the

The Cascade Transformer: an Application for Efficient Answer Sentence Selection. (arXiv:2005.02534v2 [cs.CL] UPDATED)

Large transformer-based language models have been shown to be very effective in many classification tasks. However, their computational complexity prevents their use in applications requiring the classification of a large set of candidates. While previous works have investigated approaches to reduce model size, relatively little attention has been paid to techniques to improve batch throughput during inference. In this paper, we introduce the Cascade Transformer, a simple yet effective technique to adapt transformer-based models into a cascade of rankers. Each ranker is used to prune a subset of candidates in a batch, thus dramatically increasing throughput at inference time. Partial encodings from the transformer model are shared among rerankers, providing further speed-up. When compared to a state-of-the-art transformer model, our approach reduces computation by 37% with almost no impact on accuracy, as measured on two English Question Answering datasets.




the

On the list recoverability of randomly punctured codes. (arXiv:2005.02478v2 [math.CO] UPDATED)

We show that a random puncturing of a code with good distance is list recoverable beyond the Johnson bound. In particular, this implies that there are Reed-Solomon codes that are list recoverable beyond the Johnson bound. It was previously known that there are Reed-Solomon codes that do not have this property. As an immediate corollary to our main theorem, we obtain better degree bounds on unbalanced expanders that come from Reed-Solomon codes.




the

The Sensitivity of Language Models and Humans to Winograd Schema Perturbations. (arXiv:2005.01348v2 [cs.CL] UPDATED)

Large-scale pretrained language models are the major driving force behind recent improvements in performance on the Winograd Schema Challenge, a widely employed test of common sense reasoning ability. We show, however, with a new diagnostic dataset, that these models are sensitive to linguistic perturbations of the Winograd examples that minimally affect human understanding. Our results highlight interesting differences between humans and language models: language models are more sensitive to number or gender alternations and synonym replacements than humans, and humans are more stable and consistent in their predictions, maintain a much higher absolute performance, and perform better on non-associative instances than associative ones. Overall, humans are correct more often than out-of-the-box models, and the models are sometimes right for the wrong reasons. Finally, we show that fine-tuning on a large, task-specific dataset can offer a solution to these issues.




the

Jealousy-freeness and other common properties in Fair Division of Mixed Manna. (arXiv:2004.11469v2 [cs.GT] UPDATED)

We consider a fair division setting where indivisible items are allocated to agents. Each agent in the setting has strictly negative, zero or strictly positive utility for each item. We, thus, make a distinction between items that are good for some agents and bad for other agents (i.e. mixed), good for everyone (i.e. goods) or bad for everyone (i.e. bads). For this model, we study axiomatic concepts of allocations such as jealousy-freeness up to one item, envy-freeness up to one item and Pareto-optimality. We obtain many new possibility and impossibility results in regard to combinations of these properties. We also investigate new computational tasks related to such combinations. Thus, we advance the state-of-the-art in fair division of mixed manna.




the

On the regularity of De Bruijn multigrids. (arXiv:2004.10128v2 [cs.DM] UPDATED)

In this paper we prove that any odd multigrid with non-zero rational offsets is regular, which means that its dual is a rhombic tiling. To prove this result we use a result on trigonometric diophantine equations.




the

The growth rate over trees of any family of set defined by a monadic second order formula is semi-computable. (arXiv:2004.06508v3 [cs.DM] UPDATED)

Monadic second order logic can be used to express many classical notions of sets of vertices of a graph as for instance: dominating sets, induced matchings, perfect codes, independent sets or irredundant sets. Bounds on the number of sets of any such family of sets are interesting from a combinatorial point of view and have algorithmic applications. Many such bounds on different families of sets over different classes of graphs are already provided in the literature. In particular, Rote recently showed that the number of minimal dominating sets in trees of order $n$ is at most $95^{frac{n}{13}}$ and that this bound is asymptotically sharp up to a multiplicative constant. We build on his work to show that what he did for minimal dominating sets can be done for any family of sets definable by a monadic second order formula.

We first show that, for any monadic second order formula over graphs that characterizes a given kind of subset of its vertices, the maximal number of such sets in a tree can be expressed as the extit{growth rate of a bilinear system}. This mostly relies on well known links between monadic second order logic over trees and tree automata and basic tree automata manipulations. Then we show that this "growth rate" of a bilinear system can be approximated from above.We then use our implementation of this result to provide bounds on the number of independent dominating sets, total perfect dominating sets, induced matchings, maximal induced matchings, minimal perfect dominating sets, perfect codes and maximal irredundant sets on trees. We also solve a question from D. Y. Kang et al. regarding $r$-matchings and improve a bound from G'orska and Skupie'n on the number of maximal matchings on trees. Remark that this approach is easily generalizable to graphs of bounded tree width or clique width (or any similar class of graphs where tree automata are meaningful).




the

Mathematical Formulae in Wikimedia Projects 2020. (arXiv:2003.09417v2 [cs.DL] UPDATED)

This poster summarizes our contributions to Wikimedia's processing pipeline for mathematical formulae. We describe how we have supported the transition from rendering formulae as course-grained PNG images in 2001 to providing modern semantically enriched language-independent MathML formulae in 2020. Additionally, we describe our plans to improve the accessibility and discoverability of mathematical knowledge in Wikimedia projects further.




the

Watching the World Go By: Representation Learning from Unlabeled Videos. (arXiv:2003.07990v2 [cs.CV] UPDATED)

Recent single image unsupervised representation learning techniques show remarkable success on a variety of tasks. The basic principle in these works is instance discrimination: learning to differentiate between two augmented versions of the same image and a large batch of unrelated images. Networks learn to ignore the augmentation noise and extract semantically meaningful representations. Prior work uses artificial data augmentation techniques such as cropping, and color jitter which can only affect the image in superficial ways and are not aligned with how objects actually change e.g. occlusion, deformation, viewpoint change. In this paper, we argue that videos offer this natural augmentation for free. Videos can provide entirely new views of objects, show deformation, and even connect semantically similar but visually distinct concepts. We propose Video Noise Contrastive Estimation, a method for using unlabeled video to learn strong, transferable single image representations. We demonstrate improvements over recent unsupervised single image techniques, as well as over fully supervised ImageNet pretraining, across a variety of temporal and non-temporal tasks. Code and the Random Related Video Views dataset are available at https://www.github.com/danielgordon10/vince




the

Toward Improving the Evaluation of Visual Attention Models: a Crowdsourcing Approach. (arXiv:2002.04407v2 [cs.CV] UPDATED)

Human visual attention is a complex phenomenon. A computational modeling of this phenomenon must take into account where people look in order to evaluate which are the salient locations (spatial distribution of the fixations), when they look in those locations to understand the temporal development of the exploration (temporal order of the fixations), and how they move from one location to another with respect to the dynamics of the scene and the mechanics of the eyes (dynamics). State-of-the-art models focus on learning saliency maps from human data, a process that only takes into account the spatial component of the phenomenon and ignore its temporal and dynamical counterparts. In this work we focus on the evaluation methodology of models of human visual attention. We underline the limits of the current metrics for saliency prediction and scanpath similarity, and we introduce a statistical measure for the evaluation of the dynamics of the simulated eye movements. While deep learning models achieve astonishing performance in saliency prediction, our analysis shows their limitations in capturing the dynamics of the process. We find that unsupervised gravitational models, despite of their simplicity, outperform all competitors. Finally, exploiting a crowd-sourcing platform, we present a study aimed at evaluating how strongly the scanpaths generated with the unsupervised gravitational models appear plausible to naive and expert human observers.




the

Provenance for the Description Logic ELHr. (arXiv:2001.07541v2 [cs.LO] UPDATED)

We address the problem of handling provenance information in ELHr ontologies. We consider a setting recently introduced for ontology-based data access, based on semirings and extending classical data provenance, in which ontology axioms are annotated with provenance tokens. A consequence inherits the provenance of the axioms involved in deriving it, yielding a provenance polynomial as an annotation. We analyse the semantics for the ELHr case and show that the presence of conjunctions poses various difficulties for handling provenance, some of which are mitigated by assuming multiplicative idempotency of the semiring. Under this assumption, we study three problems: ontology completion with provenance, computing the set of relevant axioms for a consequence, and query answering.




the

Towards a Proof of the Fourier--Entropy Conjecture?. (arXiv:1911.10579v2 [cs.DM] UPDATED)

The total influence of a function is a central notion in analysis of Boolean functions, and characterizing functions that have small total influence is one of the most fundamental questions associated with it. The KKL theorem and the Friedgut junta theorem give a strong characterization of such functions whenever the bound on the total influence is $o(log n)$. However, both results become useless when the total influence of the function is $omega(log n)$. The only case in which this logarithmic barrier has been broken for an interesting class of functions was proved by Bourgain and Kalai, who focused on functions that are symmetric under large enough subgroups of $S_n$.

In this paper, we build and improve on the techniques of the Bourgain-Kalai paper and establish new concentration results on the Fourier spectrum of Boolean functions with small total influence. Our results include:

1. A quantitative improvement of the Bourgain--Kalai result regarding the total influence of functions that are transitively symmetric.

2. A slightly weaker version of the Fourier--Entropy Conjecture of Friedgut and Kalai. This weaker version implies in particular that the Fourier spectrum of a constant variance, Boolean function $f$ is concentrated on $2^{O(I[f]log I[f])}$ characters, improving an earlier result of Friedgut. Removing the $log I[f]$ factor would essentially resolve the Fourier--Entropy Conjecture, as well as settle a conjecture of Mansour regarding the Fourier spectrum of polynomial size DNF formulas.

Our concentration result has new implications in learning theory: it implies that the class of functions whose total influence is at most $K$ is agnostically learnable in time $2^{O(Klog K)}$, using membership queries.




the

The Mapillary Traffic Sign Dataset for Detection and Classification on a Global Scale. (arXiv:1909.04422v2 [cs.CV] UPDATED)

Traffic signs are essential map features globally in the era of autonomous driving and smart cities. To develop accurate and robust algorithms for traffic sign detection and classification, a large-scale and diverse benchmark dataset is required. In this paper, we introduce a traffic sign benchmark dataset of 100K street-level images around the world that encapsulates diverse scenes, wide coverage of geographical locations, and varying weather and lighting conditions and covers more than 300 manually annotated traffic sign classes. The dataset includes 52K images that are fully annotated and 48K images that are partially annotated. This is the largest and the most diverse traffic sign dataset consisting of images from all over world with fine-grained annotations of traffic sign classes. We have run extensive experiments to establish strong baselines for both the detection and the classification tasks. In addition, we have verified that the diversity of this dataset enables effective transfer learning for existing large-scale benchmark datasets on traffic sign detection and classification. The dataset is freely available for academic research: https://www.mapillary.com/dataset/trafficsign.




the

Over-the-Air Computation Systems: Optimization, Analysis and Scaling Laws. (arXiv:1909.00329v2 [cs.IT] UPDATED)

For future Internet of Things (IoT)-based Big Data applications (e.g., smart cities/transportation), wireless data collection from ubiquitous massive smart sensors with limited spectrum bandwidth is very challenging. On the other hand, to interpret the meaning behind the collected data, it is also challenging for edge fusion centers running computing tasks over large data sets with limited computation capacity. To tackle these challenges, by exploiting the superposition property of a multiple-access channel and the functional decomposition properties, the recently proposed technique, over-the-air computation (AirComp), enables an effective joint data collection and computation from concurrent sensor transmissions. In this paper, we focus on a single-antenna AirComp system consisting of $K$ sensors and one receiver (i.e., the fusion center). We consider an optimization problem to minimize the computation mean-squared error (MSE) of the $K$ sensors' signals at the receiver by optimizing the transmitting-receiving (Tx-Rx) policy, under the peak power constraint of each sensor. Although the problem is not convex, we derive the computation-optimal policy in closed form. Also, we comprehensively investigate the ergodic performance of AirComp systems in terms of the average computation MSE and the average power consumption under Rayleigh fading channels with different Tx-Rx policies. For the computation-optimal policy, we prove that its average computation MSE has a decay rate of $O(1/sqrt{K})$, and our numerical results illustrate that the policy also has a vanishing average power consumption with the increasing $K$, which jointly show the computation effectiveness and the energy efficiency of the policy with a large number of sensors.




the

Numerical study on the effect of geometric approximation error in the numerical solution of PDEs using a high-order curvilinear mesh. (arXiv:1908.09917v2 [math.NA] UPDATED)

When time-dependent partial differential equations (PDEs) are solved numerically in a domain with curved boundary or on a curved surface, mesh error and geometric approximation error caused by the inaccurate location of vertices and other interior grid points, respectively, could be the main source of the inaccuracy and instability of the numerical solutions of PDEs. The role of these geometric errors in deteriorating the stability and particularly the conservation properties are largely unknown, which seems to necessitate very fine meshes especially to remove geometric approximation error. This paper aims to investigate the effect of geometric approximation error by using a high-order mesh with negligible geometric approximation error, even for high order polynomial of order p. To achieve this goal, the high-order mesh generator from CAD geometry called NekMesh is adapted for surface mesh generation in comparison to traditional meshes with non-negligible geometric approximation error. Two types of numerical tests are considered. Firstly, the accuracy of differential operators is compared for various p on a curved element of the sphere. Secondly, by applying the method of moving frames, four different time-dependent PDEs on the sphere are numerically solved to investigate the impact of geometric approximation error on the accuracy and conservation properties of high-order numerical schemes for PDEs on the sphere.




the

Establishing the Quantum Supremacy Frontier with a 281 Pflop/s Simulation. (arXiv:1905.00444v2 [quant-ph] UPDATED)

Noisy Intermediate-Scale Quantum (NISQ) computers are entering an era in which they can perform computational tasks beyond the capabilities of the most powerful classical computers, thereby achieving "Quantum Supremacy", a major milestone in quantum computing. NISQ Supremacy requires comparison with a state-of-the-art classical simulator. We report HPC simulations of hard random quantum circuits (RQC), which have been recently used as a benchmark for the first experimental demonstration of Quantum Supremacy, sustaining an average performance of 281 Pflop/s (true single precision) on Summit, currently the fastest supercomputer in the World. These simulations were carried out using qFlex, a tensor-network-based classical high-performance simulator of RQCs. Our results show an advantage of many orders of magnitude in energy consumption of NISQ devices over classical supercomputers. In addition, we propose a standard benchmark for NISQ computers based on qFlex.




the

On analog quantum algorithms for the mixing of Markov chains. (arXiv:1904.11895v2 [quant-ph] UPDATED)

The problem of sampling from the stationary distribution of a Markov chain finds widespread applications in a variety of fields. The time required for a Markov chain to converge to its stationary distribution is known as the classical mixing time. In this article, we deal with analog quantum algorithms for mixing. First, we provide an analog quantum algorithm that given a Markov chain, allows us to sample from its stationary distribution in a time that scales as the sum of the square root of the classical mixing time and the square root of the classical hitting time. Our algorithm makes use of the framework of interpolated quantum walks and relies on Hamiltonian evolution in conjunction with von Neumann measurements.

There also exists a different notion for quantum mixing: the problem of sampling from the limiting distribution of quantum walks, defined in a time-averaged sense. In this scenario, the quantum mixing time is defined as the time required to sample from a distribution that is close to this limiting distribution. Recently we provided an upper bound on the quantum mixing time for Erd"os-Renyi random graphs [Phys. Rev. Lett. 124, 050501 (2020)]. Here, we also extend and expand upon our findings therein. Namely, we provide an intuitive understanding of the state-of-the-art random matrix theory tools used to derive our results. In particular, for our analysis we require information about macroscopic, mesoscopic and microscopic statistics of eigenvalues of random matrices which we highlight here. Furthermore, we provide numerical simulations that corroborate our analytical findings and extend this notion of mixing from simple graphs to any ergodic, reversible, Markov chain.




the

A Fast and Accurate Algorithm for Spherical Harmonic Analysis on HEALPix Grids with Applications to the Cosmic Microwave Background Radiation. (arXiv:1904.10514v4 [math.NA] UPDATED)

The Hierarchical Equal Area isoLatitude Pixelation (HEALPix) scheme is used extensively in astrophysics for data collection and analysis on the sphere. The scheme was originally designed for studying the Cosmic Microwave Background (CMB) radiation, which represents the first light to travel during the early stages of the universe's development and gives the strongest evidence for the Big Bang theory to date. Refined analysis of the CMB angular power spectrum can lead to revolutionary developments in understanding the nature of dark matter and dark energy. In this paper, we present a new method for performing spherical harmonic analysis for HEALPix data, which is a central component to computing and analyzing the angular power spectrum of the massive CMB data sets. The method uses a novel combination of a non-uniform fast Fourier transform, the double Fourier sphere method, and Slevinsky's fast spherical harmonic transform (Slevinsky, 2019). For a HEALPix grid with $N$ pixels (points), the computational complexity of the method is $mathcal{O}(Nlog^2 N)$, with an initial set-up cost of $mathcal{O}(N^{3/2}log N)$. This compares favorably with $mathcal{O}(N^{3/2})$ runtime complexity of the current methods available in the HEALPix software when multiple maps need to be analyzed at the same time. Using numerical experiments, we demonstrate that the new method also appears to provide better accuracy over the entire angular power spectrum of synthetic data when compared to the current methods, with a convergence rate at least two times higher.




the

Keeping out the Masses: Understanding the Popularity and Implications of Internet Paywalls. (arXiv:1903.01406v4 [cs.CY] UPDATED)

Funding the production of quality online content is a pressing problem for content producers. The most common funding method, online advertising, is rife with well-known performance and privacy harms, and an intractable subject-agent conflict: many users do not want to see advertisements, depriving the site of needed funding.

Because of these negative aspects of advertisement-based funding, paywalls are an increasingly popular alternative for websites. This shift to a "pay-for-access" web is one that has potentially huge implications for the web and society. Instead of a system where information (nominally) flows freely, paywalls create a web where high quality information is available to fewer and fewer people, leaving the rest of the web users with less information, that might be also less accurate and of lower quality. Despite the potential significance of a move from an "advertising-but-open" web to a "paywalled" web, we find this issue understudied.

This work addresses this gap in our understanding by measuring how widely paywalls have been adopted, what kinds of sites use paywalls, and the distribution of policies enforced by paywalls. A partial list of our findings include that (i) paywall use is accelerating (2x more paywalls every 6 months), (ii) paywall adoption differs by country (e.g. 18.75% in US, 12.69% in Australia), (iii) paywalls change how users interact with sites (e.g. higher bounce rates, less incoming links), (iv) the median cost of an annual paywall access is $108 per site, and (v) paywalls are in general trivial to circumvent.

Finally, we present the design of a novel, automated system for detecting whether a site uses a paywall, through the combination of runtime browser instrumentation and repeated programmatic interactions with the site. We intend this classifier to augment future, longitudinal measurements of paywall use and behavior.




the

Asymptotic expansions of eigenvalues by both the Crouzeix-Raviart and enriched Crouzeix-Raviart elements. (arXiv:1902.09524v2 [math.NA] UPDATED)

Asymptotic expansions are derived for eigenvalues produced by both the Crouzeix-Raviart element and the enriched Crouzeix--Raviart element. The expansions are optimal in the sense that extrapolation eigenvalues based on them admit a fourth order convergence provided that exact eigenfunctions are smooth enough. The major challenge in establishing the expansions comes from the fact that the canonical interpolation of both nonconforming elements lacks a crucial superclose property, and the nonconformity of both elements. The main idea is to employ the relation between the lowest-order mixed Raviart--Thomas element and the two nonconforming elements, and consequently make use of the superclose property of the canonical interpolation of the lowest-order mixed Raviart--Thomas element. To overcome the difficulty caused by the nonconformity, the commuting property of the canonical interpolation operators of both nonconforming elements is further used, which turns the consistency error problem into an interpolation error problem. Then, a series of new results are obtained to show the final expansions.




the

Performance of the smallest-variance-first rule in appointment sequencing. (arXiv:1812.01467v4 [math.PR] UPDATED)

A classical problem in appointment scheduling, with applications in health care, concerns the determination of the patients' arrival times that minimize a cost function that is a weighted sum of mean waiting times and mean idle times. One aspect of this problem is the sequencing problem, which focuses on ordering the patients. We assess the performance of the smallest-variance-first (SVF) rule, which sequences patients in order of increasing variance of their service durations. While it was known that SVF is not always optimal, it has been widely observed that it performs well in practice and simulation. We provide a theoretical justification for this observation by proving, in various settings, quantitative worst-case bounds on the ratio between the cost incurred by the SVF rule and the minimum attainable cost. We also show that, in great generality, SVF is asymptotically optimal, i.e., the ratio approaches 1 as the number of patients grows large. While evaluating policies by considering an approximation ratio is a standard approach in many algorithmic settings, our results appear to be the first of this type in the appointment scheduling literature.




the

Using hierarchical matrices in the solution of the time-fractional heat equation by multigrid waveform relaxation. (arXiv:1706.07632v3 [math.NA] UPDATED)

This work deals with the efficient numerical solution of the time-fractional heat equation discretized on non-uniform temporal meshes. Non-uniform grids are essential to capture the singularities of "typical" solutions of time-fractional problems. We propose an efficient space-time multigrid method based on the waveform relaxation technique, which accounts for the nonlocal character of the fractional differential operator. To maintain an optimal complexity, which can be obtained for the case of uniform grids, we approximate the coefficient matrix corresponding to the temporal discretization by its hierarchical matrix (${cal H}$-matrix) representation. In particular, the proposed method has a computational cost of ${cal O}(k N M log(M))$, where $M$ is the number of time steps, $N$ is the number of spatial grid points, and $k$ is a parameter which controls the accuracy of the ${cal H}$-matrix approximation. The efficiency and the good convergence of the algorithm, which can be theoretically justified by a semi-algebraic mode analysis, are demonstrated through numerical experiments in both one- and two-dimensional spaces.




the

The Zhou Ordinal of Labelled Markov Processes over Separable Spaces. (arXiv:2005.03630v1 [cs.LO])

There exist two notions of equivalence of behavior between states of a Labelled Markov Process (LMP): state bisimilarity and event bisimilarity. The first one can be considered as an appropriate generalization to continuous spaces of Larsen and Skou's probabilistic bisimilarity, while the second one is characterized by a natural logic. C. Zhou expressed state bisimilarity as the greatest fixed point of an operator $mathcal{O}$, and thus introduced an ordinal measure of the discrepancy between it and event bisimilarity. We call this ordinal the "Zhou ordinal" of $mathbb{S}$, $mathfrak{Z}(mathbb{S})$. When $mathfrak{Z}(mathbb{S})=0$, $mathbb{S}$ satisfies the Hennessy-Milner property. The second author proved the existence of an LMP $mathbb{S}$ with $mathfrak{Z}(mathbb{S}) geq 1$ and Zhou showed that there are LMPs having an infinite Zhou ordinal. In this paper we show that there are LMPs $mathbb{S}$ over separable metrizable spaces having arbitrary large countable $mathfrak{Z}(mathbb{S})$ and that it is consistent with the axioms of $mathit{ZFC}$ that there is such a process with an uncountable Zhou ordinal.




the

Seismic Shot Gather Noise Localization Using a Multi-Scale Feature-Fusion-Based Neural Network. (arXiv:2005.03626v1 [cs.CV])

Deep learning-based models, such as convolutional neural networks, have advanced various segments of computer vision. However, this technology is rarely applied to seismic shot gather noise localization problem. This letter presents an investigation on the effectiveness of a multi-scale feature-fusion-based network for seismic shot-gather noise localization. Herein, we describe the following: (1) the construction of a real-world dataset of seismic noise localization based on 6,500 seismograms; (2) a multi-scale feature-fusion-based detector that uses the MobileNet combined with the Feature Pyramid Net as the backbone; and (3) the Single Shot multi-box detector for box classification/regression. Additionally, we propose the use of the Focal Loss function that improves the detector's prediction accuracy. The proposed detector achieves an AP@0.5 of 78.67\% in our empirical evaluation.




the

COVID-19 Contact-tracing Apps: A Survey on the Global Deployment and Challenges. (arXiv:2005.03599v1 [cs.CR])

In response to the coronavirus disease (COVID-19) outbreak, there is an ever-increasing number of national governments that are rolling out contact-tracing Apps to aid the containment of the virus. The first hugely contentious issue facing the Apps is the deployment framework, i.e. centralised or decentralised. Based on this, the debate branches out to the corresponding technologies that underpin these architectures, i.e. GPS, QR codes, and Bluetooth. This work conducts a pioneering review of the above scenarios and contributes a geolocation mapping of the current deployment. The vulnerabilities and the directions of research are identified, with a special focus on the Bluetooth-based decentralised scheme.




the

A Local Spectral Exterior Calculus for the Sphere and Application to the Shallow Water Equations. (arXiv:2005.03598v1 [math.NA])

We introduce $Psimathrm{ec}$, a local spectral exterior calculus for the two-sphere $S^2$. $Psimathrm{ec}$ provides a discretization of Cartan's exterior calculus on $S^2$ formed by spherical differential $r$-form wavelets. These are well localized in space and frequency and provide (Stevenson) frames for the homogeneous Sobolev spaces $dot{H}^{-r+1}( Omega_{ u}^{r} , S^2 )$ of differential $r$-forms. At the same time, they satisfy important properties of the exterior calculus, such as the de Rahm complex and the Hodge-Helmholtz decomposition. Through this, $Psimathrm{ec}$ is tailored towards structure preserving discretizations that can adapt to solutions with varying regularity. The construction of $Psimathrm{ec}$ is based on a novel spherical wavelet frame for $L_2(S^2)$ that we obtain by introducing scalable reproducing kernel frames. These extend scalable frames to weighted sampling expansions and provide an alternative to quadrature rules for the discretization of needlet-like scale-discrete wavelets. We verify the practicality of $Psimathrm{ec}$ for numerical computations using the rotating shallow water equations. Our numerical results demonstrate that a $Psimathrm{ec}$-based discretization of the equations attains accuracy comparable to those of spectral methods while using a representation that is well localized in space and frequency.




the

A Tale of Two Perplexities: Sensitivity of Neural Language Models to Lexical Retrieval Deficits in Dementia of the Alzheimer's Type. (arXiv:2005.03593v1 [cs.CL])

In recent years there has been a burgeoning interest in the use of computational methods to distinguish between elicited speech samples produced by patients with dementia, and those from healthy controls. The difference between perplexity estimates from two neural language models (LMs) - one trained on transcripts of speech produced by healthy participants and the other trained on transcripts from patients with dementia - as a single feature for diagnostic classification of unseen transcripts has been shown to produce state-of-the-art performance. However, little is known about why this approach is effective, and on account of the lack of case/control matching in the most widely-used evaluation set of transcripts (DementiaBank), it is unclear if these approaches are truly diagnostic, or are sensitive to other variables. In this paper, we interrogate neural LMs trained on participants with and without dementia using synthetic narratives previously developed to simulate progressive semantic dementia by manipulating lexical frequency. We find that perplexity of neural LMs is strongly and differentially associated with lexical frequency, and that a mixture model resulting from interpolating control and dementia LMs improves upon the current state-of-the-art for models trained on transcript text exclusively.




the

GeoLogic -- Graphical interactive theorem prover for Euclidean geometry. (arXiv:2005.03586v1 [cs.LO])

Domain of mathematical logic in computers is dominated by automated theorem provers (ATP) and interactive theorem provers (ITP). Both of these are hard to access by AI from the human-imitation approach: ATPs often use human-unfriendly logical foundations while ITPs are meant for formalizing existing proofs rather than problem solving. We aim to create a simple human-friendly logical system for mathematical problem solving. We picked the case study of Euclidean geometry as it can be easily visualized, has simple logic, and yet potentially offers many high-school problems of various difficulty levels. To make the environment user friendly, we abandoned strict logic required by ITPs, allowing to infer topological facts from pictures. We present our system for Euclidean geometry, together with a graphical application GeoLogic, similar to GeoGebra, which allows users to interactively study and prove properties about the geometrical setup.




the

Credulous Users and Fake News: a Real Case Study on the Propagation in Twitter. (arXiv:2005.03550v1 [cs.SI])

Recent studies have confirmed a growing trend, especially among youngsters, of using Online Social Media as favourite information platform at the expense of traditional mass media. Indeed, they can easily reach a wide audience at a high speed; but exactly because of this they are the preferred medium for influencing public opinion via so-called fake news. Moreover, there is a general agreement that the main vehicle of fakes news are malicious software robots (bots) that automatically interact with human users. In previous work we have considered the problem of tagging human users in Online Social Networks as credulous users. Specifically, we have considered credulous those users with relatively high number of bot friends when compared to total number of their social friends. We consider this group of users worth of attention because they might have a higher exposure to malicious activities and they may contribute to the spreading of fake information by sharing dubious content. In this work, starting from a dataset of fake news, we investigate the behaviour and the degree of involvement of credulous users in fake news diffusion. The study aims to: (i) fight fake news by considering the content diffused by credulous users; (ii) highlight the relationship between credulous users and fake news spreading; (iii) target fake news detection by focusing on the analysis of specific accounts more exposed to malicious activities of bots. Our first results demonstrate a strong involvement of credulous users in fake news diffusion. This findings are calling for tools that, by performing data streaming on credulous' users actions, enables us to perform targeted fact-checking.




the

The Danish Gigaword Project. (arXiv:2005.03521v1 [cs.CL])

Danish is a North Germanic/Scandinavian language spoken primarily in Denmark, a country with a tradition of technological and scientific innovation. However, from a technological perspective, the Danish language has received relatively little attention and, as a result, Danish language technology is hard to develop, in part due to a lack of large or broad-coverage Danish corpora. This paper describes the Danish Gigaword project, which aims to construct a freely-available one billion word corpus of Danish text that represents the breadth of the written language.




the

Subtle Sensing: Detecting Differences in the Flexibility of Virtually Simulated Molecular Objects. (arXiv:2005.03503v1 [cs.HC])

During VR demos we have performed over last few years, many participants (in the absence of any haptic feedback) have commented on their perceived ability to 'feel' differences between simulated molecular objects. The mechanisms for such 'feeling' are not entirely clear: observing from outside VR, one can see that there is nothing physical for participants to 'feel'. Here we outline exploratory user studies designed to evaluate the extent to which participants can distinguish quantitative differences in the flexibility of VR-simulated molecular objects. The results suggest that an individual's capacity to detect differences in molecular flexibility is enhanced when they can interact with and manipulate the molecules, as opposed to merely observing the same interaction. Building on these results, we intend to carry out further studies investigating humans' ability to sense quantitative properties of VR simulations without haptic technology.




the

Heidelberg Colorectal Data Set for Surgical Data Science in the Sensor Operating Room. (arXiv:2005.03501v1 [cs.CV])

Image-based tracking of medical instruments is an integral part of many surgical data science applications. Previous research has addressed the tasks of detecting, segmenting and tracking medical instruments based on laparoscopic video data. However, the methods proposed still tend to fail when applied to challenging images and do not generalize well to data they have not been trained on. This paper introduces the Heidelberg Colorectal (HeiCo) data set - the first publicly available data set enabling comprehensive benchmarking of medical instrument detection and segmentation algorithms with a specific emphasis on robustness and generalization capabilities of the methods. Our data set comprises 30 laparoscopic videos and corresponding sensor data from medical devices in the operating room for three different types of laparoscopic surgery. Annotations include surgical phase labels for all frames in the videos as well as instance-wise segmentation masks for surgical instruments in more than 10,000 individual frames. The data has successfully been used to organize international competitions in the scope of the Endoscopic Vision Challenges (EndoVis) 2017 and 2019.




the

Text Recognition in the Wild: A Survey. (arXiv:2005.03492v1 [cs.CV])

The history of text can be traced back over thousands of years. Rich and precise semantic information carried by text is important in a wide range of vision-based application scenarios. Therefore, text recognition in natural scenes has been an active research field in computer vision and pattern recognition. In recent years, with the rise and development of deep learning, numerous methods have shown promising in terms of innovation, practicality, and efficiency. This paper aims to (1) summarize the fundamental problems and the state-of-the-art associated with scene text recognition; (2) introduce new insights and ideas; (3) provide a comprehensive review of publicly available resources; (4) point out directions for future work. In summary, this literature review attempts to present the entire picture of the field of scene text recognition. It provides a comprehensive reference for people entering this field, and could be helpful to inspire future research. Related resources are available at our Github repository: https://github.com/HCIILAB/Scene-Text-Recognition.




the

Successfully Applying the Stabilized Lottery Ticket Hypothesis to the Transformer Architecture. (arXiv:2005.03454v1 [cs.LG])

Sparse models require less memory for storage and enable a faster inference by reducing the necessary number of FLOPs. This is relevant both for time-critical and on-device computations using neural networks. The stabilized lottery ticket hypothesis states that networks can be pruned after none or few training iterations, using a mask computed based on the unpruned converged model. On the transformer architecture and the WMT 2014 English-to-German and English-to-French tasks, we show that stabilized lottery ticket pruning performs similar to magnitude pruning for sparsity levels of up to 85%, and propose a new combination of pruning techniques that outperforms all other techniques for even higher levels of sparsity. Furthermore, we confirm that the parameter's initial sign and not its specific value is the primary factor for successful training, and show that magnitude pruning cannot be used to find winning lottery tickets.




the

A combination of 'pooling' with a prediction model can reduce by 73% the number of COVID-19 (Corona-virus) tests. (arXiv:2005.03453v1 [cs.LG])

We show that combining a prediction model (based on neural networks), with a new method of test pooling (better than the original Dorfman method, and better than double-pooling) called 'Grid', we can reduce the number of Covid-19 tests by 73%.




the

Dirichlet spectral-Galerkin approximation method for the simply supported vibrating plate eigenvalues. (arXiv:2005.03433v1 [math.NA])

In this paper, we analyze and implement the Dirichlet spectral-Galerkin method for approximating simply supported vibrating plate eigenvalues with variable coefficients. This is a Galerkin approximation that uses the approximation space that is the span of finitely many Dirichlet eigenfunctions for the Laplacian. Convergence and error analysis for this method is presented for two and three dimensions. Here we will assume that the domain has either a smooth or Lipschitz boundary with no reentrant corners. An important component of the error analysis is Weyl's law for the Dirichlet eigenvalues. Numerical examples for computing the simply supported vibrating plate eigenvalues for the unit disk and square are presented. In order to test the accuracy of the approximation, we compare the spectral-Galerkin method to the separation of variables for the unit disk. Whereas for the unit square we will numerically test the convergence rate for a variable coefficient problem.




the

The Perceptimatic English Benchmark for Speech Perception Models. (arXiv:2005.03418v1 [cs.CL])

We present the Perceptimatic English Benchmark, an open experimental benchmark for evaluating quantitative models of speech perception in English. The benchmark consists of ABX stimuli along with the responses of 91 American English-speaking listeners. The stimuli test discrimination of a large number of English and French phonemic contrasts. They are extracted directly from corpora of read speech, making them appropriate for evaluating statistical acoustic models (such as those used in automatic speech recognition) trained on typical speech data sets. We show that phone discrimination is correlated with several types of models, and give recommendations for researchers seeking easily calculated norms of acoustic distance on experimental stimuli. We show that DeepSpeech, a standard English speech recognizer, is more specialized on English phoneme discrimination than English listeners, and is poorly correlated with their behaviour, even though it yields a low error on the decision task given to humans.




the

Detection and Feeder Identification of the High Impedance Fault at Distribution Networks Based on Synchronous Waveform Distortions. (arXiv:2005.03411v1 [eess.SY])

Diagnosis of high impedance fault (HIF) is a challenge for nowadays distribution network protections. The fault current of a HIF is much lower than that of a normal load, and fault feature is significantly affected by fault scenarios. A detection and feeder identification algorithm for HIFs is proposed in this paper, based on the high-resolution and synchronous waveform data. In the algorithm, an interval slope is defined to describe the waveform distortions, which guarantees a uniform feature description under various HIF nonlinearities and noise interferences. For three typical types of network neutrals, i.e.,isolated neutral, resonant neutral, and low-resistor-earthed neutral, differences of the distorted components between the zero-sequence currents of healthy and faulty feeders are mathematically deduced, respectively. As a result, the proposed criterion, which is based on the distortion relationships between zero-sequence currents of feeders and the zero-sequence voltage at the substation, is theoretically supported. 28 HIFs grounded to various materials are tested in a 10kV distribution networkwith three neutral types, and are utilized to verify the effectiveness of the proposed algorithm.




the

Energy-efficient topology to enhance the wireless sensor network lifetime using connectivity control. (arXiv:2005.03370v1 [cs.NI])

Wireless sensor networks have attracted much attention because of many applications in the fields of industry, military, medicine, agriculture, and education. In addition, the vast majority of researches has been done to expand its applications and improve its efficiency. However, there are still many challenges for increasing the efficiency in different parts of this network. One of the most important parts is to improve the network lifetime in the wireless sensor network. Since the sensor nodes are generally powered by batteries, the most important issue to consider in these types of networks is to reduce the power consumption of the nodes in such a way as to increase the network lifetime to an acceptable level. The contribution of this paper is using topology control, the threshold for the remaining energy in nodes, and two of the meta-algorithms include SA (Simulated annealing) and VNS (Variable Neighbourhood Search) to increase the energy remaining in the sensors. Moreover, using a low-cost spanning tree, an appropriate connectivity control among nodes is created in the network in order to increase the network lifetime. The results of simulations show that the proposed method improves the sensor lifetime and reduces the energy consumed.




the

Error estimates for the Cahn--Hilliard equation with dynamic boundary conditions. (arXiv:2005.03349v1 [math.NA])

A proof of convergence is given for bulk--surface finite element semi-discretisation of the Cahn--Hilliard equation with Cahn--Hilliard-type dynamic boundary conditions in a smooth domain. The semi-discretisation is studied in the weak formulation as a second order system. Optimal-order uniform-in-time error estimates are shown in the $L^2$ and $H^1$ norms. The error estimates are based on a consistency and stability analysis. The proof of stability is performed in an abstract framework, based on energy estimates exploiting the anti-symmetric structure of the second order system. Numerical experiments illustrate the theoretical results.




the

Scene Text Image Super-Resolution in the Wild. (arXiv:2005.03341v1 [cs.CV])

Low-resolution text images are often seen in natural scenes such as documents captured by mobile phones. Recognizing low-resolution text images is challenging because they lose detailed content information, leading to poor recognition accuracy. An intuitive solution is to introduce super-resolution (SR) techniques as pre-processing. However, previous single image super-resolution (SISR) methods are trained on synthetic low-resolution images (e.g.Bicubic down-sampling), which is simple and not suitable for real low-resolution text recognition. To this end, we pro-pose a real scene text SR dataset, termed TextZoom. It contains paired real low-resolution and high-resolution images which are captured by cameras with different focal length in the wild. It is more authentic and challenging than synthetic data, as shown in Fig. 1. We argue improv-ing the recognition accuracy is the ultimate goal for Scene Text SR. In this purpose, a new Text Super-Resolution Network termed TSRN, with three novel modules is developed. (1) A sequential residual block is proposed to extract the sequential information of the text images. (2) A boundary-aware loss is designed to sharpen the character boundaries. (3) A central alignment module is proposed to relieve the misalignment problem in TextZoom. Extensive experiments on TextZoom demonstrate that our TSRN largely improves the recognition accuracy by over 13%of CRNN, and by nearly 9.0% of ASTER and MORAN compared to synthetic SR data. Furthermore, our TSRN clearly outperforms 7 state-of-the-art SR methods in boosting the recognition accuracy of LR images in TextZoom. For example, it outperforms LapSRN by over 5% and 8%on the recognition accuracy of ASTER and CRNN. Our results suggest that low-resolution text recognition in the wild is far from being solved, thus more research effort is needed.




the

Encoding in the Dark Grand Challenge: An Overview. (arXiv:2005.03315v1 [eess.IV])

A big part of the video content we consume from video providers consists of genres featuring low-light aesthetics. Low light sequences have special characteristics, such as spatio-temporal varying acquisition noise and light flickering, that make the encoding process challenging. To deal with the spatio-temporal incoherent noise, higher bitrates are used to achieve high objective quality. Additionally, the quality assessment metrics and methods have not been designed, trained or tested for this type of content. This has inspired us to trigger research in that area and propose a Grand Challenge on encoding low-light video sequences. In this paper, we present an overview of the proposed challenge, and test state-of-the-art methods that will be part of the benchmark methods at the stage of the participants' deliverable assessment. From this exploration, our results show that VVC already achieves a high performance compared to simply denoising the video source prior to encoding. Moreover, the quality of the video streams can be further improved by employing a post-processing image enhancement method.




the

On the unique solution of the generalized absolute value equation. (arXiv:2005.03287v1 [math.NA])

In this paper, some useful necessary and sufficient conditions for the unique solution of the generalized absolute value equation (GAVE) $Ax-B|x|=b$ with $A, Bin mathbb{R}^{n imes n}$ from the optimization field are first presented, which cover the fundamental theorem for the unique solution of the linear system $Ax=b$ with $Ain mathbb{R}^{n imes n}$. Not only that, some new sufficient conditions for the unique solution of the GAVE are obtained, which are weaker than the previous published works.




the

Structured inversion of the Bernstein-Vandermonde Matrix. (arXiv:2005.03251v1 [math.NA])

Bernstein polynomials, long a staple of approximation theory and computational geometry, have also increasingly become of interest in finite element methods. Many fundamental problems in interpolation and approximation give rise to interesting linear algebra questions. When attempting to find a polynomial approximation of boundary or initial data, one encounters the Bernstein-Vandermonde matrix, which is found to be highly ill-conditioned. Previously, we used the relationship between monomial Bezout matrices and the inverse of Hankel matrices to obtain a decomposition of the inverse of the Bernstein mass matrix in terms of Hankel, Toeplitz, and diagonal matrices. In this paper, we use properties of the Bernstein-Bezout matrix to factor the inverse of the Bernstein-Vandermonde matrix into a difference of products of Hankel, Toeplitz, and diagonal matrices. We also use a nonstandard matrix norm to study the conditioning of the Bernstein-Vandermonde matrix, showing that the conditioning in this case is better than in the standard 2-norm. Additionally, we use properties of multivariate Bernstein polynomials to derive a block $LU$ decomposition of the Bernstein-Vandermonde matrix corresponding to equispaced nodes on the $d$-simplex.




the

Conley's fundamental theorem for a class of hybrid systems. (arXiv:2005.03217v1 [math.DS])

We establish versions of Conley's (i) fundamental theorem and (ii) decomposition theorem for a broad class of hybrid dynamical systems. The hybrid version of (i) asserts that a globally-defined "hybrid complete Lyapunov function" exists for every hybrid system in this class. Motivated by mechanics and control settings where physical or engineered events cause abrupt changes in a system's governing dynamics, our results apply to a large class of Lagrangian hybrid systems (with impacts) studied extensively in the robotics literature. Viewed formally, these results generalize those of Conley and Franks for continuous-time and discrete-time dynamical systems, respectively, on metric spaces. However, we furnish specific examples illustrating how our statement of sufficient conditions represents merely an early step in the longer project of establishing what formal assumptions can and cannot endow hybrid systems models with the topologically well characterized partitions of limit behavior that make Conley's theory so valuable in those classical settings.




the

An Optimal Control Theory for the Traveling Salesman Problem and Its Variants. (arXiv:2005.03186v1 [math.OC])

We show that the traveling salesman problem (TSP) and its many variants may be modeled as functional optimization problems over a graph. In this formulation, all vertices and arcs of the graph are functionals; i.e., a mapping from a space of measurable functions to the field of real numbers. Many variants of the TSP, such as those with neighborhoods, with forbidden neighborhoods, with time-windows and with profits, can all be framed under this construct. In sharp contrast to their discrete-optimization counterparts, the modeling constructs presented in this paper represent a fundamentally new domain of analysis and computation for TSPs and their variants. Beyond its apparent mathematical unification of a class of problems in graph theory, the main advantage of the new approach is that it facilitates the modeling of certain application-specific problems in their home space of measurable functions. Consequently, certain elements of economic system theory such as dynamical models and continuous-time cost/profit functionals can be directly incorporated in the new optimization problem formulation. Furthermore, subtour elimination constraints, prevalent in discrete optimization formulations, are naturally enforced through continuity requirements. The price for the new modeling framework is nonsmooth functionals. Although a number of theoretical issues remain open in the proposed mathematical framework, we demonstrate the computational viability of the new modeling constructs over a sample set of problems to illustrate the rapid production of end-to-end TSP solutions to extensively-constrained practical problems.




the

Avoiding 5/4-powers on the alphabet of nonnegative integers. (arXiv:2005.03158v1 [math.CO])

We identify the structure of the lexicographically least word avoiding 5/4-powers on the alphabet of nonnegative integers. Specifically, we show that this word has the form $p au(varphi(z) varphi^2(z) cdots)$ where $p, z$ are finite words, $varphi$ is a 6-uniform morphism, and $ au$ is a coding. This description yields a recurrence for the $i$th letter, which we use to prove that the sequence of letters is 6-regular with rank 188. More generally, we prove $k$-regularity for a sequence satisfying a recurrence of the same type.




the

On the Learnability of Possibilistic Theories. (arXiv:2005.03157v1 [cs.LO])

We investigate learnability of possibilistic theories from entailments in light of Angluin's exact learning model. We consider cases in which only membership, only equivalence, and both kinds of queries can be posed by the learner. We then show that, for a large class of problems, polynomial time learnability results for classical logic can be transferred to the respective possibilistic extension. In particular, it follows from our results that the possibilistic extension of propositional Horn theories is exactly learnable in polynomial time. As polynomial time learnability in the exact model is transferable to the classical probably approximately correct model extended with membership queries, our work also establishes such results in this model.




the

Optimally Convergent Mixed Finite Element Methods for the Stochastic Stokes Equations. (arXiv:2005.03148v1 [math.NA])

We propose some new mixed finite element methods for the time dependent stochastic Stokes equations with multiplicative noise, which use the Helmholtz decomposition of the driving multiplicative noise. It is known [16] that the pressure solution has a low regularity, which manifests in sub-optimal convergence rates for well-known inf-sup stable mixed finite element methods in numerical simulations, see [10]. We show that eliminating this gradient part from the noise in the numerical scheme leads to optimally convergent mixed finite element methods, and that this conceptual idea may be used to retool numerical methods that are well-known in the deterministic setting, including pressure stabilization methods, so that their optimal convergence properties can still be maintained in the stochastic setting. Computational experiments are also provided to validate the theoretical results and to illustrate the conceptional usefulness of the proposed numerical approach.




the

A Separation Theorem for Joint Sensor and Actuator Scheduling with Guaranteed Performance Bounds. (arXiv:2005.03143v1 [eess.SY])

We study the problem of jointly designing a sparse sensor and actuator schedule for linear dynamical systems while guaranteeing a control/estimation performance that approximates the fully sensed/actuated setting. We further prove a separation principle, showing that the problem can be decomposed into finding sensor and actuator schedules separately. However, it is shown that this problem cannot be efficiently solved or approximated in polynomial, or even quasi-polynomial time for time-invariant sensor/actuator schedules; instead, we develop deterministic polynomial-time algorithms for a time-varying sensor/actuator schedule with guaranteed approximation bounds. Our main result is to provide a polynomial-time joint actuator and sensor schedule that on average selects only a constant number of sensors and actuators at each time step, irrespective of the dimension of the system. The key idea is to sparsify the controllability and observability Gramians while providing approximation guarantees for Hankel singular values. This idea is inspired by recent results in theoretical computer science literature on sparsification.




the

Diagnosing the Environment Bias in Vision-and-Language Navigation. (arXiv:2005.03086v1 [cs.CL])

Vision-and-Language Navigation (VLN) requires an agent to follow natural-language instructions, explore the given environments, and reach the desired target locations. These step-by-step navigational instructions are crucial when the agent is navigating new environments about which it has no prior knowledge. Most recent works that study VLN observe a significant performance drop when tested on unseen environments (i.e., environments not used in training), indicating that the neural agent models are highly biased towards training environments. Although this issue is considered as one of the major challenges in VLN research, it is still under-studied and needs a clearer explanation. In this work, we design novel diagnosis experiments via environment re-splitting and feature replacement, looking into possible reasons for this environment bias. We observe that neither the language nor the underlying navigational graph, but the low-level visual appearance conveyed by ResNet features directly affects the agent model and contributes to this environment bias in results. According to this observation, we explore several kinds of semantic representations that contain less low-level visual information, hence the agent learned with these features could be better generalized to unseen testing environments. Without modifying the baseline agent model and its training method, our explored semantic features significantly decrease the performance gaps between seen and unseen on multiple datasets (i.e. R2R, R4R, and CVDN) and achieve competitive unseen results to previous state-of-the-art models. Our code and features are available at: https://github.com/zhangybzbo/EnvBiasVLN