virus

Pseudorabies Virus Infection of Epithelial Cells Leads to Persistent but Aberrant Activation of the NF-{kappa}B Pathway, Inhibiting Hallmark NF-{kappa}B-Induced Proinflammatory Gene Expression [Virus-Cell Interactions]

The nuclear factor kappa B (NF-B) is a potent transcription factor, activation of which typically results in robust proinflammatory signaling and triggering of fast negative feedback modulators to avoid excessive inflammatory responses. Here, we report that infection of epithelial cells, including primary porcine respiratory epithelial cells, with the porcine alphaherpesvirus pseudorabies virus (PRV) results in the gradual and persistent activation of NF-B, illustrated by proteasome-dependent degradation of the inhibitory NF-B regulator IB and nuclear translocation and phosphorylation of the NF-B subunit p65. PRV-induced persistent activation of NF-B does not result in expression of negative feedback loop genes, like the gene for IBα or A20, and does not trigger expression of prototypical proinflammatory genes, like the gene for tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6). In addition, PRV infection inhibits TNF-α-induced canonical NF-B activation. Hence, PRV infection triggers persistent NF-B activation in an unorthodox way and dramatically modulates the NF-B signaling axis, preventing typical proinflammatory gene expression and the responsiveness of cells to canonical NF-B signaling, which may aid the virus in modulating early proinflammatory responses in the infected host.

IMPORTANCE The NF-B transcription factor is activated via different key inflammatory pathways and typically results in the fast expression of several proinflammatory genes as well as negative feedback loop genes to prevent excessive inflammation. In the current report, we describe that infection of cells with the porcine alphaherpesvirus pseudorabies virus (PRV) triggers a gradual and persistent aberrant activation of NF-B, which does not result in expression of hallmark proinflammatory or negative feedback loop genes. In addition, although PRV-induced NF-B activation shares some mechanistic features with canonical NF-B activation, it also shows remarkable differences; e.g., it is largely independent of the canonical IB kinase (IKK) and even renders infected cells resistant to canonical NF-B activation by the inflammatory cytokine TNF-α. Aberrant PRV-induced NF-B activation may therefore paradoxically serve as a viral immune evasion strategy and may represent an important tool to unravel currently unknown mechanisms and consequences of NF-B activation.




virus

Nup358 and Transportin 1 Cooperate in Adenoviral Genome Import [Virus-Cell Interactions]

Nuclear import of viral genomes is an important step during the life cycle of adenoviruses (AdV), requiring soluble cellular factors as well as proteins of the nuclear pore complex (NPC). We addressed the role of the cytoplasmic nucleoporin Nup358 during adenoviral genome delivery by performing depletion/reconstitution experiments and time-resolved quantification of adenoviral genome import. Nup358-depleted cells displayed reduced efficiencies of nuclear import of adenoviral genomes, and the nuclear import receptor transportin 1 became rate limiting under these conditions. Furthermore, we identified a minimal N-terminal region of Nup358 that was sufficient to compensate for the import defect. Our data support a model where Nup358 functions as an assembly platform that promotes the formation of transport complexes, allowing AdV to exploit a physiological protein import pathway for accelerated transport of its DNA.

IMPORTANCE Nuclear import of viral genomes is an essential step to initiate productive infection for several nuclear replicating DNA viruses. On the other hand, DNA is not a physiological nuclear import substrate; consequently, viruses have to exploit existing physiological transport routes. Here, we show that adenoviruses use the nucleoporin Nup358 to increase the efficiency of adenoviral genome import. In its absence, genome import efficiency is reduced and the transport receptor transportin 1 becomes rate limiting. We show that the N-terminal half of Nup358 is sufficient to drive genome import and identify a transportin 1 binding region. In our model, adenovirus genome import exploits an existing protein import pathway and Nup358 serves as an assembly platform for transport complexes.




virus

Long-Acting BMS-378806 Analogues Stabilize the State-1 Conformation of the Human Immunodeficiency Virus Type 1 Envelope Glycoproteins [Vaccines and Antiviral Agents]

During human immunodeficiency virus type 1 (HIV-1) entry into cells, the viral envelope glycoprotein (Env) trimer [(gp120/gp41)3] binds the receptors CD4 and CCR5 and fuses the viral and cell membranes. CD4 binding changes Env from a pretriggered (state-1) conformation to more open downstream conformations. BMS-378806 (here called BMS-806) blocks CD4-induced conformational changes in Env important for entry and is hypothesized to stabilize a state-1-like Env conformation, a key vaccine target. Here, we evaluated the effects of BMS-806 on the conformation of Env on the surface of cells and virus-like particles. BMS-806 strengthened the labile, noncovalent interaction of gp120 with the Env trimer, enhanced or maintained the binding of most broadly neutralizing antibodies, and decreased the binding of poorly neutralizing antibodies. Thus, in the presence of BMS-806, the cleaved Env on the surface of cells and virus-like particles exhibits an antigenic profile consistent with a state-1 conformation. We designed novel BMS-806 analogues that stabilized the Env conformation for several weeks after a single application. These long-acting BMS-806 analogues may facilitate enrichment of the metastable state-1 Env conformation for structural characterization and presentation to the immune system.

IMPORTANCE The envelope glycoprotein (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) mediates the entry of the virus into host cells and is also the target for antibodies. During virus entry, Env needs to change shape. Env flexibility also contributes to the ability of HIV-1 to evade the host immune response; many shapes of Env raise antibodies that cannot recognize the functional Env and therefore do not block virus infection. We found that an HIV-1 entry inhibitor, BMS-806, stabilizes the functional shape of Env. We developed new variants of BMS-806 that stabilize Env in its natural state for long periods of time. The availability of such long-acting stabilizers of Env shape will allow the natural Env conformation to be characterized and tested for efficacy as a vaccine.




virus

Long Noncoding RNA NRAV Promotes Respiratory Syncytial Virus Replication by Targeting the MicroRNA miR-509-3p/Rab5c Axis To Regulate Vesicle Transportation [Virus-Cell Interactions]

Respiratory syncytial virus (RSV) is an enveloped RNA virus which is responsible for approximately 80% of lower respiratory tract infections in children. Current lines of evidence have supported the functional involvement of long noncoding RNA (lncRNA) in many viral infectious diseases. However, the overall biological effect and clinical role of lncRNAs in RSV infection remain unclear. In this study, lncRNAs related to respiratory virus infection were obtained from the lncRNA database, and we collected 144 clinical sputum specimens to identify lncRNAs related to RSV infection. Quantitative PCR (qPCR) detection indicated that the expression of lncRNA negative regulator of antiviral response (NRAV) in RSV-positive patients was significantly lower than that in uninfected patients, but lncRNA psoriasis-associated non-protein coding RNA induced by stress (PRINS), nuclear paraspeckle assembly transcript 1 (NEAT1), and Nettoie Salmonella pas Theiler’s (NeST) showed no difference in vivo and in vitro. Meanwhile, overexpression of NRAV promoted RSV proliferation in A549 and BEAS-2B cells, and vice versa, indicating that the downregulation of NRAV was part of the host antiviral defense. RNA fluorescent in situ hybridization (FISH) confirmed that NRAV was mainly located in the cytoplasm. Through RNA sequencing, we found that Rab5c, which is a vesicle transporting protein, showed the same change trend as NRAV. Subsequent investigation revealed that NRAV was able to favor RSV production indirectly by sponging microRNA miR-509-3p so as to release Rab5c and facilitate vesicle transportation. The study provides a new insight into virus-host interaction through noncoding RNA, which may contribute to exploring potential antivirus targets for respiratory virus.

IMPORTANCE The mechanism of interaction between RSV and host noncoding RNAs is not fully understood. In this study, we found that the expression of long noncoding RNA (lncRNA) negative regulator of antiviral response (NRAV) was reduced in RSV-infected patients, and overexpression of NRAV facilitated RSV production in vitro, suggesting that the reduction of NRAV in RSV infection was part of the host antiviral response. We also found that NRAV competed with vesicle protein Rab5c for microRNA miR509-3p in cytoplasm to promote RSV vesicle transport and accelerate RSV proliferation, thereby improving our understanding of the pathogenic mechanism of RSV infection.




virus

Glycoprotein 5 Is Cleaved by Cathepsin E during Porcine Reproductive and Respiratory Syndrome Virus Membrane Fusion [Virus-Cell Interactions]

Porcine reproductive and respiratory syndrome (PRRS) is a serious viral disease affecting the global swine industry. Its causative agent, PRRS virus (PRRSV), is an enveloped virus, and therefore membrane fusion between its envelope and host cell target membrane is critical for viral infection. Though much research has focused on PRRSV infection, the detailed mechanisms involved in its membrane fusion remain to be elucidated. In the present study, we performed confocal microscopy in combination with a constitutively active (CA) or dominant negative (DN) mutant, specific inhibitors, and small interfering RNAs (siRNAs), as well as multiple other approaches, to explore PRRSV membrane fusion. We first observed that PRRSV membrane fusion occurred in Rab11-recycling endosomes during early infection using labeled virions and subcellular markers. We further demonstrated that low pH and cathepsin E in Rab11-recycling endosomes are critical for PRRSV membrane fusion. Moreover, PRRSV glycoprotein 5 (GP5) is identified as being cleaved by cathepsin E during this process. Taken together, our findings provide in-depth information regarding PRRSV pathogenesis, which support a novel basis for the development of antiviral drugs and vaccines.

IMPORTANCE PRRS, caused by PRRSV, is an economically critical factor in pig farming worldwide. As PRRSV is a lipid membrane-wrapped virus, merging of the PRRSV envelope with the host cell membrane is indispensable for viral infection. However, there is a lack of knowledge on its membrane fusion. Here, we first explored when and where PRRSV membrane fusion occurs. Furthermore, we determined which host cell factors were involved in the process. Importantly, PRRSV GP5 is shown to be cleaved by cathepsin E during membrane fusion. Our work not only provides information on PRRSV membrane fusion for the first time but also deepens our understanding of the molecular mechanisms of PRRSV infection, which provides a foundation for future applications in the prevention and control of PRRS.




virus

Experimental Evolution To Isolate Vaccinia Virus Adaptive G9 Mutants That Overcome Membrane Fusion Inhibition via the Vaccinia Virus A56/K2 Protein Complex [Virus-Cell Interactions]

For cell entry, vaccinia virus requires fusion with the host membrane via a viral fusion complex of 11 proteins, but the mechanism remains unclear. It was shown previously that the viral proteins A56 and K2 are expressed on infected cells to prevent superinfection by extracellular vaccinia virus through binding to two components of the viral fusion complex (G9 and A16), thereby inhibiting membrane fusion. To investigate how the A56/K2 complex inhibits membrane fusion, we performed experimental evolutionary analyses by repeatedly passaging vaccinia virus in HeLa cells overexpressing the A56 and K2 proteins to isolate adaptive mutant viruses. Genome sequencing of adaptive mutants revealed that they had accumulated a unique G9R open reading frame (ORF) mutation, resulting in a single His44Tyr amino acid change. We engineered a recombinant vaccinia virus to express the G9H44Y mutant protein, and it readily infected HeLa-A56/K2 cells. Moreover, similar to the A56 virus, the G9H44Y mutant virus on HeLa cells had a cell fusion phenotype, indicating that G9H44Y-mediated membrane fusion was less prone to inhibition by A56/K2. Coimmunoprecipitation experiments demonstrated that the G9H44Y protein bound to A56/K2 at neutral pH, suggesting that the H44Y mutation did not eliminate the binding of G9 to A56/K2. Interestingly, upon acid treatment to inactivate A56/K2-mediated fusion inhibition, the G9H44Y mutant virus induced robust cell-cell fusion at pH 6, unlike the pH 4.7 required for control and revertant vaccinia viruses. Thus, A56/K2 fusion suppression mainly targets the G9 protein. Moreover, the G9H44Y mutant protein escapes A56/K2-mediated membrane fusion inhibition most likely because it mimics an acid-induced intermediate conformation more prone to membrane fusion.

IMPORTANCE It remains unclear how the multiprotein entry fusion complex of vaccinia virus mediates membrane fusion. Moreover, vaccinia virus contains fusion suppressor proteins to prevent the aberrant activation of this multiprotein complex. Here, we used experimental evolution to identify adaptive mutant viruses that overcome membrane fusion inhibition mediated by the A56/K2 protein complex. We show that the H44Y mutation of the G9 protein is sufficient to overcome A56/K2-mediated membrane fusion inhibition. Treatment of virus-infected cells at different pHs indicated that the H44Y mutation lowers the threshold of fusion inhibition by A56/K2. Our study provides evidence that A56/K2 inhibits the viral fusion complex via the latter’s G9 subcomponent. Although the G9H44Y mutant protein still binds to A56/K2 at neutral pH, it is less dependent on low pH for fusion activation, implying that it may adopt a subtle conformational change that mimics a structural intermediate induced by low pH.




virus

T Cell Responses Induced by Attenuated Flavivirus Vaccination Are Specific and Show Limited Cross-Reactivity with Other Flavivirus Species [Vaccines and Antiviral Agents]

Members of the flavivirus genus share a high level of sequence similarity and often circulate in the same geographical regions. However, whether T cells induced by one viral species cross-react with other related flaviviruses has not been globally addressed. In this study, we tested pools of epitopes derived from dengue (DENV), Zika (ZIKV), Japanese encephalitis (JEV), West Nile (WNV), and yellow fever (YFV) viruses by intracellular cytokine staining (ICS) using peripheral blood mononuclear cells (PBMCs) of individuals naturally exposed to DENV or immunized with DENV (TV005) or YF17D vaccine. CD8 T cell responses recognized epitopes from multiple flaviviruses; however, the magnitude of cross-reactive responses was consistently severalfold lower than those to the autologous epitope pools and was associated with lower expression of activation markers such as CD40L, CD69, and CD137. Next, we characterized the antigen sensitivity of short-term T cell lines (TCL) representing 29 different individual epitope/donor combinations. TCL derived from DENV monovalent vaccinees induced CD8 and CD4 T cells that cross-reacted within the DENV serocomplex but were consistently associated with >100-fold-lower antigen sensitivity for most other flaviviruses, with no cross-recognition of YFV-derived peptides. CD8 and CD4 TCL from YF17D vaccinees were associated with very limited cross-reactivity with any other flaviviruses and in five out of eight cases >1,000-fold-lower antigen sensitivity. Overall, our data suggest limited cross-reactivity for both CD4 and CD8 T cell responses between flaviviruses and have implications for understanding immunity elicited by natural infection and strategies to develop live attenuated vaccines against flaviviral species.

IMPORTANCE The envelope (E) protein is the dominant target of neutralizing antibodies for dengue virus (DENV) and yellow fever virus (YFV). Accordingly, several DENV vaccine constructs use the E protein in a live attenuated vaccine format, utilizing a backbone derived from a heterologous flavivirus (such as YF) as a delivery vector. This backbone comprises the nonstructural (NS) and capsid (C) antigens, which are dominant targets of T cell responses. Here, we demonstrate that cross-reactivity at the level of T cell responses among different flaviviruses is very limited, despite high levels of sequence homology. Thus, the use of heterologous flavivirus species as a live attenuated vaccine vector is not likely to generate optimal T cell responses and might thus impair vaccine performance.




virus

Mutations Near the N Terminus of Vaccinia Virus G9 Protein Overcome Restrictions on Cell Entry and Syncytium Formation Imposed by the A56/K2 Fusion Regulatory Complex [Virus-Cell Interactions]

The entry/fusion complex (EFC) consists of 11 conserved proteins embedded in the membrane envelope of mature poxvirus particles. Poxviruses also encode proteins that localize in cell membranes and negatively regulate superinfection and syncytium formation. The vaccinia virus (VACV) A56/K2 fusion regulatory complex associates with the G9/A16 EFC subcomplex, but functional support for the importance of this interaction was lacking. Here, we describe serially passaging VACV in nonpermissive cells expressing A56/K2 as an unbiased approach to isolate and analyze escape mutants. Viruses forming large plaques in A56/K2 cells increased in successive rounds of infection, indicating the occurrence and enrichment of adaptive mutations. Sequencing of genomes of passaged and cloned viruses revealed mutations near the N terminus of the G9 open reading frame but none in A16 or other genes. The most frequent mutation was His to Tyr at amino acid 44; additional escape mutants had a His-to-Arg mutation at amino acid 44 or a duplication of amino acids 26 to 39. An adaptive Tyr-to-Cys substitution at amino acid 42 was discovered using error-prone PCR to generate additional mutations. Myristoylation of G9 was unaffected by the near-N-terminal mutations. The roles of the G9 mutations in enhancing plaque size were validated by homologous recombination. The mutants exhibited enhanced entry and spread in A56/K2 cells and induced syncytia at neutral pH in HeLa cells despite the expression of A56/K2. The data suggest that the mutations perturb the interaction of G9 with A56/K2, although some association was still detected in detergent-treated infected cell lysates.

IMPORTANCE The entry of enveloped viruses is achieved by the fusion of viral and cellular membranes, a critical step in infection that determines host range and provides targets for vaccines and therapeutics. Poxviruses encode an exceptionally large number of proteins comprising the entry/fusion complex (EFC), which enables infection of diverse cells. Vaccinia virus (VACV), the prototype member of the poxvirus family, also encodes the fusion regulatory proteins A56 and K2, which are displayed on the plasma membrane and may be beneficial by preventing reinfection and cell-cell fusion. Previous studies showed that A56/K2 interacts with the G9/A16 EFC subcomplex in detergent-treated cell extracts. Functional evidence for the importance of this interaction was obtained by serially passaging wild-type VACV in cells that are nonpermissive because of A56/K2 expression. VACV mutants with amino acid substitutions or duplications near the N terminus of G9 were enriched because of their ability to overcome the block to entry imposed by A56/K2.




virus

Priming of Antiviral CD8 T Cells without Effector Function by a Persistently Replicating Hepatitis C-Like Virus [Pathogenesis and Immunity]

Immune-competent animal models for the hepatitis C virus (HCV) are nonexistent, impeding studies of host-virus interactions and vaccine development. Experimental infection of laboratory rats with a rodent hepacivirus isolated from Rattus norvegicus (RHV) is a promising surrogate model due to its recapitulation of HCV-like chronicity. However, several aspects of rat RHV infection remain unclear, for instance, how RHV evades host adaptive immunity to establish persistent infection. Here, we analyzed the induction, differentiation, and functionality of RHV-specific CD8 T cell responses that are essential for protection against viral persistence. Virus-specific CD8 T cells targeting dominant and subdominant major histocompatibility complex class I epitopes proliferated considerably in liver after RHV infection. These populations endured long term yet never acquired antiviral effector functions or selected for viral escape mutations. This was accompanied by the persistent upregulation of programmed cell death-1 and absent memory cell formation, consistent with a dysfunctional phenotype. Remarkably, transient suppression of RHV viremia with a direct-acting antiviral led to the priming of CD8 T cells with partial effector function, driving the selection of a viral escape variant. These data demonstrate an intrinsic abnormality within CD8 T cells primed by rat RHV infection, an effect that is governed at least partially by the magnitude of early virus replication. Thus, this model could be useful in investigating mechanisms of CD8 T cell subversion, leading to the persistence of hepatotropic pathogens such as HCV.

IMPORTANCE Development of vaccines against hepatitis C virus (HCV), a major cause of cirrhosis and cancer, has been stymied by a lack of animal models. The recent discovery of an HCV-like rodent hepacivirus (RHV) enabled the development of such a model in rats. This platform recapitulates HCV hepatotropism and viral chronicity necessary for vaccine testing. Currently, there are few descriptions of RHV-specific responses and why they fail to prevent persistent infection in this model. Here, we show that RHV-specific CD8 T cells, while induced early at high magnitude, do not develop into functional effectors capable of controlling virus. This defect was partially alleviated by short-term treatment with an HCV antiviral. Thus, like HCV, RHV triggers dysfunction of virus-specific CD8 T cells that are vital for infection resolution. Additional study of this evasion strategy and how to mitigate it could enhance our understanding of hepatotropic viral infections and lead to improved vaccines and therapeutics.




virus

NF-{kappa}B and Keap1 Interaction Represses Nrf2-Mediated Antioxidant Response in Rabbit Hemorrhagic Disease Virus Infection [Pathogenesis and Immunity]

The rabbit hemorrhagic disease virus (RHDV), which belongs to the family Caliciviridae and the genus Lagovirus, causes lethal fulminant hepatitis in rabbits. RHDV decreases the activity of antioxidant enzymes regulated by Nrf2 in the liver. Antioxidants are important for the maintenance of cellular integrity and cytoprotection. However, the mechanism underlying the regulation of the Nrf2-antioxidant response element (ARE) signaling pathway by RHDV remains unclear. Using isobaric tags for relative and absolute quantification (iTRAQ) technology, the current study demonstrated that RHDV inhibits the induction of ARE-regulated genes and increases the expression of the p50 subunit of the NF-B transcription factor. We showed that RHDV replication causes a remarkable increase in reactive oxygen species (ROS), which is simultaneously accompanied by a significant decrease in Nrf2. It was found that nuclear translocation of Keap1 plays a key role in the nuclear export of Nrf2, leading to the inhibition of Nrf2 transcriptional activity. The p50 protein partners with Keap1 to form the Keap1-p50/p65 complex, which is involved in the nuclear translocation of Keap1. Moreover, upregulation of Nrf2 protein levels in liver cell nuclei by tert-butylhydroquinone (tBHQ) delayed rabbit deaths due to RHDV infection. Considered together, our findings suggest that RHDV inhibits the Nrf2-dependent antioxidant response via nuclear translocation of Keap1-NF-B complex and nuclear export of Nrf2 and provide new insight into the importance of oxidative stress during RHDV infection.

IMPORTANCE Recent studies have reported that rabbit hemorrhagic disease virus (RHDV) infection reduced Nrf2-related antioxidant function. However, the regulatory mechanisms underlying this process remain unclear. The current study showed that the NF-B p50 subunit partners with Keap1 to form the Keap1-NF-B complex, which plays a key role in the inhibition of Nrf2 transcriptional activity. More importantly, upregulated Nrf2 activity delayed the death of RHDV-infected rabbits, strongly indicating the importance of oxidative damage during RHDV infection. These findings may provide novel insights into the pathogenesis of RHDV.




virus

Correction for Dietz et al., "2019 Novel Coronavirus (COVID-19) Pandemic: Built Environment Considerations To Reduce Transmission"




virus

Human Metapneumovirus Infection in Hospitalized Children

BACKGROUND:Most children are exposed to human metapneumovirus (HMPV) by the age of 5 y. This study aimed to describe the morbidity associated with HMPV infections in a cohort of children in the Midwest of the United States.METHODS:This was a retrospective 2-center cohort study including children (0–17 y old) hospitalized with HMPV infections at 2 tertiary care pediatric hospitals from 2009 to 2013. Demographics, chronic medical conditions, viral coinfections, and hospitalization characteristics, including the need for respiratory support, high-flow nasal cannula, CPAP, bi-level positive airway pressure, invasive mechanical ventilation, pediatric ICU admission, acute kidney injury (AKI), use of extracorporeal membrane oxygenation, and length of stay, were collected.RESULTS:In total, 131 subjects were included. Those with one or more comorbidities were older than their otherwise healthy counterparts, with a median age of 2.8 y (interquartile range [IQR] 1.1–7.0) compared to 1.3 y (IQR 0.6–2.0, P < .001), respectively. Ninety-nine (75.6%) subjects required respiratory support; 72 (55.0%) subjects required nasal cannula, simple face mask, or tracheostomy mask as their maximum support. Additionally, 1 (0.8%) subject required high-flow nasal cannula, 1 (0.8%) subject required CPAP, 2 (1.5%) subjects required bi-level positive airway pressure, 15 (11.5%) subjects required invasive mechanical ventilation, 4 (3.1%) subjects required high-frequency oscillatory or jet ventilation, and 4 (3.1%) subjects required extracorporeal membrane oxygenation. Fifty-one (38.9%) subjects required pediatric ICU admission, and 16 (12.2%) subjects developed AKI. Subjects with AKI were significantly older than those without AKI at 5.4 y old (IQR 1.6–11.7) versus 1.9 y old (IQR 0.7–3.5, P = .003). After controlling for the presence of at least one comorbidity and cystic fibrosis, each year increase in age led to a 16% increase in the odds of AKI (P = .01). The median length of stay for the entire cohort was 4.0 d (IQR 2.7–7.0).CONCLUSIONS:Children hospitalized with HMPV may be at risk for AKI. Risk of HMPV-associated AKI appears to increase with age regardless of severity of respiratory illness or presence of comorbidities.




virus

Neonatal Management During the Coronavirus Disease (COVID-19) Outbreak: The Chinese Experience




virus

A Single Intramuscular Dose of a Plant-Made Virus-Like Particle Vaccine Elicits a Balanced Humoral and Cellular Response and Protects Young and Aged Mice from Influenza H1N1 Virus Challenge despite a Modest/Absent Humoral Response [Vaccines]

Virus-like-particle (VLP) influenza vaccines can be given intramuscularly (i.m.) or intranasally (i.n.) and may have advantages over split-virion formulations in the elderly. We tested a plant-made VLP vaccine candidate bearing the viral hemagglutinin (HA) delivered either i.m. or i.n. in young and aged mice. Young adult (5- to 8-week-old) and aged (16- to 20-month-old) female BALB/c mice received a single 3-μg dose based on the HA (A/California/07/2009 H1N1) content of a plant-made H1-VLP (i.m. or i.n.) split-virion vaccine (i.m.) or were left naive. After vaccination, humoral and splenocyte responses were assessed, and some mice were challenged. Both VLP and split vaccines given i.m. protected 100% of the young animals, but the VLP group lost the least weight and had stronger humoral and cellular responses. Compared to split-vaccine recipients, aged animals vaccinated i.m. with VLP were more likely to survive challenge (80% versus 60%). The lung viral load postchallenge was lowest in the VLP i.m. groups. Mice vaccinated with VLP i.n. had little detectable immune response, but survival was significantly increased. In both age groups, i.m. administration of the H1-VLP vaccine elicited more balanced humoral and cellular responses and provided better protection from homologous challenge than the split-virion vaccine.




virus

Progress toward Development of a Vaccine against Congenital Cytomegalovirus Infection [Minireviews]

A vaccine against congenital human cytomegalovirus (CMV) infection is a major public health priority. Congenital CMV causes substantial long-term morbidity, particularly sensorineural hearing loss (SNHL), in newborns, and the public health impact of this infection on maternal and child health is underrecognized. Although progress toward development of a vaccine has been limited by an incomplete understanding of the correlates of protective immunity for the fetus, knowledge about some of the key components of the maternal immune response necessary for preventing transplacental transmission is accumulating. Moreover, although there have been concerns raised about observations indicating that maternal seropositivity does not fully prevent recurrent maternal CMV infections during pregnancy, it is becoming increasing clear that preconception immunity does confer some measure of protection against both CMV transmission and CMV disease (if transmission occurs) in the newborn infant. Although the immunity to CMV conferred by both infection and vaccination is imperfect, there are encouraging data emerging from clinical trials demonstrating the immunogenicity and potential efficacy of candidate CMV vaccines. In the face of the knowledge that between 20,000 and 30,000 infants are born with congenital CMV in the United States every year, there is an urgent and compelling need to accelerate the pace of vaccine trials. In this minireview, we summarize the status of CMV vaccines in clinical trials and provide a perspective on what would be required for a CMV immunization program to become incorporated into clinical practice.




virus

Kinetics, Longevity, and Cross-Reactivity of Antineuraminidase Antibody after Natural Infection with Influenza A Viruses [Clinical Immunology]

The kinetics, longevity, and breadth of antibodies to influenza virus neuraminidase (NA) in archival, sequential serum/plasma samples from influenza A virus (IAV) H5N1 infection survivors and from patients infected with the 2009 pandemic IAV (H1N1) virus were determined using an enzyme-linked lectin-based assay. The reverse-genetics-derived H4N1 viruses harboring a hemagglutinin (HA) segment from A/duck/Shan Tou/461/2000 (H4N9) and an NA segment derived from either IAV H5N1 clade 1, IAV H5N1 clade 2.3.4, the 2009 pandemic IAV (H1N1) (H1N1pdm), or A/Puerto Rico/8/1934 (H1N1) virus were used as the test antigens. These serum/plasma samples were also investigated by microneutralization (MN) and/or hemagglutination inhibition (HI) assays. Neuraminidase-inhibiting (NI) antibodies against N1 NA of both homologous and heterologous viruses were observed in H5N1 survivors and H1N1pdm patients. H5N1 survivors who were never exposed to H1N1pdm virus developed NI antibodies to H1N1pdm NA. Seroconversion of NI antibodies was observed in 65% of the H1N1pdm patients at day 7 after disease onset, but an increase in titer was not observed in serum samples obtained late in infection. On the other hand, an increase in seroconversion rate with the HI assay was observed in the follow-up series of sera obtained on days 7, 14, 28, and 90 after infection. The study also showed that NI antibodies are broadly reactive, while MN and HI antibodies are more strain specific.




virus

Development of a High-Throughput Respiratory Syncytial Virus Fluorescent Focus-Based Microneutralization Assay [Diagnostic Laboratory Immunology]

Neutralizing antibodies specific for respiratory syncytial virus (RSV) represent a major protective mechanism against RSV infection, as demonstrated by the efficacy of the immune-prophylactic monoclonal antibody palivizumab in preventing RSV-associated lower respiratory tract infections in premature infants. Accordingly, the RSV neutralization assay has become a key functional method to assess the neutralizing activity of serum antibodies in preclinical animal models, epidemiology studies, and clinical trials. In this study, we qualified a 24-h, fluorescent focus-based microneutralization (RSVA FFA-MN) method that requires no medium exchange or pre- or postinfection processing to detect green fluorescent protein-expressing RSV strain A2 (RSVA-GFP)-infected cells, using a high-content imaging system for automated image acquisition and focus enumeration. The RSVA FFA-MN method was shown to be sensitive, with a limit of detection (LOD) and limit of quantitation (LOQ) of 1:10, or 3.32 log2; linear over a range of 4.27 to 9.65 log2 50% inhibitory concentration (IC50); and precise, with intra- and interassay coefficients of variation of <21%. This precision allowed the choice of a statistically justified 3-fold-rise seroresponse cutoff criterion. The repeatability and robustness of this method were demonstrated by including a pooled human serum sample in every assay as a positive control (PC). Over 3 years of testing between two laboratories, this PC generated data falling within 2.5 standard deviations of the mean 98.7% of the time (n = 1,720). This high-throughput and reliable RSV microneutralization assay has proven useful for testing sera from preclinical vaccine candidate evaluation studies, epidemiology studies, and both pediatric and adult vaccine clinical trials.




virus

Nanopore Sequencing Reveals Novel Targets for Detection and Surveillance of Human and Avian Influenza A Viruses [Virology]

Accurate detection of influenza A virus (IAV) is crucial for patient management, infection control, and epidemiological surveillance. The World Health Organization and the Centers for Disease Control and Prevention have recommended using the M gene as the diagnostic gene target for reverse-transcription-PCR (RT-PCR). However, M gene RT-PCR has reduced sensitivity for recent IAV due to novel gene mutations. Here, we sought to identify novel diagnostic targets for the molecular detection of IAV using long-read third-generation sequencing. Direct nanopore sequencing from 18 nasopharyngeal specimens and one saliva specimen showed that the 5' and 3' ends of the PB2 gene and the entire NS gene were highly abundant. Primers selected for PB2 and NS genes were well matched with seasonal or avian IAV gene sequences. Our novel PB2 and NS gene real-time RT-PCR assays showed limits of detection similar to or lower than that of M gene RT-PCR and achieved 100% sensitivity and specificity in the detection of A(H1N1), A(H3N2), and A(H7N9) in nasopharyngeal and saliva specimens. For 10 patients with IAV detected by M gene RT-PCR conversion in sequentially collected specimens, NS and/or PB2 gene RT-PCR was positive in 2 (20%) of the initial specimens that were missed by M gene RT-PCR. In conclusion, we have shown that PB2 or NS gene RT-PCRs are suitable alternatives to the recommended M gene RT-PCR for diagnosis of IAV. Long-read nanopore sequencing facilitates the identification of novel diagnostic targets.




virus

Fecal Shedding of Bovine Astrovirus CH13/NeuroS1 in Veal Calves [Letter To The Editor]




virus

Pathogen or Bystander: Clinical Significance of Detecting Human Herpesvirus 6 in Pediatric Cerebrospinal Fluid [Virology]

Human herpesvirus 6 (HHV-6) is an important cause of meningitis and meningoencephalitis. As testing for HHV-6 in cerebrospinal fluid (CSF) is more readily available using the FilmArray Meningitis/Encephalitis panel (FA-ME; BioFire Diagnostics, Salt Lake City, UT), we aimed to determine the clinical significance of detecting HHV-6 in order to identify true infections and to ensure appropriate antiviral initiation. Chart review on 25 patients positive for HHV-6 by FA-ME was performed to determine clinical presentation, comorbidity, treatment, and outcome. The presence of chromosomally integrated HHV-6 (ciHHV-6) DNA was also investigated. Of 1,005 children tested by FA-ME, HHV-6 was detected in 25 (2.5%). Five patients were diagnosed with either HHV-6 meningitis or meningoencephalitis based on HHV-6 detection in CSF, clinical presentation, and radiographic findings. Detection of HHV-6 by FA-ME led to discontinuation of acyclovir within 12.0 h in all 12 patients empirically treated with acyclovir. Six of the 12 patients were started on ganciclovir therapy within 6.8 h; 4 of these were treated specifically for HHV-6 infection, whereas therapy was discontinued in the remaining 2 patients. CSF parameters were not generally predictive of HHV-6 positivity. The presence of ciHHV-6 was confirmed in 3 of 18 patients who could be tested. Five of the 25 patients included in the study were diagnosed with HHV-6 meningitis/meningoencephalitis. FA-ME results led to discontinuation of empirical antiviral treatment in 12 patients and appropriate initiation of ganciclovir in 4 patients. In our institution, detection of HHV-6 using FA-ME led to faster establishment of disease etiology and optimization of antimicrobial therapy.




virus

Emergence of a Novel Coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2: Biology and Therapeutic Options [Minireviews]

The new decade of the 21st century (2020) started with the emergence of a novel coronavirus known as SARS-CoV-2 that caused an epidemic of coronavirus disease (COVID-19) in Wuhan, China. It is the third highly pathogenic and transmissible coronavirus after severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in humans. The source of origin, transmission to humans, and mechanisms associated with the pathogenicity of SARS-CoV-2 are not yet clear, however, its resemblance to SARS-CoV and several other bat coronaviruses was recently confirmed through genome sequencing-related studies. The development of therapeutic strategies is necessary in order to prevent further epidemics and cure infections. In this review, we summarize current information about the emergence, origin, diversity, and epidemiology of three pathogenic coronaviruses with a specific focus on the current outbreak in Wuhan, China. Furthermore, we discuss the clinical features and potential therapeutic options that may be effective against SARS-CoV-2.




virus

Multicenter Evaluation of the QIAstat-Dx Respiratory Panel for Detection of Viruses and Bacteria in Nasopharyngeal Swab Specimens [Virology]

The QIAstat-Dx Respiratory Panel (QIAstat-Dx RP) is a multiplex in vitro diagnostic test for the qualitative detection of 20 pathogens directly from nasopharyngeal swab (NPS) specimens. The assay is performed using a simple sample-to-answer platform with results available in approximately 69 min. The pathogens identified are adenovirus, coronavirus 229E, coronavirus HKU1, coronavirus NL63, coronavirus OC43, human metapneumovirus A and B, influenza A, influenza A H1, influenza A H3, influenza A H1N1/2009, influenza B, parainfluenza virus 1, parainfluenza virus 2, parainfluenza virus 3, parainfluenza virus 4, rhinovirus/enterovirus, respiratory syncytial virus A and B, Bordetella pertussis, Chlamydophila pneumoniae, and Mycoplasma pneumoniae. This multicenter evaluation provides data obtained from 1,994 prospectively collected and 310 retrospectively collected (archived) NPS specimens with performance compared to that of the BioFire FilmArray Respiratory Panel, version 1.7. The overall percent agreement between QIAstat-Dx RP and the comparator testing was 99.5%. In the prospective cohort, the QIAstat-Dx RP demonstrated a positive percent agreement of 94.0% or greater for the detection of all but four analytes: coronaviruses 229E, NL63, and OC43 and rhinovirus/enterovirus. The test also demonstrated a negative percent agreement of ≥97.9% for all analytes. The QIAstat-Dx RP is a robust and accurate assay for rapid, comprehensive testing for respiratory pathogens.




virus

Validation of an Epstein-Barr Virus Antibody Risk Stratification Signature for Nasopharyngeal Carcinoma by Use of Multiplex Serology [Virology]

Serological testing for nasopharyngeal carcinoma (NPC) has recently been reinvigorated by the implementation of novel Epstein-Barr virus (EBV)-specific IgA and IgG antibodies from a proteome array. Although proteome arrays are well suited for comprehensive antigen selection, they are not applicable for large-scale studies. We adapted a 13-marker EBV antigen signature for NPC risk identified by proteome arrays to multiplex serology to establish an assay for large-scale studies. Taiwanese NPC cases (n = 175) and matched controls (n = 175) were used for assay validation. Spearman’s correlation was calculated, and the diagnostic value of all multiplex markers was assessed independently using the area under the receiver operating characteristic curve (AUC). Two refined signatures were identified using stepwise logistic regression and internally validated with 10-fold cross validation. Array and multiplex serology showed strong correlation for each individual EBV marker, as well as for a 13-marker combined model on continuous data. Two refined signatures with either four (LF2 and BGLF2 IgG, LF2 and BMRF1 IgA) or two (LF2 and BGLF2 IgG) antibodies on dichotomous data were identified as the most parsimonious set of serological markers able to distinguish NPC cases from controls with AUCs of 0.992 (95% confidence interval [CI], 0.983 to 1.000) and 0.984 (95% CI, 0.971 to 0.997), respectively. Neither differed significantly from the 13-marker model (AUC, 0.992; 95% CI, 0.982 to 1.000). All models were internally validated. Multiplex serology successfully validated the original EBV proteome microarray data. Two refined signatures of four and two antibodies were capable of detecting NPC with 99.2% and 98.4% accuracy.




virus

Arabidopsis retrotransposon virus-like particles and their regulation by epigenetically activated small RNA [RESEARCH]

In Arabidopsis, LTR retrotransposons are activated by mutations in the chromatin gene DECREASE in DNA METHYLATION 1 (DDM1), giving rise to 21- to 22-nt epigenetically activated siRNA (easiRNA) that depend on RNA DEPENDENT RNA POLYMERASE 6 (RDR6). We purified virus-like particles (VLPs) from ddm1 and ddm1rdr6 mutants in which genomic RNA is reverse transcribed into complementary DNA. High-throughput short-read and long-read sequencing of VLP DNA (VLP DNA-seq) revealed a comprehensive catalog of active LTR retrotransposons without the need for mapping transposition, as well as independent of genomic copy number. Linear replication intermediates of the functionally intact COPIA element EVADE revealed multiple central polypurine tracts (cPPTs), a feature shared with HIV in which cPPTs promote nuclear localization. For one member of the ATCOPIA52 subfamily (SISYPHUS), cPPT intermediates were not observed, but abundant circular DNA indicated transposon "suicide" by auto-integration within the VLP. easiRNA targeted EVADE genomic RNA, polysome association of GYPSY (ATHILA) subgenomic RNA, and transcription via histone H3 lysine-9 dimethylation. VLP DNA-seq provides a comprehensive landscape of LTR retrotransposons and their control at transcriptional, post-transcriptional, and reverse transcriptional levels.




virus

High cytomegalovirus serology and subsequent COPD-related mortality: a longitudinal study

Background

Positive serology for cytomegalovirus (CMV) has been associated with all-cause mortality risk but its role in COPD mortality is unknown. The objective of the present study was to assess the relationship between CMV serology and COPD mortality.

Methods

We analysed data from 806 participants in the Tucson Epidemiological Study of Airway Obstructive Disease who, at enrolment, were aged 28–70 years and had completed lung function tests. We tested CMV serology in sera from enrolment and defined "high CMV serology" as being in the highest tertile. Vital status, date and cause of death were assessed through death certificates and/or linkage with the National Death Index up to January 2017. The association of CMV serology with all-cause and cause-specific mortality risk was tested in Cox models adjusted for age, sex, level of education, body mass index, smoking status and pack-years.

Results

High CMV serology was marginally associated with all-cause mortality (p=0.071) but the effect was inversely dependent on age, with the association being much stronger among participants <55 years than among participants ≥55 years at enrolment (p-value for CMV-by-age interaction <0.001). Compared with low CMV serology, high CMV serology was associated with mortality from COPD among all subjects (adjusted hazard ratio (HR) 2.38, 95% CI 1.11–5.08; p=0.025) and particularly in subjects <55 years old at enrolment (HR 5.40, 95% CI 1.73–16.9; p=0.004). Consistent with these results, high CMV serology also predicted mortality risk among subjects who already had airflow limitation at enrolment (HR 2.10, 95% CI 1.20–3.68; p=0.009).

Conclusions

We report a strong relationship between CMV serology and the risk of dying from COPD, and thus identify a novel risk factor for COPD mortality.




virus

Detecting and Monitoring Porcine Hemagglutinating Encephalomyelitis Virus, an Underresearched Betacoronavirus

ABSTRACT

Members of family Coronaviridae cause a variety of diseases in birds and mammals. Porcine hemagglutinating encephalomyelitis virus (PHEV), a lesser-researched coronavirus, can infect naive pigs of any age, but clinical disease is observed in pigs ≤4 weeks of age. No commercial PHEV vaccines are available, and neonatal protection from PHEV-associated disease is presumably dependent on lactogenic immunity. Although subclinical PHEV infections are thought to be common, PHEV ecology in commercial swine herds is unknown. To begin to address this gap in knowledge, a serum IgG antibody enzyme-linked immunosorbent assay (ELISA) based on the S1 protein was developed and evaluated on known-status samples and then used to estimate PHEV seroprevalence in U.S. sow herds. Assessment of the diagnostic performance of the PHEV S1 ELISA using serum samples (n = 924) collected from 7-week-old pigs (n = 84; 12 pigs per group) inoculated with PHEV, porcine epidemic diarrhea virus, transmissible gastroenteritis virus, porcine respiratory coronavirus, or porcine deltacoronavirus showed that a sample-to-positive cutoff value of ≥0.6 was both sensitive and specific, i.e., all PHEV-inoculated pigs were seropositive from days postinoculation 10 to 42, and no cross-reactivity was observed in samples from other groups. The PHEV S1 ELISA was then used to estimate PHEV seroprevalence in U.S. sow herds (19 states) using 2,756 serum samples from breeding females (>28 weeks old) on commercial farms (n = 104) with no history of PHEV-associated disease. The overall seroprevalence was 53.35% (confidence interval [CI], ±1.86%) and herd seroprevalence was 96.15% (CI, ±3.70%).

IMPORTANCE There is a paucity of information concerning the ecology of porcine hemagglutinating encephalomyelitis virus (PHEV) in commercial swine herds. This study provided evidence that PHEV infection is endemic and highly prevalent in U.S. swine herds. These results raised questions for future studies regarding the impact of endemic PHEV on swine health and the mechanisms by which this virus circulates in endemically infected populations. Regardless, the availability of the validated PHEV S1 enzyme-linked immunosorbent assay (ELISA) provides the means for swine producers to detect and monitor PHEV infections, confirm prior exposure to the virus, and to evaluate the immune status of breeding herds.




virus

PDA Responds to the Novel Coronavirus Situation




virus

Global Organization and Proposed Megataxonomy of the Virus World [Review]

Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven "Baltimore classes" (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses.




virus

Structural Biology of the Enterovirus Replication-Linked 5'-Cloverleaf RNA and Associated Virus Proteins [Review]

Although enteroviruses are associated with a wide variety of diseases and conditions, their mode of replication is well conserved. Their genome is carried as a single, positive-sense RNA strand. At the 5' end of the strand is an approximately 90-nucleotide self-complementary region called the 5' cloverleaf, or the oriL. This noncoding region serves as a platform upon which host and virus proteins, including the 3B, 3C, and 3D virus proteins, assemble in order to initiate replication of a negative-sense RNA strand. The negative strand in turn serves as a template for synthesis of multiple positive-sense RNA strands. Building on structural studies of individual RNA stem-loops, the structure of the intact 5' cloverleaf from rhinovirus has recently been determined via nuclear magnetic resonance/small-angle X-ray scattering (NMR/SAXS)-based methods, while structures have also been determined for enterovirus 3A, 3B, 3C, and 3D proteins. Analysis of these structures, together with structural and modeling studies of interactions between host and virus proteins and RNA, has begun to provide insight into the enterovirus replication mechanism and the potential to inhibit replication by blocking these interactions.




virus

Viewpoint: COVID-19. This virus is not the real enemy, but our approach to it could be




virus

Prevalent and Diverse Intratumoral Oncoprotein-Specific CD8+ T Cells within Polyomavirus-Driven Merkel Cell Carcinomas

Merkel cell carcinoma (MCC) is often caused by persistent expression of Merkel cell polyomavirus (MCPyV) T-antigen (T-Ag). These non-self proteins comprise about 400 amino acids (AA). Clinical responses to immune checkpoint inhibitors, seen in about half of patients, may relate to T-Ag–specific T cells. Strategies to increase CD8+ T-cell number, breadth, or function could augment checkpoint inhibition, but vaccines to augment immunity must avoid delivery of oncogenic T-antigen domains. We probed MCC tumor-infiltrating lymphocytes (TIL) with an artificial antigen-presenting cell (aAPC) system and confirmed T-Ag recognition with synthetic peptides, HLA-peptide tetramers, and dendritic cells (DC). TILs from 9 of 12 (75%) subjects contained CD8+ T cells recognizing 1–8 MCPyV epitopes per person. Analysis of 16 MCPyV CD8+ TIL epitopes and prior TIL data indicated that 97% of patients with MCPyV+ MCC had HLA alleles with the genetic potential that restrict CD8+ T-cell responses to MCPyV T-Ag. The LT AA 70–110 region was epitope rich, whereas the oncogenic domains of T-Ag were not commonly recognized. Specific recognition of T-Ag–expressing DCs was documented. Recovery of MCPyV oncoprotein–specific CD8+ TILs from most tumors indicated that antigen indifference was unlikely to be a major cause of checkpoint inhibition failure. The myriad of epitopes restricted by diverse HLA alleles indicates that vaccination can be a rational component of immunotherapy if tumor immune suppression can be overcome, and the oncogenic regions of T-Ag can be modified without impacting immunogenicity.




virus

Deciphering the Immunomodulatory Capacity of Oncolytic Vaccinia Virus to Enhance the Immune Response to Breast Cancer

Vaccinia virus (VACV) is a double-stranded DNA virus that devotes a large portion of its 200 kbp genome to suppressing and manipulating the immune response of its host. Here, we investigated how targeted removal of immunomodulatory genes from the VACV genome impacted immune cells in the tumor microenvironment with the intention of improving the therapeutic efficacy of VACV in breast cancer. We performed a head-to-head comparison of six mutant oncolytic VACVs, each harboring deletions in genes that modulate different cellular pathways, such as nucleotide metabolism, apoptosis, inflammation, and chemokine and interferon signaling. We found that even minor changes to the VACV genome can impact the immune cell compartment in the tumor microenvironment. Viral genome modifications had the capacity to alter lymphocytic and myeloid cell compositions in tumors and spleens, PD-1 expression, and the percentages of virus-targeted and tumor-targeted CD8+ T cells. We observed that while some gene deletions improved responses in the nonimmunogenic 4T1 tumor model, very little therapeutic improvement was seen in the immunogenic HER2/neu TuBo model with the various genome modifications. We observed that the most promising candidate genes for deletion were those that interfere with interferon signaling. Collectively, this research helped focus attention on the pathways that modulate the immune response in the context of VACV oncolytic virotherapy. They also suggest that the greatest benefits to be obtained with these treatments may not always be seen in "hot tumors."




virus

Emergence of a Novel Coronavirus Disease (COVID-19) and the Importance of Diagnostic Testing: Why Partnership between Clinical Laboratories, Public Health Agencies, and Industry Is Essential to Control the Outbreak




virus

Antiviral Properties and Mechanism of Action Studies of the Hepatitis B Virus Capsid Assembly Modulator JNJ-56136379 [Antiviral Agents]

Capsid assembly is a critical step in the hepatitis B virus (HBV) life cycle, mediated by the core protein. Core is a potential target for new antiviral therapies, the capsid assembly modulators (CAMs). JNJ-56136379 (JNJ-6379) is a novel and potent CAM currently in phase II trials. We evaluated the mechanisms of action (MOAs) and antiviral properties of JNJ-6379 in vitro. Size exclusion chromatography and electron microscopy studies demonstrated that JNJ-6379 induced the formation of morphologically intact viral capsids devoid of genomic material (primary MOA). JNJ-6379 accelerated the rate and extent of HBV capsid assembly in vitro. JNJ-6379 specifically and potently inhibited HBV replication; its median 50% effective concentration (EC50) was 54 nM (HepG2.117 cells). In HBV-infected primary human hepatocytes (PHHs), JNJ-6379, when added with the viral inoculum, dose-dependently reduced extracellular HBV DNA levels (median EC50 of 93 nM) and prevented covalently closed circular DNA (cccDNA) formation, leading to a dose-dependent reduction of intracellular HBV RNA levels (median EC50 of 876 nM) and reduced antigen levels (secondary MOA). Adding JNJ-6379 to PHHs 4 or 5 days postinfection reduced extracellular HBV DNA and did not prevent cccDNA formation. Time-of-addition PHH studies revealed that JNJ-6379 most likely interfered with postentry processes. Collectively, these data demonstrate that JNJ-6379 has dual MOAs in the early and late steps of the HBV life cycle, which is different from the MOA of nucleos(t)ide analogues. JNJ-6379 is in development for chronic hepatitis B treatment and may translate into higher HBV functional cure rates.




virus

Antiviral Activity of a Llama-Derived Single-Domain Antibody against Enterovirus A71 [Antiviral Agents]

In the past few decades, enterovirus A71 (EVA71) has caused devastating outbreaks in the Asia-Pacific region, resulting in serious sequelae in infected young children. No preventive or therapeutic interventions are currently available for curing EVA71 infection, highlighting a great unmet medical need for this disease. Here, we showed that one novel single-domain antibody (sdAb), F1, isolated from an immunized llama, could alleviate EVA71 infection both in vitro and in vivo. We also confirmed that the sdAb clone F1 recognizes EVA71 through a novel conformational epitope comprising the highly conserved region of VP3 capsid protein by using competitive-binding and overlapping-peptide enzyme-linked immunosorbent assays (ELISAs). Because of the virion’s icosahedral structure, we reasoned that adjacent epitopes must be clustered within molecular ranges that may be simultaneously bound by an engineered antibody with multiple valency. Therefore, two single-domain binding modules (F1) were fused to generate an sdAb-in-tandem design so that the capture of viral antigens could be further increased by valency effects. We showed that the tetravalent construct F1xF1-hFc, containing two sdAb-in-tandem on a fragment crystallizable (Fc) scaffold, exhibits more potent neutralization activity against EVA71 than does the bivalent sdAb F1-hFc by at least 5.8-fold. We also demonstrated that, using a human scavenger receptor class B member 2 (hSCARB2) transgenic mouse model, a half dose of the F1xF1-hFc provided better protection against EVA71 infection than did the F1-hFc. Thus, our study furnishes important insights into multivalent sdAb engineering against viral infection and provides a novel strategic deployment approach for preparedness of emerging infectious diseases such as EVA71.




virus

Tilorone, a Broad-Spectrum Antiviral for Emerging Viruses [Antiviral Agents]

Tilorone is a 50-year-old synthetic small-molecule compound with antiviral activity that is proposed to induce interferon after oral administration. This drug is used as a broad-spectrum antiviral in several countries of the Russian Federation. We have recently described activity in vitro and in vivo against the Ebola virus. After a broad screening of additional viruses, we now describe in vitro activity against Chikungunya virus (CHIK) and Middle Eastern respiratory syndrome coronavirus (MERS-CoV).




virus

Compounds with Therapeutic Potential against Novel Respiratory 2019 Coronavirus [Minireviews]

Currently, the expansion of the novel human respiratory coronavirus (known as SARS-CoV-2 [severe acute respiratory syndrome coronavirus 2], COVID-2019 [coronavirus disease 2019], or 2019-nCoV [2019 novel coronavirus]) has stressed the need for therapeutic alternatives to alleviate and stop this new epidemic. The previous epidemics of infections by high-morbidity human coronaviruses, such as SARS-CoV in 2003 and the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, prompted the characterization of compounds that could be potentially active against the currently emerging novel coronavirus, SARS-CoV-2. The most promising compound is remdesivir (GS-5734), a nucleotide analog prodrug currently in clinical trials for treating Ebola virus infections. Remdesivir inhibited the replication of SARS-CoV and MERS-CoV in tissue cultures, and it displayed efficacy in nonhuman animal models. In addition, a combination of the human immunodeficiency virus type 1 (HIV-1) protease inhibitors lopinavir/ritonavir and interferon beta (LPV/RTV–IFN-β) was shown to be effective in patients infected with SARS-CoV. LPV/RTV–IFN-β also improved clinical parameters in marmosets and mice infected with MERS-CoV. Remarkably, the therapeutic efficacy of remdesivir appeared to be superior to that of LPV/RTV–IFN-β against MERS-CoV in a transgenic humanized mouse model. The relatively high mortality rates associated with these three novel human coronavirus infections, SARS-CoV, MERS-CoV, and SARS-CoV-2, have suggested that proinflammatory responses might play a role in the pathogenesis. It remains unknown whether the generated inflammatory state should be targeted. Therapeutics that target the coronavirus alone might not be able to reverse highly pathogenic infections. This minireview aims to provide a summary of therapeutic compounds that have shown potential in fighting SARS-CoV-2 infections.




virus

Sensitive Determination of Infectious Titer of Recombinant Adeno-Associated Viruses (rAAVs) Using TCID50 End-Point Dilution and Quantitative Polymerase Chain Reaction (qPCR)

Adeno-associated virus (AAV) recombinants are currently the vector of choice for many gene therapy applications. As experimental therapies progress to clinical trials, the need to characterize recombinant adeno-associated viruses (rAAVs) accurately and reproducibly increases. Accurate determination of rAAV infectious titer is important for determining the activity of each vector lot and for ensuring lot-to-lot consistency. The following protocol developed in our laboratory uses a 96-well TCID50 format and quantitative polymerase chain reaction (qPCR) detection for the determination of rAAV infectious titer.




virus

Titration of Recombinant Adeno-Associated Virus (rAAV) Genome Copy Number Using Real-Time Quantitative Polymerase Chain Reaction (qPCR)

This protocol is used to determine the concentration of DNase-resistant vector genomes (i.e., packaged in the capsid) in purified recombinant adeno-associated virus (rAAV) preparations. The protocol begins with treatment of the vector stock with DNase I to eliminate unencapsidated AAV DNA or contaminating plasmid DNA. This is followed by a heat treatment to heat-inactivate DNase I, to disrupt the viral capsid, and to release the packaged vector genomes for quantification by real-time polymerase chain reaction (PCR) using a set of standards (linearized plasmid used for vector production) containing known copy numbers. To accomplish high-throughput titration, the primer and probe sets used in real-time PCR are usually designed to target common elements present in most rAAV genomes, such as promoters and poly(A) signals. This strategy significantly reduces the number of PCRs, controls, and turnaround time. Several important controls should be included in the assay as follows: The first two controls should have a known copy number of the rAAV genome plasmid treated or not treated with DNase I. This control tests the effectiveness of DNase treatment. To control for potential cross-contamination between samples during the preparation process, a blank control containing nuclease-free water only should be processed and tested in parallel. A validation vector sample with a known titer should be included in every assay to monitor interassay variability. Finally, for the PCR run, a no-template control (NTC) is included to indicate cross-contamination during PCR setup.




virus

Purification of Recombinant Adeno-Associated Virus 2 (rAAV2) by Heparin Column Affinity Chromatography

This protocol describes a simple single-step column purification (SSCP) of rAAV2 by gravity flow based on its affinity to heparin, without ultracentrifugation.




virus

[TECHNIQUE] Animal Models of Hepatitis C Virus Infection

Hepatitis C virus (HCV) is an important and underreported infectious disease, causing chronic infection in ~71 million people worldwide. The limited host range of HCV, which robustly infects only humans and chimpanzees, has made studying this virus in vivo challenging and hampered the development of a desperately needed vaccine. The restrictions and ethical concerns surrounding biomedical research in chimpanzees has made the search for an animal model all the more important. In this review, we discuss different approaches that are being pursued toward creating small animal models for HCV infection. Although efforts to use a nonhuman primate species besides chimpanzees have proven challenging, important advances have been achieved in a variety of humanized mouse models. However, such models still fall short of the overarching goal to have an immunocompetent, inheritably susceptible in vivo platform in which the immunopathology of HCV could be studied and putative vaccines development. Alternatives to overcome this include virus adaptation, such as murine-tropic HCV strains, or the use of related hepaciviruses, of which many have been recently identified. Of the latter, the rodent/rat hepacivirus from Rattus norvegicus species-1 (RHV-rn1) holds promise as a surrogate virus in fully immunocompetent rats that can inform our understanding of the interaction between the immune response and viral outcomes (i.e., clearance vs. persistence). However, further characterization of these animal models is necessary before their use for gaining new insights into the immunopathogenesis of HCV and for conceptualizing HCV vaccines.




virus

Novel Coronavirus: What Neuroradiologists as Citizens of the World Need to Know [EDITORIALS]




virus

Mỹ: Mùa mua bán BĐS “hạ nhiệt” vì virus Corona

Thị trường BĐS ở Mỹ vốn đang phục hồi và chuẩn bị có một khởi đầu mạnh mẽ trong mùa Xuân này, cho tới khi virus Corona bùng phát và gây ra những ảnh hưởng không nhỏ.




virus

Coronavirus in Punjab: महामारी से संक्रमित दो और लोगों की मौत, 84 नए मरीज मिले

पंजाब में कोरोना महामारी से बुधवार को दो और लोगों ने दम तोड़ दिया। इसके साथ ही प्रदेश में संक्रमण से मरने वालों की संख्या 27 हो गई।




virus

Coronavirus in Rajasthan: राजस्थान में संक्रमण के 57 नए मामले आए सामने, संक्रमितों की संख्या 3636 हुई

राजस्थान में कोरोना संक्रमण के 57 नए मामले सामने आए, जिससे राज्य में कोरोना वायरस संक्रमितों की कुल संख्या बढ़कर 3,636 हो गई।




virus

coronavirus in jammu kashmir: कश्मीर में मिले 30 नए कोरोना संक्रमित, प्रदेश में कुल मरीज हुए 823

कश्मीर में शुक्रवार को कोरोना के 30 नए मामले सामने आए। अब प्रदेश में संक्रमितों का आंकड़ा 823 हो चुका है। वहीं 29 मरीजों को ठीक होने पर अस्पताल से छुट्टी दे दी गई।




virus

Coronavirus in Jammu kashmir: कोरोना से जंग में जुटे डॉ मलिक, देश के लिए डेढ़ महीने से हैं परिवार से दूर

कोरोना वायरस से लोगों को बचाने के लिए योद्धा के रूप में डेढ़ महीने से कंडी के बीएमओ डॉ. इकबाल मलिक सेवाएं दे रहे हैं। उन्होंने बताया कि उनके परिवार से ज्यादा महत्व उन लोगों का है जिनके लिए वह ड्यूटी देकर सरकार से वेतन लेते हैं।




virus

Coronavirus in Punjab: महामारी से 30वीं मौत, नांदेड़ से लौटे संक्रमित श्रद्धालु ने तोड़ा दम

पंजाब में शनिवार को कोरोना संक्रमण से पीड़ित एक और मरीज की मौत हो गई। इसके साथ ही प्रदेश में महामारी से मृतकों की संख्या 30 पहुंच गई है।




virus

Coronavirus: चंडीगढ़ में बापूधाम निवासी कोरोना के संदिग्ध मरीज की जीएमसीएच-32 में मौत

चंडीगढ़ में सेक्टर 32 स्थित जीएमसीएच में शानिवार दोपहर को बापूधाम निवासी कोरोना के संदिग्ध मरीज की मौत हो गई।




virus

Coronavirus in Chhattisgarh: छत्तीसगढ़ में कोरोना के तीन नए मामले, राज्य में संक्रमितों की संख्या 36 हुई

छत्तीसगढ़ के कोरबा जिले में तीन और कोरोना संक्रमित मिले हैं। इसी के साथ राज्य में संक्रमितों की संख्या बढ़कर 36 हो गई।