigated whether MAOB contributes to GGA biosynthesis. Using either HuH-7 cell lysates or recombinant human MAOB, we found that: 1) the MAO inhibitor tranylcypromine dose-dependently downregulates endogenous GGA levels in HuH-7 cells; and 2) siRNA-mediated MAOB silencing reduces intracellular GGA levels in HuH-7 and Hep3B cells. Unexpectedly, however, CRISPR/Cas9-generated MAOB-KO human hepatoma Hep3B cells had GGA levels similar to those in MAOB-WT cells. A sensitivity of GGA levels to siRNA-mediated MAOB downregulation was recovered when the MAOB-KO cells were transfected with a MAOB-expression plasmid, suggesting that MAOB is the enzyme primarily responsible for GGOH oxidation and that some other latent metabolic pathways may maintain endogenous GGA levels in the MAOB-KO hepatoma cells. Along with the previous findings, these results provide critical insights into the biological roles of human MAOB and provide evidence that hepatic MAOB is involved in endogenous GGA biosynthesis via GGOH oxidation. Full Article
ac Slc43a3 is a regulator of free fatty acid flux [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 Adipocytes take up long chain FAs through diffusion and protein-mediated transport, whereas FA efflux is considered to occur by diffusion. To identify potential membrane proteins that are involved in regulating FA flux in adipocytes, the expression levels of 55 membrane transporters without known function were screened in subcutaneous adipose samples from obese patients before and after bariatric surgery using branched DNA methodology. Among the 33 solute carrier (SLC) transporter family members screened, the expression of 14 members showed significant changes before and after bariatric surgery. One of them, Slc43a3, increased about 2.5-fold after bariatric surgery. Further investigation demonstrated that Slc43a3 is highly expressed in murine adipose tissue and induced during adipocyte differentiation in primary preadipocytes and in OP9 cells. Knockdown of Slc43a3 with siRNA in differentiated OP9 adipocytes reduced both basal and forskolin-stimulated FA efflux, while also increasing FA uptake and lipid droplet accumulation. In contrast, overexpression of Slc43a3 decreased FA uptake in differentiated OP9 cells and resulted in decreased lipid droplet accumulation. Therefore, Slc43a3 seems to regulate FA flux in adipocytes, functioning as a positive regulator of FA efflux and as a negative regulator of FA uptake. Full Article
ac The grease trap: uncovering the mechanism of the hydrophobic lid in Cutibacterium acnes lipase [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 Acne is one of the most common dermatological conditions, but the details of its pathology are unclear, and current management regimens often have adverse effects. Cutibacterium acnes is known as a major acne-associated bacterium that derives energy from lipase-mediated sebum lipid degradation. C. acnes is commensal, but lipase activity has been observed to differ among C. acnes types. For example, higher populations of the type IA strains are present in acne lesions with higher lipase activity. In the present study, we examined a conserved lipase in types IB and II that was truncated in type IA C. acnes strains. Closed, blocked, and open structures of C. acnes ATCC11828 lipases were elucidated by X-ray crystallography at 1.6–2.4 Å. The closed crystal structure, which is the most common form in aqueous solution, revealed that a hydrophobic lid domain shields the active site. By comparing closed, blocked, and open structures, we found that the lid domain-opening mechanisms of C. acnes lipases (CAlipases) involve the lid-opening residues, Phe-179 and Phe-211. To the best of our knowledge, this is the first structure-function study of CAlipases, which may help to shed light on the mechanisms involved in acne development and may aid in future drug design. Full Article
ac The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes [Thematic Reviews] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 Cellular membranes are not homogenous mixtures of proteins; rather, they are segregated into microdomains on the basis of preferential association between specific lipids and proteins. These microdomains, called lipid rafts, are well known for their role in receptor signaling on the plasma membrane (PM) and are essential to such cellular functions as signal transduction and spatial organization of the PM. A number of disease states, including atherosclerosis and other cardiovascular disorders, may be caused by dysfunctional maintenance of lipid rafts. Lipid rafts do not occur only in the PM but also have been found in intracellular membranes and extracellular vesicles (EVs). Here, we focus on discussing newly discovered functions of lipid rafts and microdomains in intracellular membranes, including lipid and protein trafficking from the ER, Golgi bodies, and endosomes to the PM, and we examine lipid raft involvement in the production and composition of EVs. Because lipid rafts are small and transient, visualization remains challenging. Future work with advanced techniques will continue to expand our knowledge about the roles of lipid rafts in cellular functioning. Full Article
ac Commentary on SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect fatty acid translocation [Commentaries] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 Full Article
ac Membrane domains beyond the reach of microscopy [Commentaries] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 Full Article
ac Using Colonization Assays and Comparative Genomics To Discover Symbiosis Behaviors and Factors in Vibrio fischeri By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT The luminous marine Gram-negative bacterium Vibrio (Aliivibrio) fischeri is the natural light organ symbiont of several squid species, including the Hawaiian bobtail squid, Euprymna scolopes, and the Japanese bobtail squid, Euprymna morsei. Work with E. scolopes has shown how the bacteria establish their niche in the light organ of the newly hatched host. Two types of V. fischeri strains have been distinguished based upon their behavior in cocolonization competition assays in juvenile E. scolopes, i.e., (i) niche-sharing or (ii) niche-dominant behavior. This study aimed to determine whether these behaviors are observed with other V. fischeri strains or whether they are specific to those isolated from E. scolopes light organs. Cocolonization competition assays between V. fischeri strains isolated from the congeneric squid E. morsei or from other marine animals revealed the same sharing or dominant behaviors. In addition, whole-genome sequencing of these strains showed that the dominant behavior is polyphyletic and not associated with the presence or absence of a single gene or genes. Comparative genomics of 44 squid light organ isolates from around the globe led to the identification of symbiosis-specific candidates in the genomes of these strains. Colonization assays using genetic derivatives with deletions of these candidates established the importance of two such genes in colonization. This study has allowed us to expand the concept of distinct colonization behaviors to strains isolated from a number of squid and fish hosts. IMPORTANCE There is an increasing recognition of the importance of strain differences in the ecology of a symbiotic bacterial species and, in particular, how these differences underlie crucial interactions with their host. Nevertheless, little is known about the genetic bases for these differences, how they manifest themselves in specific behaviors, and their distribution among symbionts of different host species. In this study, we sequenced the genomes of Vibrio fischeri isolated from the tissues of squids and fishes and applied comparative genomics approaches to look for patterns between symbiont lineages and host colonization behavior. In addition, we identified the only two genes that were exclusively present in all V. fischeri strains isolated from the light organs of sepiolid squid species. Mutational studies of these genes indicated that they both played a role in colonization of the squid light organ, emphasizing the value of applying a comparative genomics approach in the study of symbioses. Full Article
ac The HIV-1 Accessory Protein Vpu Downregulates Peroxisome Biogenesis By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Human immunodeficiency virus type 1 (HIV-1) establishes lifelong infections in humans, a process that relies on its ability to thwart innate and adaptive immune defenses of the host. Recently, we reported that HIV-1 infection results in a dramatic reduction of the cellular peroxisome pool. Peroxisomes are metabolic organelles that also function as signaling platforms in the innate immune response. Here, we show that the HIV-1 accessory protein Vpu is necessary and sufficient for the depletion of cellular peroxisomes during infection. Vpu induces the expression of four microRNAs that target mRNAs encoding proteins required for peroxisome formation and metabolic function. The ability of Vpu to downregulate peroxisomes was found to be dependent upon the Wnt/β-catenin signaling pathway. Given the importance of peroxisomes in innate immune signaling and central nervous system function, the roles of Vpu in dampening antiviral signaling appear to be more diverse than previously realized. Finally, our findings highlight a potential role for Wnt/β-catenin signaling in peroxisome homeostasis through modulating the production of biogenesis factors. IMPORTANCE People living with HIV can experience accelerated aging and the development of neurological disorders. Recently, we reported that HIV-1 infection results in a dramatic loss of peroxisomes in macrophages and brain tissue. This is significant because (i) peroxisomes are important for the innate immune response and (ii) loss of peroxisome function is associated with cellular aging and neurodegeneration. Accordingly, understanding how HIV-1 infection causes peroxisome depletion may provide clues regarding how the virus establishes persistent infections and, potentially, the development of neurological disorders. Here, we show that the accessory protein Vpu is necessary and sufficient for the induction of microRNAs that target peroxisome biogenesis factors. The ability of Vpu to downregulate peroxisome formation depends on the Wnt/β-catenin pathway. Thus, in addition to revealing a novel mechanism by which HIV-1 uses intracellular signaling pathways to target antiviral signaling platforms (peroxisomes), we have uncovered a previously unknown link between the Wnt/β-catenin pathway and peroxisome homeostasis. Full Article
ac Modulation of Monocyte-Driven Myositis in Alphavirus Infection Reveals a Role for CX3CR1+ Macrophages in Tissue Repair By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Arthritogenic alphaviruses such as Ross River and Chikungunya viruses cause debilitating muscle and joint pain and pose significant challenges in the light of recent outbreaks. How host immune responses are orchestrated after alphaviral infections and lead to musculoskeletal inflammation remains poorly understood. Here, we show that myositis induced by Ross River virus (RRV) infection is driven by CD11bhi Ly6Chi inflammatory monocytes and followed by the establishment of a CD11bhi Ly6Clo CX3CR1+ macrophage population in the muscle upon recovery. Selective modulation of CD11bhi Ly6Chi monocyte migration to infected muscle using immune-modifying microparticles (IMP) reduced disease score, tissue damage, and inflammation and promoted the accumulation of CX3CR1+ macrophages, enhancing recovery and resolution. Here, we detail the role of immune pathology, describing a poorly characterized muscle macrophage subset as part of the dynamics of alphavirus-induced myositis and tissue recovery and identify IMP as an effective immunomodulatory approach. Given the lack of specific treatments available for alphavirus-induced pathologies, this study highlights a therapeutic potential for simple immune modulation by IMP in infected individuals in the event of large alphavirus outbreaks. IMPORTANCE Arthritogenic alphaviruses cause debilitating inflammatory disease, and current therapies are restricted to palliative approaches. Here, we show that following monocyte-driven muscle inflammation, tissue recovery is associated with the accumulation of CX3CR1+ macrophages in the muscle. Modulating inflammatory monocyte infiltration using immune-modifying microparticles (IMP) reduced tissue damage and inflammation and enhanced the formation of tissue repair-associated CX3CR1+ macrophages in the muscle. This shows that modulating key effectors of viral inflammation using microparticles can alter the outcome of disease by facilitating the accumulation of macrophage subsets associated with tissue repair. Full Article
ac Peptidoglycan Hydrolases RipA and Ami1 Are Critical for Replication and Persistence of Mycobacterium tuberculosis in the Host By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Synthesis and cleavage of the cell wall polymer peptidoglycan (PG) are carefully orchestrated processes and are essential for the growth and survival of bacteria. Yet, the function and importance of many enzymes that act on PG in Mycobacterium tuberculosis remain to be elucidated. We demonstrate that the activity of the N-acetylmuramyl-l-alanine amidase Ami1 is dispensable for cell division in M. tuberculosis in vitro yet contributes to the bacterium’s ability to persist during chronic infection in mice. Furthermore, the d,l-endopeptidase RipA, a predicted essential enzyme, is dispensable for the viability of M. tuberculosis but required for efficient cell division in vitro and in vivo. Depletion of RipA sensitizes M. tuberculosis to rifampin and to cell envelope-targeting antibiotics. Ami1 helps sustain residual cell division in cells lacking RipA, but the partial redundancy provided by Ami1 is not sufficient during infection, as depletion of RipA prevents M. tuberculosis from replicating in macrophages and leads to dramatic killing of the bacteria in mice. Notably, RipA is essential for persistence of M. tuberculosis in mice, suggesting that cell division is required during chronic mouse infection. Despite the multiplicity of enzymes acting on PG with redundant functions, we have identified two PG hydrolases that are important for M. tuberculosis to replicate and persist in the host. IMPORTANCE Tuberculosis (TB) is a major global heath burden, with 1.6 million people succumbing to the disease every year. The search for new drugs to improve the current chemotherapeutic regimen is crucial to reducing this global health burden. The cell wall polymer peptidoglycan (PG) has emerged as a very successful drug target in bacterial pathogens, as many currently used antibiotics target the synthesis of this macromolecule. However, the multitude of genes encoding PG-synthesizing and PG-modifying enzymes with apparent redundant functions has hindered the identification of novel drug targets in PG synthesis in Mycobacterium tuberculosis. Here, we demonstrate that two PG-cleaving enzymes are important for virulence of M. tuberculosis. In particular, the d,l-endopeptidase RipA represents a potentially attractive drug target, as its depletion results in the clearance of M. tuberculosis from the host and renders the bacteria hypersusceptible to rifampin, a frontline TB drug, and to several cell wall-targeting antibiotics. Full Article
ac Mycobacterium tuberculosis Reactivates HIV-1 via Exosome-Mediated Resetting of Cellular Redox Potential and Bioenergetics By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT The synergy between Mycobacterium tuberculosis and human immunodeficiency virus-1 (HIV-1) interferes with therapy and facilitates the pathogenesis of both human pathogens. Fundamental mechanisms by which M. tuberculosis exacerbates HIV-1 infection are not clear. Here, we show that exosomes secreted by macrophages infected with M. tuberculosis, including drug-resistant clinical strains, reactivated HIV-1 by inducing oxidative stress. Mechanistically, M. tuberculosis-specific exosomes realigned mitochondrial and nonmitochondrial oxygen consumption rates (OCR) and modulated the expression of host genes mediating oxidative stress response, inflammation, and HIV-1 transactivation. Proteomics analyses revealed the enrichment of several host factors (e.g., HIF-1α, galectins, and Hsp90) known to promote HIV-1 reactivation in M. tuberculosis-specific exosomes. Treatment with a known antioxidant—N-acetyl cysteine (NAC)—or with inhibitors of host factors—galectins and Hsp90—attenuated HIV-1 reactivation by M. tuberculosis-specific exosomes. Our findings uncover new paradigms for understanding the redox and bioenergetics bases of HIV-M. tuberculosis coinfection, which will enable the design of effective therapeutic strategies. IMPORTANCE Globally, individuals coinfected with the AIDS virus (HIV-1) and with M. tuberculosis (causative agent of tuberculosis [TB]) pose major obstacles in the clinical management of both diseases. At the heart of this issue is the apparent synergy between the two human pathogens. On the one hand, mechanisms induced by HIV-1 for reactivation of TB in AIDS patients are well characterized. On the other hand, while clinical findings clearly identified TB as a risk factor for HIV-1 reactivation and associated mortality, basic mechanisms by which M. tuberculosis exacerbates HIV-1 replication and infection remain poorly characterized. The significance of our research is in identifying the role of fundamental mechanisms such as redox and energy metabolism in catalyzing HIV-M. tuberculosis synergy. The quantification of redox and respiratory parameters affected by M. tuberculosis in stimulating HIV-1 will greatly enhance our understanding of HIV-M. tuberculosis coinfection, leading to a wider impact on the biomedical research community and creating new translational opportunities. Full Article
ac Parallel Genomics Uncover Novel Enterococcal-Bacteriophage Interactions By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Bacteriophages (phages) have been proposed as alternative therapeutics for the treatment of multidrug-resistant bacterial infections. However, there are major gaps in our understanding of the molecular events in bacterial cells that control how bacteria respond to phage predation. Using the model organism Enterococcus faecalis, we used two distinct genomic approaches, namely, transposon library screening and RNA sequencing, to investigate the interaction of E. faecalis with a virulent phage. We discovered that a transcription factor encoding a LytR family response regulator controls the expression of enterococcal polysaccharide antigen (epa) genes that are involved in phage infection and bacterial fitness. In addition, we discovered that DNA mismatch repair mutants rapidly evolve phage adsorption deficiencies, underpinning a molecular basis for epa mutation during phage infection. Transcriptomic profiling of phage-infected E. faecalis revealed broad transcriptional changes influencing viral replication and progeny burst size. We also demonstrate that phage infection alters the expression of bacterial genes associated with intra- and interbacterial interactions, including genes involved in quorum sensing and polymicrobial competition. Together, our results suggest that phage predation has the potential to influence complex microbial behavior and may dictate how bacteria respond to external environmental stimuli. These responses could have collateral effects (positive or negative) on microbial communities, such as the host microbiota, during phage therapy. IMPORTANCE We lack fundamental understanding of how phage infection influences bacterial gene expression and, consequently, how bacterial responses to phage infection affect the assembly of polymicrobial communities. Using parallel genomic approaches, we have discovered novel transcriptional regulators and metabolic genes that influence phage infection. The integration of whole-genome transcriptomic profiling during phage infection has revealed the differential regulation of genes important for group behaviors and polymicrobial interactions. Our work suggests that therapeutic phages could more broadly influence bacterial community composition outside their intended host targets. Full Article
ac Repurposed Drugs That Block the Gonococcus-Complement Receptor 3 Interaction Can Prevent and Cure Gonococcal Infection of Primary Human Cervical Epithelial Cells By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT In the absence of a vaccine, multidrug-resistant Neisseria gonorrhoeae has emerged as a major human health threat, and new approaches to treat gonorrhea are urgently needed. N. gonorrhoeae pili are posttranslationally modified by a glycan that terminates in a galactose. The terminal galactose is critical for initial contact with the human cervical mucosa via an interaction with the I-domain of complement receptor 3 (CR3). We have now identified the I-domain galactose-binding epitope and characterized its galactose-specific lectin activity. Using surface plasmon resonance and cellular infection assays, we found that a peptide mimic of this galactose-binding region competitively inhibited the N. gonorrhoeae-CR3 interaction. A compound library was screened for potential drugs that could similarly prohibit the N. gonorrhoeae-CR3 interaction and be repurposed as novel host-targeted therapeutics for multidrug-resistant gonococcal infections in women. Two drugs, methyldopa and carbamazepine, prevented and cured cervical cell infection by multidrug-resistant gonococci by blocking the gonococcal-CR3 I-domain interaction. IMPORTANCE Novel therapies that avert the problem of Neisseria gonorrhoeae with acquired antibiotic resistance are urgently needed. Gonococcal infection of the human cervix is initiated by an interaction between a galactose modification made to its surface appendages, pili, and the I-domain region of (host) complement receptor 3 (CR3). By targeting this crucial gonococcal–I-domain interaction, it may be possible to prevent cervical infection in females. To this end, we identified the I-domain galactose-binding epitope of CR3 and characterized its galactose lectin activity. Moreover, we identified two drugs, carbamazepine and methyldopa, as effective host-targeted therapies for gonorrhea treatment. At doses below those currently used for their respective existing indications, both carbamazepine and methyldopa were more effective than ceftriaxone in curing cervical infection ex vivo. This host-targeted approach would not be subject to N. gonorrhoeae drug resistance mechanisms. Thus, our data suggest a long-term solution to the growing problem of multidrug-resistant N. gonorrhoeae infections. Full Article
ac Diversity and Complexity of the Large Surface Protein Family in the Compacted Genomes of Multiple Pneumocystis Species By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Pneumocystis, a major opportunistic pathogen in patients with a broad range of immunodeficiencies, contains abundant surface proteins encoded by a multicopy gene family, termed the major surface glycoprotein (Msg) gene superfamily. This superfamily has been identified in all Pneumocystis species characterized to date, highlighting its important role in Pneumocystis biology. In this report, through a comprehensive and in-depth characterization of 459 msg genes from 7 Pneumocystis species, we demonstrate, for the first time, the phylogeny and evolution of conserved domains in Msg proteins and provide a detailed description of the classification, unique characteristics, and phylogenetic relatedness of five Msg families. We further describe, for the first time, the relative expression levels of individual msg families in two rodent Pneumocystis species, the substantial variability of the msg repertoires in P. carinii from laboratory and wild rats, and the distinct features of the expression site for the classic msg genes in Pneumocystis from 8 mammalian host species. Our analysis suggests multiple functions for this superfamily rather than just conferring antigenic variation to allow immune evasion as previously believed. This study provides a rich source of information that lays the foundation for the continued experimental exploration of the functions of the Msg superfamily in Pneumocystis biology. IMPORTANCE Pneumocystis continues to be a major cause of disease in humans with immunodeficiency, especially those with HIV/AIDS and organ transplants, and is being seen with increasing frequency worldwide in patients treated with immunodepleting monoclonal antibodies. Annual health care associated with Pneumocystis pneumonia costs ~$475 million dollars in the United States alone. In addition to causing overt disease in immunodeficient individuals, Pneumocystis can cause subclinical infection or colonization in healthy individuals, which may play an important role in species preservation and disease transmission. Our work sheds new light on the diversity and complexity of the msg superfamily and strongly suggests that the versatility of this superfamily reflects multiple functions, including antigenic variation to allow immune evasion and optimal adaptation to host environmental conditions to promote efficient infection and transmission. These findings are essential to consider in developing new diagnostic and therapeutic strategies. Full Article
ac Bacterial Transformation Buffers Environmental Fluctuations through the Reversible Integration of Mobile Genetic Elements By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Horizontal gene transfer (HGT) promotes the spread of genes within bacterial communities. Among the HGT mechanisms, natural transformation stands out as being encoded by the bacterial core genome. Natural transformation is often viewed as a way to acquire new genes and to generate genetic mixing within bacterial populations. Another recently proposed function is the curing of bacterial genomes of their infectious parasitic mobile genetic elements (MGEs). Here, we propose that these seemingly opposing theoretical points of view can be unified. Although costly for bacterial cells, MGEs can carry functions that are at points in time beneficial to bacteria under stressful conditions (e.g., antibiotic resistance genes). Using computational modeling, we show that, in stochastic environments, an intermediate transformation rate maximizes bacterial fitness by allowing the reversible integration of MGEs carrying resistance genes, although these MGEs are costly for host cell replication. Based on this dual function (MGE acquisition and removal), transformation would be a key mechanism for stabilizing the bacterial genome in the long term, and this would explain its striking conservation. IMPORTANCE Natural transformation is the acquisition, controlled by bacteria, of extracellular DNA and is one of the most common mechanisms of horizontal gene transfer, promoting the spread of resistance genes. However, its evolutionary function remains elusive, and two main roles have been proposed: (i) the new gene acquisition and genetic mixing within bacterial populations and (ii) the removal of infectious parasitic mobile genetic elements (MGEs). While the first one promotes genetic diversification, the other one promotes the removal of foreign DNA and thus genome stability, making these two functions apparently antagonistic. Using a computational model, we show that intermediate transformation rates, commonly observed in bacteria, allow the acquisition then removal of MGEs. The transient acquisition of costly MGEs with resistance genes maximizes bacterial fitness in environments with stochastic stress exposure. Thus, transformation would ensure both a strong dynamic of the bacterial genome in the short term and its long-term stabilization. Full Article
ac Direct Observation of the Dynamics of Single-Cell Metabolic Activity during Microbial Diauxic Growth By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Population-level analyses are rapidly becoming inadequate to answer many of biomedical science and microbial ecology’s most pressing questions. The role of microbial populations within ecosystems and the evolutionary selective pressure on individuals depend fundamentally on the metabolic activity of single cells. Yet, many existing single-cell technologies provide only indirect evidence of metabolic specialization because they rely on correlations between transcription and phenotype established at the level of the population to infer activity. In this study, we take a top-down approach using isotope labels and secondary ion mass spectrometry to track the uptake of carbon and nitrogen atoms from different sources into biomass and directly observe dynamic changes in anabolic specialization at the level of single cells. We investigate the classic microbiological phenomenon of diauxic growth at the single-cell level in the model methylotroph Methylobacterium extorquens. In nature, this organism inhabits the phyllosphere, where it experiences diurnal changes in the available carbon substrates, necessitating an overhaul of central carbon metabolism. We show that the population exhibits a unimodal response to the changing availability of viable substrates, a conclusion that supports the canonical model but has thus far been supported by only indirect evidence. We anticipate that the ability to monitor the dynamics of anabolism in individual cells directly will have important applications across the fields of ecology, medicine, and biogeochemistry, especially where regulation downstream of transcription has the potential to manifest as heterogeneity that would be undetectable with other existing single-cell approaches. IMPORTANCE Understanding how genetic information is realized as the behavior of individual cells is a long-term goal of biology but represents a significant technological challenge. In clonal microbial populations, variation in gene regulation is often interpreted as metabolic heterogeneity. This follows the central dogma of biology, in which information flows from DNA to RNA to protein and ultimately manifests as activity. At present, DNA and RNA can be characterized in single cells, but the abundance and activity of proteins cannot. Inferences about metabolic activity usually therefore rely on the assumption that transcription reflects activity. By tracking the atoms from which they build their biomass, we make direct observations of growth rate and substrate specialization in individual cells throughout a period of growth in a changing environment. This approach allows the flow of information from DNA to be constrained from the distal end of the regulatory cascade and will become an essential tool in the rapidly advancing field of single-cell metabolism. Full Article
ac Host Mucin Is Exploited by Pseudomonas aeruginosa To Provide Monosaccharides Required for a Successful Infection By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT One of the primary functions of the mucosal barrier, found lining epithelial cells, is to serve as a first-line of defense against microbial pathogens. The major structural components of mucus are heavily glycosylated proteins called mucins. Mucins are key components of the innate immune system as they aid in the clearance of pathogens and can decrease pathogen virulence. It has also been recently reported that individual mucins and derived glycans can attenuate the virulence of the human pathogen Pseudomonas aeruginosa. Here, we show data indicating that mucins not only play a role in host defense but that they can also be subverted by P. aeruginosa to cause disease. We found that the mucin MUL-1 and mucin-derived monosaccharides N-acetyl-galactosamine and N-acetylglucosamine are required for P. aeruginosa killing of Caenorhabditis elegans. We also found that the defective adhesion of P. aeruginosa to human lung alveolar epithelial cells, deficient in the mucin MUC1, can be reversed by the addition of individual monosaccharides. The monosaccharides identified in this study are found in a wide range of organisms where they act as host factors required for bacterial pathogenesis. While mucins in C. elegans lack sialic acid caps, which makes their monosaccharides readily available, they are capped in other species. Pathogens such as P. aeruginosa that lack sialidases may rely on enzymes from other bacteria to utilize mucin-derived monosaccharides. IMPORTANCE One of the first lines of defense present at mucosal epithelial tissues is mucus, which is a highly viscous material formed by mucin glycoproteins. Mucins serve various functions, but importantly they aid in the clearance of pathogens and debris from epithelial barriers and serve as innate immune factors. In this study, we describe a requirement of host monosaccharides, likely derived from host mucins, for the ability of Pseudomonas aeruginosa to colonize the intestine and ultimately cause death in Caenorhabditis elegans. We also demonstrate that monosaccharides alter the ability of bacteria to bind to both Caenorhabditis elegans intestinal cells and human lung alveolar epithelial cells, suggesting that there are conserved mechanisms underlying host-pathogen interactions in a range of organisms. By gaining a better understanding of pathogen-mucin interactions, we can develop better approaches to protect against pathogen infection. Full Article
ac Defining Stage-Specific Activity of Potent New Inhibitors of Cryptosporidium parvum Growth In Vitro By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Cryptosporidium parvum and Cryptosporidium hominis have emerged as major enteric pathogens of infants in the developing world, in addition to their known importance in immunocompromised adults. Although there has been recent progress in identifying new small molecules that inhibit Cryptosporidium sp. growth in vitro or in animal models, we lack information about their mechanism of action, potency across the life cycle, and cidal versus static activities. Here, we explored four potent classes of compounds that include inhibitors that likely target phosphatidylinositol 4 kinase (PI4K), phenylalanine-tRNA synthetase (PheRS), and several potent inhibitors with unknown mechanisms of action. We utilized monoclonal antibodies and gene expression probes for staging life cycle development to define the timing of when inhibitors were active during the life cycle of Cryptosporidium parvum grown in vitro. These different classes of inhibitors targeted different stages of the life cycle, including compounds that blocked replication (PheRS inhibitors), prevented the segmentation of daughter cells and thus blocked egress (PI4K inhibitors), or affected sexual-stage development (a piperazine compound of unknown mechanism). Long-term cultivation of C. parvum in epithelial cell monolayers derived from intestinal stem cells was used to distinguish between cidal and static activities based on the ability of parasites to recover from treatment. Collectively, these approaches should aid in identifying mechanisms of action and for designing in vivo efficacy studies based on time-dependent concentrations needed to achieve cidal activity. IMPORTANCE Currently, nitazoxanide is the only FDA-approved treatment for cryptosporidiosis; unfortunately, it is ineffective in immunocompromised patients, has varied efficacy in immunocompetent individuals, and is not approved in infants under 1 year of age. Identifying new inhibitors for the treatment of cryptosporidiosis requires standardized and quantifiable in vitro assays for assessing potency, selectivity, timing of activity, and reversibility. Here, we provide new protocols for defining which stages of the life cycle are susceptible to four highly active compound classes that likely inhibit different targets in the parasite. We also utilize a newly developed long-term culture system to define assays for monitoring reversibility as a means of defining cidal activity as a function of concentration and time of treatment. These assays should provide valuable in vitro parameters to establish conditions for efficacious in vivo treatment. Full Article
ac Heterosubtypic Protection Induced by a Live Attenuated Influenza Virus Vaccine Expressing Galactose-{alpha}-1,3-Galactose Epitopes in Infected Cells By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Anti-galactose-α-1,3-galactose (anti-α-Gal) antibody is naturally expressed at a high level in humans. It constitutes about 1% of immunoglobulins found in human blood. Here, we designed a live attenuated influenza virus vaccine that can generate α-Gal epitopes in infected cells in order to facilitate opsonization of infected cells, thereby enhancing vaccine-induced immune responses. In the presence of normal human sera, cells infected with this mutant can enhance phagocytosis of human macrophages and cytotoxicity of NK cells in vitro. Using a knockout mouse strain that allows expression of anti-α-Gal antibody in vivo, we showed that this strategy can increase vaccine immunogenicity and the breadth of protection. This vaccine can induce 100% protection against a lethal heterosubtypic group 1 (H5) or group 2 (mouse-adapted H3) influenza virus challenge in the mouse model. In contrast, its heterosubtypic protective effect in wild-type or knockout mice that do not have anti-α-Gal antibody expression is only partial, demonstrating that the enhanced vaccine-induced protection requires anti-α-Gal antibody upon vaccination. Anti-α-Gal-expressing knockout mice immunized with this vaccine produce robust humoral and cell-mediated responses upon a lethal virus challenge. This vaccine can stimulate CD11blo/– pulmonary dendritic cells, which are known to be crucial for clearance of influenza virus. Our approach provides a novel strategy for developing next-generation influenza virus vaccines. IMPORTANCE Influenza A viruses have multiple HA subtypes that are antigenically diverse. Classical influenza virus vaccines are subtype specific, and they cannot induce satisfactory heterosubtypic immunity against multiple influenza virus subtypes. Here, we developed a live attenuated H1N1 influenza virus vaccine that allows the expression of α-Gal epitopes by infected cells. Anti-α-Gal antibody is naturally produced by humans. In the presence of this antibody, human cells infected with this experimental vaccine virus can enhance several antibody-mediated immune responses in vitro. Importantly, mice expressing anti-α-Gal antibody in vivo can be fully protected by this H1N1 vaccine against a lethal H5 or H3 virus challenge. Our work demonstrates a new strategy for using a single influenza virus strain to induce broadly cross-reactive immune responses against different influenza virus subtypes. Full Article
ac A Sustained Immune Response Supports Long-Term Antiviral Immune Priming in the Pacific Oyster, Crassostrea gigas By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT Over the last decade, innate immune priming has been evidenced in many invertebrate phyla. If mechanistic models have been proposed, molecular studies aiming to substantiate these models have remained scarce. We reveal here the transcriptional signature associated with immune priming in the oyster Crassostrea gigas. Oysters were fully protected against Ostreid herpesvirus 1 (OsHV-1), a major oyster pathogen, after priming with poly(I·C), which mimics viral double-stranded RNA. Global analysis through RNA sequencing of oyster and viral genes after immune priming and viral infection revealed that poly(I·C) induces a strong antiviral response that impairs OsHV-1 replication. Protection is based on a sustained upregulation of immune genes, notably genes involved in the interferon pathway and apoptosis, which control subsequent viral infection. This persistent antiviral alert state remains active over 4 months and supports antiviral protection in the long term. This acquired resistance mechanism reinforces the molecular foundations of the sustained response model of immune priming. It further opens the way to applications (pseudovaccination) to cope with a recurrent disease that causes dramatic economic losses in the shellfish farming industry worldwide. IMPORTANCE In the last decade, important discoveries have shown that resistance to reinfection can be achieved without a functional adaptive immune system, introducing the concept of innate immune memory in invertebrates. However, this field has been constrained by the limited number of molecular mechanisms evidenced to support these phenomena. Taking advantage of an invertebrate species, the Pacific oyster (Crassostrea gigas), in which we evidenced one of the longest and most effective periods of protection against viral infection observed in an invertebrate, we provide the first comprehensive transcriptomic analysis of antiviral innate immune priming. We show that priming with poly(I·C) induced a massive upregulation of immune-related genes, which control subsequent viral infection, and it was maintained for over 4 months after priming. This acquired resistant mechanism reinforces the molecular foundations of the sustained response model of immune priming. It opens the way to pseudovaccination to prevent the recurrent diseases that currently afflict economically or ecologically important invertebrates. Full Article
ac A Shift in Central Metabolism Accompanies Virulence Activation in Pseudomonas aeruginosa By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT The availability of energy has significant impact on cell physiology. However, the role of cellular metabolism in bacterial pathogenesis is not understood. We investigated the dynamics of central metabolism during virulence induction by surface sensing and quorum sensing in early-stage biofilms of the multidrug-resistant bacterium Pseudomonas aeruginosa. We established a metabolic profile for P. aeruginosa using fluorescence lifetime imaging microscopy (FLIM), which reports the activity of NADH in live cells. We identified a critical growth transition period during which virulence is activated. We performed FLIM measurements and direct measurements of NADH and NAD+ concentrations during this period. Here, planktonic (low-virulence) and surface-attached (virulence-activated) populations diverged into distinct metabolic states, with the surface-attached population exhibiting FLIM lifetimes that were associated with lower levels of enzyme-bound NADH and decreasing total NAD(H) production. We inhibited virulence by perturbing central metabolism using citrate and pyruvate, which further decreased the enzyme-bound NADH fraction and total NAD(H) production and suggested the involvement of the glyoxylate pathway in virulence activation in surface-attached populations. In addition, we induced virulence at an earlier time using the electron transport chain oxidase inhibitor antimycin A. Our results demonstrate the use of FLIM to noninvasively measure NADH dynamics in biofilms and suggest a model in which a metabolic rearrangement accompanies the virulence activation period. IMPORTANCE The rise of antibiotic resistance requires the development of new strategies to combat bacterial infection and pathogenesis. A major direction has been the development of drugs that broadly target virulence. However, few targets have been identified due to the species-specific nature of many virulence regulators. The lack of a virulence regulator that is conserved across species has presented a further challenge to the development of therapeutics. Here, we identify that NADH activity has an important role in the induction of virulence in the pathogen P. aeruginosa. This finding, coupled with the ubiquity of NADH in bacterial pathogens, opens up the possibility of targeting enzymes that process NADH as a potential broad antivirulence approach. Full Article
ac Tracking a Global Threat: a New Genotyping Method for Candida auris By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT Over the past decade, Candida auris has emerged as an urgent threat to public health. Initially reported from cases of ear infections in Japan and Korea, C. auris has since been detected around the world. While whole-genome sequencing has been extensively used to trace the genetic relationships of the global emergence and local outbreaks, a recent report in mBio describes a targeted genotyping method as a rapid and inexpensive method for classifying C. auris isolates (T. de Groot, Y. Puts, I. Berrio, A. Chowdhary, and J. F. Meis, mBio 11:e02971-19, https://doi.org/10.1128/mBio.02971-19, 2020). Full Article
ac Genetic and Chemical-Genetic Interactions Map Biogenesis and Permeability Determinants of the Outer Membrane of Escherichia coli By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT Gram-negative bacteria are intrinsically resistant to many antibiotics due to their outer membrane barrier. Although the outer membrane has been studied for decades, there is much to uncover about the biology and permeability of this complex structure. Investigating synthetic genetic interactions can reveal a great deal of information about genetic function and pathway interconnectivity. Here, we performed synthetic genetic arrays (SGAs) in Escherichia coli by crossing a subset of gene deletion strains implicated in outer membrane permeability with nonessential gene and small RNA (sRNA) deletion collections. Some 155,400 double-deletion strains were grown on rich microbiological medium with and without subinhibitory concentrations of two antibiotics excluded by the outer membrane, vancomycin and rifampin, to probe both genetic interactions and permeability. The genetic interactions of interest were synthetic sick or lethal (SSL) gene deletions that were detrimental to the cell in combination but had a negligible impact on viability individually. On average, there were ~30, ~36, and ~40 SSL interactions per gene under no-drug, rifampin, and vancomycin conditions, respectively; however, many of these involved frequent interactors. Our data sets have been compiled into an interactive database called the Outer Membrane Interaction (OMI) Explorer, where genetic interactions can be searched, visualized across the genome, compared between conditions, and enriched for gene ontology (GO) terms. A set of SSL interactions revealed connectivity and permeability links between enterobacterial common antigen (ECA) and lipopolysaccharide (LPS) of the outer membrane. This data set provides a novel platform to generate hypotheses about outer membrane biology and permeability. IMPORTANCE Gram-negative bacteria are a major concern for public health, particularly due to the rise of antibiotic resistance. It is important to understand the biology and permeability of the outer membrane of these bacteria in order to increase the efficacy of antibiotics that have difficulty penetrating this structure. Here, we studied the genetic interactions of a subset of outer membrane-related gene deletions in the model Gram-negative bacterium E. coli. We systematically combined these mutants with 3,985 nonessential gene and small RNA deletion mutations in the genome. We examined the viability of these double-deletion strains and probed their permeability characteristics using two antibiotics that have difficulty crossing the outer membrane barrier. An understanding of the genetic basis for outer membrane integrity can assist in the development of new antibiotics with favorable permeability properties and the discovery of compounds capable of increasing outer membrane permeability to enhance the activity of existing antibiotics. Full Article