cle

Time for a Next-Generation Nuclear Medicine Gamma Camera? [NEWSLINE]




cle

Blistering1 Modulates Penicillium expansum Virulence Via Vesicle-mediated Protein Secretion [Research]

The blue mold fungus, Penicillium expansum, is a postharvest apple pathogen that contributes to food waste by rotting fruit and by producing harmful mycotoxins (e.g. patulin). To identify genes controlling pathogen virulence, a random T-DNA insertional library was created from wild-type P. expansum strain R19. One transformant, T625, had reduced virulence in apples, blistered mycelial hyphae, and a T-DNA insertion that abolished transcription of the single copy locus in which it was inserted. The gene, Blistering1, encodes a protein with a DnaJ domain, but otherwise has little homology outside the Aspergillaceae, a family of fungi known for producing antibiotics, mycotoxins, and cheese. Because protein secretion is critical for these processes and for host infection, mass spectrometry was used to monitor proteins secreted into liquid media during fungal growth. T625 failed to secrete a set of enzymes that degrade plant cell walls, along with ones that synthesize the three final biosynthetic steps of patulin. Consequently, the culture broth of T625 had significantly reduced capacity to degrade apple tissue and contained 30 times less patulin. Quantitative mass spectrometry of 3,282 mycelial proteins revealed that T625 had altered cellular networks controlling protein processing in the endoplasmic reticulum, protein export, vesicle-mediated transport, and endocytosis. T625 also had reduced proteins controlling mRNA surveillance and RNA processing. Transmission electron microscopy of hyphal cross sections confirmed that T625 formed abnormally enlarged endosomes or vacuoles. These data reveal that Blistering1 affects internal and external protein processing involving vesicle-mediated transport in a family of fungi with medical, commercial, and agricultural importance.




cle

Improving Identification of In-organello Protein-Protein Interactions Using an Affinity-enrichable, Isotopically Coded, and Mass Spectrometry-cleavable Chemical Crosslinker [Research]

An experimental and computational approach for identification of protein-protein interactions by ex vivo chemical crosslinking and mass spectrometry (CLMS) has been developed that takes advantage of the specific characteristics of cyanurbiotindipropionylsuccinimide (CBDPS), an affinity-tagged isotopically coded mass spectrometry (MS)-cleavable crosslinking reagent. Utilizing this reagent in combination with a crosslinker-specific data-dependent acquisition strategy based on MS2 scans, and a software pipeline designed for integrating crosslinker-specific mass spectral information led to demonstrated improvements in the application of the CLMS technique, in terms of the detection, acquisition, and identification of crosslinker-modified peptides. This approach was evaluated on intact yeast mitochondria, and the results showed that hundreds of unique protein-protein interactions could be identified on an organelle proteome-wide scale. Both known and previously unknown protein-protein interactions were identified. These interactions were assessed based on their known sub-compartmental localizations. Additionally, the identified crosslinking distance constraints are in good agreement with existing structural models of protein complexes involved in the mitochondrial electron transport chain.




cle

Cell Cycle Profiling Reveals Protein Oscillation, Phosphorylation, and Localization Dynamics [Research]

The cell cycle is a highly conserved process involving the coordinated separation of a single cell into two daughter cells. To relate transcriptional regulation across the cell cycle with oscillatory changes in protein abundance and activity, we carried out a proteome- and phospho-proteome-wide mass spectrometry profiling. We compared protein dynamics with gene transcription, revealing many transcriptionally regulated G2 mRNAs that only produce a protein shift after mitosis. Integration of CRISPR/Cas9 survivability studies further highlighted proteins essential for cell viability. Analyzing the dynamics of phosphorylation events and protein solubility dynamics over the cell cycle, we characterize predicted phospho-peptide motif distributions and predict cell cycle-dependent translocating proteins, as exemplified by the S-adenosylmethionine synthase MAT2A. Our study implicates this enzyme in translocating to the nucleus after the G1/S-checkpoint, which enables epigenetic histone methylation maintenance during DNA replication. Taken together, this data set provides a unique integrated resource with novel insights on cell cycle dynamics.




cle

Human Hepatocyte Nuclear Factor 4-{alpha} Encodes Isoforms with Distinct Transcriptional Functions [Research]

HNF4α is a nuclear receptor produced as 12 isoforms from two promoters by alternative splicing. To characterize the transcriptional capacities of all 12 HNF4α isoforms, stable lines expressing each isoform were generated. The entire transcriptome associated with each isoform was analyzed as well as their respective interacting proteome. Major differences were noted in the transcriptional function of these isoforms. The α1 and α2 isoforms were the strongest regulators of gene expression whereas the α3 isoform exhibited significantly reduced activity. The α4, α5, and α6 isoforms, which use an alternative first exon, were characterized for the first time, and showed a greatly reduced transcriptional potential with an inability to recognize the consensus response element of HNF4α. Several transcription factors and coregulators were identified as potential specific partners for certain HNF4α isoforms. An analysis integrating the vast amount of omics data enabled the identification of transcriptional regulatory mechanisms specific to certain HNF4α isoforms, hence demonstrating the importance of considering all isoforms given their seemingly diverse functions.




cle

Test live article

This is a test




cle

Centrelink debt debacle shows government is unprepared for digital revolution

The public service needs to embrace partnerships if it's to harvest big data's massive yields.




cle

Myeloid-specific deficiency of pregnane X receptor decreases atherosclerosis in LDL receptor-deficient mice

Yipeng Sui
May 1, 2020; 61:696-706
Research Articles




cle

Episode 14 - The Internet of Cleaning Products in the Sky (IoCPitS): games, nVidia, EE vs Three

In this week's fiery episode host Matt Egan talks war and gaming with Macworld UK's David Price, the greatest graphics ever with Christopher Minasians of PC Advisor and Macworld UK (14:21), and the best networks in the UK with fellow PCA and MWUK stalwart Henry Burrell (25:23). Expect songs and laughter, and tech ever after.  


See acast.com/privacy for privacy and opt-out information.




cle

Episode 21 - The Internet of Cleanin' Windows (IoCW) Windows 10 anniversary, NOW TV and holidays

This week host Matt Egan is joined by first time podder and editor of PC Advisor Jim Martin to chat Microsoft Windows 10 anniversary updates and the impact on Microsoft Surface devices. Producer Chris then comes on to chat about Sky's two big NOW TV announcements, and the future of television and broadband (16:00). Finally, UKTW podcast regular David Price chats about the impact technology is having on our holidays (26:30).  


See acast.com/privacy for privacy and opt-out information.




cle

Episode 104 - The Internet of Circles (IoC) RIP Google+, Pixel 3 and new tech in films

This week our host Scott Carey catches up on the Google+ breach news and the final demise of the doomed social media network before being joined by consumer technology editor at Tech Advisor, Henry Burrell, to talk about Google's latest batch of smartphones: the Pixel 3 and Pixel 3 XL.


Then Techworld reporter Tamlin Magee joins to talk about the technology-related films screening during the London Film Festival this month and his hopes for more utopian tech-flecked stories in the future.

 

See acast.com/privacy for privacy and opt-out information.




cle

WITHDRAWN: Structural and mechanistic studies of hydroperoxide conversions catalyzed by a CYP74 clan epoxy alcohol synthase from amphioxus (Branchiostoma floridae) [Research Articles]

This manuscript has been withdrawn by the Author.




cle

Metabolic phospholipid labeling of intact bacteria enables a fluorescence assay that detects compromised outer membranes [Research Articles]

Gram-negative bacteria possess an asymmetric outer membrane (OM) composed primarily of lipopolysaccharides (LPS) on the outer leaflet and phospholipids (PLs) on the inner leaflet. Loss of this asymmetry due to mutations in the lipopolysaccharide (LPS) biosynthesis or transport pathways causes externalization of PLs to the outer leaflet of the OM and leads to OM permeability defects. Here, we employed metabolic labeling to detect a compromised OM in intact bacteria. Phosphatidylcholine synthase (Pcs) expression in Escherichia coli allowed for incorporation of exogenous propargylcholine (PCho) into phosphatidyl(propargyl)choline (PPC) and for incorporation of exogenous 1-azidoethyl-choline (AECho) into phosphatidyl(azidoethyl)choline (AEPC) as confirmed by LC-MS analyses. A fluorescent copper-free click reagent poorly labeled AEPC in intact wild-type cells, but readily labeled AEPC from lysed cells. Fluorescence microscopy and flow cytometry analyses confirmed the absence of significant AEPC labeling from intact wild-type E. coli strains, and revealed significant AEPC labeling in an E. coli LPS transport mutant (lptD4213) and an LPS biosynthesis mutant (E. coli lpxC101). Our results suggest that metabolic PL labeling with AECho is a promising tool to detect a compromised bacterial OM, reveal aberrant PL externalization, and identify or characterize novel cell-active inhibitors of LPS biosynthesis or transport.




cle

Characterization of the small molecule ARC39, a direct and specific inhibitor of acid sphingomyelinase in vitro [Research Articles]

Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM’s catalytic activity in cultured cells, a mechanism which differs from that of functional inhibitors of ASM (FIASMAs). We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASMpromoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo.




cle

The lncRNA Gm15622 stimulates SREBP-1c expression and hepatic lipid accumulation by sponging the miR-742-3p in mice [Research Articles]

Excessive lipid deposition is a hallmark of nonalcoholic fatty liver disease (NAFLD). Although much has been learned about the enzymes and metabolites involved in NAFLD, few studies have focused on the role of long non-coding RNAs (lncRNAs) in hepatic lipid accumulation. Here, using in vitro and in vivo models of NAFLD, we found that the lncRNA Gm15622 is highly expressed in the liver of obese mice fed a high-fat diet (HFD) and in murine liver (AML-12) cells treated with free fatty acids. Investigating the molecular mechanism in the liver-enriched expression of Gm15622 and its effects on lipid accumulation in hepatocytes and on NAFLD pathogenesis, we found that Gm15622 acts as a sponge for the microRNA miR-742-3p. This sponging activity increased the expression of the transcriptional regulator sterol regulatory element–binding transcription factor 1c (SREBP-1c) and promoted lipid accumulation in the liver of the HFD mice and AML-12 cells. Moreover, further results indicated that metformin suppresses Gm15622 and alleviates NAFLD-associated lipid deposition in mice. In conclusion, we have identified an lncRNA Gm15622–miR-742-3p–SREBP-1c regulatory circuit associated with NAFLD in mice, a finding that significantly advances our insight into how lipid metabolism and accumulation are altered in this metabolic disorder. Our results also suggest that Gm15622 may be a potential therapeutic target for managing NAFLD.




cle

Roles of endogenous ether lipids and associated PUFA in the regulation of ion channels and their relevance for disease [Research Articles]

Ether lipids (ELs) are lipids characterized by the presence of either an ether linkage (alkyl lipids) or a vinyl ether linkage (i.e. plasmalogens [Pls]) at the sn1 position of the glycerol backbone and they are enriched in PUFAs at the sn2 position. In this review, we highlight that ELs have various biological functions, act as a reservoir for second messengers (such as PUFAs), and have roles in many diseases. Some of the biological effects of ELs may be associated with their ability to regulate ion channels that control excitation-contraction/secretion/mobility coupling and therefore cell physiology. These channels are embedded in lipid membranes, and lipids can regulate their activities directly or indirectly as second messengers or by incorporating into membranes. Interestingly, ELs and EL-derived PUFAs have been reported to play a key role in several pathologies, including neurological disorders, cardiovascular diseases, and cancers. Investigations leading to a better understanding of their mechanisms of action in pathologies have opened a new field in cancer research. In summary, newly identified lipid regulators of ion channels, such as ELs and PUFAs, may represent valuable targets to improve disease diagnosis and advance the development of new therapeutic strategies for managing a range of diseases and conditions.




cle

Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC-MS/MS [Research Articles]

Ceramides are the predominant lipids in the stratum corneum (SC) and are crucial components for normal skin barrier function. Although the composition of various ceramide classes in the human SC has been reported, that in mice is still unknown, despite mice being widely used as animal models of skin barrier function. Here, we performed LC–MS/MS analyses using recently available ceramide class standards to measure 25 classes of free ceramides and 5 classes of protein-bound ceramides from the human and mouse SC. Phytosphingosine-type ceramides (P-ceramides) and 6-hydroxy sphingosine-type ceramides (H-ceramides), which both contain an additional hydroxyl group, were abundant in human SC (35% and 45% of total ceramides, respectively). In contrast, in mice, P-ceramides and H-ceramides were present at ~1% and undetectable levels, respectively, and sphingosine-type ceramides accounted for ~90%. In humans, ceramides containing α-hydroxy FA were abundant, whereas ceramides containing β-hydroxy FA (B-ceramides) or -hydroxy FA were abundant in mice. The hydroxylated β-carbon in B-ceramides was in the (R)-configuration. Genetic knockout of β-hydroxy acyl-CoA dehydratases in HAP1 cells increased B-ceramide levels, suggesting that β-hydroxy acyl-CoA, an FA-elongation cycle intermediate in the endoplasmic reticulum, is a substrate for B-ceramide synthesis. We anticipate that our methods and findings will help to elucidate the role of each ceramide class in skin barrier formation and in the pathogenesis of skin disorders.




cle

Skin barrier lipid enzyme activity in Netherton patients is associated with protease activity and ceramide abnormalities [Research Articles]

Individuals with Netherton syndrome (NTS) have increased serine protease activity, which strongly impacts the barrier function of the skin epidermis and leads to skin inflammation. Here, we investigated how serine protease activity in NTS correlates with changes in the stratum corneum ceramides, which are crucial components of the skin barrier. We examined two key enzymes involved in epidermal ceramide biosynthesis, glucocerebrosidase (GBA) and acid-sphingomyelinase (ASM). We compared in situ expression levels and activities of GBA and ASM between NTS patients and controls and correlated the expression and activities with i) stratum corneum ceramide profiles, ii) in situ serine protease activity, and iii) clinical presentation of patients. Using activity-based probe labeling, we visualized and localized active, epidermal GBA, and a newly developed in situ zymography method enabled us to visualize and localize active ASM. Reduction in active GBA in NTS patients coincided with increased ASM activity, particularly in areas with increased serine protease activity. NTS patients with scaly erythroderma exhibited more pronounced anomalies in GBA and ASM activities than patients with ichthyosis linearis circumflexa. They also displayed a stronger increase in stratum corneum ceramides processed via ASM. We conclude that changes in the localization of active GBA and ASM correlate with i) altered stratum corneum ceramide composition in NTS patients, ii) local serine protease activity, and iii) the clinical manifestation of NTS. 




cle

Circulating oxidized LDL increased in patients with acute myocardial infarction is accompanied by heavily modified HDL. [Research Articles]

Oxidized low-density lipoprotein (oxLDL) is a known risk factor for atherogenesis. This study aimed to reveal structural features of oxLDL present in human circulation related to atherosclerosis. When LDL was fractionated on an anion-exchange column, in vivo-oxLDL, detected by the anti-oxidized phosphatidylcholine (oxPC) monoclonal antibody, was recovered in flow-through and electronegative LDL (LDL(-)) fractions. The amount of the electronegative in vivo-oxLDL, namely oxLDL in LDL(-) fraction, present in patients with acute myocardial infarction (AMI) was three-fold higher than that observed in healthy subjects. Surprisingly, LDL(-) fraction contained apoA1 in addition to apoB, and HDL-sized particles were observed with transmission electron microscopy. In LDL(-) fractions, acrolein adducts were identified at all lysine residues in apoA1, with only a small number of acrolein-modified residues were identified in apoB. The amount of oxPC adducts of apoB was higher in LDL(-) than in L1 fraction as determined using western blotting. The electronegative in vivo-oxLDL was immunologically purified from the LDL(-) fraction with an anti-oxPC monoclonal antibody. Majority of PC species was not oxidized, whereas oxPC and lysoPC did not accumulate. Here, we propose that there are two types of in vivo-oxLDL in human circulating plasma and the electronegative in vivo-oxLDL accompanies oxidized HDL.




cle

Dietary plant stanol ester supplementation reduces peripheral symptoms in a mouse model of Niemann-Pick type C1 disease. [Research Articles]

Niemann–Pick type C1 (NPC1) disease is a rare genetic condition in which the function of the lysosomal cholesterol transporter NPC1 protein is impaired. Consequently, sphingolipids and cholesterol accumulate in lysosomes of all tissues, triggering a cascade of pathological events that culminate in severe systemic and neurological symptoms. Lysosomal cholesterol accumulation is also a key-factor in the development of atherosclerosis and non-alcoholic steatohepatitis (NASH). In these two metabolic diseases, the administration of plant stanol esters has been shown to ameliorate cellular cholesterol accumulation and inflammation. Given the overlap of pathological mechanisms among atherosclerosis, NASH and NPC1 disease, we sought to investigate whether dietary supplementation with plant stanol esters improves the peripheral features of NPC1 disease. To this end, we used an NPC1 murine model featuring an Npc1 null allele (Npc1nih), creating a dysfunctional NPC1 protein. Npc1nih mice were fed a two or six percent plant stanol esters–enriched diet over the course of 5 weeks. During this period, hepatic and blood lipid and inflammatory profiles were assessed. Npc1nih mice fed the plant stanol–enriched diet exhibited lower hepatic cholesterol accumulation, damage and inflammation than regular chow–fed Npc1nih mice. Moreover, plant stanol consumption shifted circulating T-cells and monocytes in particular towards an anti-inflammatory profile. Overall, these effects were stronger following dietary supplementation with 6% stanols, suggesting a dose-dependent effect. The findings of our study highlight the potential use of plant stanols as an affordable complementary means to ameliorate disorders in hepatic and blood lipid metabolism and reduce inflammation in NPC1 disease.




cle

Metabolic regulation of the lysosomal cofactor bis(monoacylglycero)phosphate in mice [Research Articles]

Bis(monoacylglycero)phosphate (BMP), also known as lysobisphosphatidic acid (LBPA), is a phospholipid that promotes lipid sorting in late endosomes/lysosomes by activating lipid hydrolases and lipid transfer proteins. Changes in the cellular BMP content therefore reflect an altered metabolic activity of the endo-lysosomal system. Surprisingly, little is known about the physiological regulation of BMP. In this study, we investigated the effects of nutritional and metabolic factors on BMP profiles of whole tissues and  parenchymal and non-parenchymal cells. Tissue samples were obtained from fed, fasted, two-hours refed, and insulin-treated mice, as well as from mice housed at  5°C, 22°C, or 30°C. These tissues exhibited distinct BMP profiles, which were regulated by the nutritional state in a tissue-specific manner. Insulin treatment was not sufficient to mimic refeeding-induced changes in tissue BMP levels indicating that BMP metabolism is regulated by other hormonal or nutritional factors. Tissue fractionation experiments revealed that fasting drastically elevates BMP levels in hepatocytes and pancreatic cells. Furthermore, we observed that the BMP content in brown adipose tissue strongly depends on housing temperatures. In conclusion, our observations suggest that BMP concentrations adapt to the metabolic state in a tissue-and cell type-specific manner in mice. Drastic changes observed in hepatocytes, pancreatic cells, and brown adipocytes suggest that BMP possesses a role in the functional adaption to nutrient starvation and ambient temperature.




cle

Catalytic residues, substrate specificity, and role in carbon starvation of the 2-hydroxy FA dioxygenase Mpo1 in yeast [Research Articles]

The yeast protein Mpo1 belongs to a protein family that is widely conserved in bacteria, fungi, protozoa, and plants, and is the only protein of this family whose function has so far been elucidated. Mpo1 is an Fe2+-dependent dioxygenase that catalyzes the α-oxidation reaction of 2-hydroxy (2-OH) long-chain FAs produced in the degradation pathway of the long-chain base phytosphingosine. However, several biochemical characteristics of Mpo1, such as its catalytic residues, membrane topology, and substrate specificity, remain unclear. Here, we report that yeast Mpo1 contains two transmembrane domains and that both its N- and C-terminal regions are exposed to the cytosol. Mutational analyses revealed that three histidine residues conserved in the Mpo1 family are especially important for Mpo1 activity, suggesting that they may be responsible for the formation of coordinate bonds with Fe2+. We found that, in addition to activity toward 2-OH long-chain FAs, Mpo1 also exhibits activity toward 2-OH very-long-chain FAs derived from the FA moiety of sphingolipids. These results indicate that Mpo1 is involved in the metabolism of long-chain to very-long-chain 2-OH FAs produced in different pathways. We noted that the growth of mpo1 cells is delayed upon carbon deprivation, suggesting that the Mpo1-mediated conversion of 2-OH FAs to non-hydroxy FAs is important for utilizing 2-OH FAs as a carbon source under carbon starvation. Our findings help to elucidate the as-yet-unknown functions and activities of other Mpo1 family members.




cle

Parenteral lipids shape gut bile acid pools and microbiota profiles in the prevention of cholestasis in preterm pigs [Research Articles]

Multi-component lipid emulsions, rather than soy-oil emulsions, prevent cholestasis by an unknown mechanism. Here, we quantified liver function, bile acid pools, and gut microbial and metabolite profiles in premature, parenterally fed pigs given a soy-oil lipid emulsion, Intralipid (IL); a multi component lipid emulsion, SMOFlipid (SMOF); a novel emulsion with a modified fatty-acid composition (EXP); or a control enteral diet (ENT) for 22 days. We assayed serum cholestasis markers; measured total bile acid levels in plasma, liver, and gut contents; and analyzed colonic bacterial 16S rRNA gene sequences and metabolomic profiles. Serum cholestasis markers (i.e. bilirubin, bile acids, and g-glutamyl transferase) were highest in IL-fed pigs and normalized in those given SMOF, EXP, or ENT. Gut bile acid pools were lowest in the IL treatment and were increased in the SMOF and EXP treatments and comparable to ENT. Multiple bile acids, especially their conjugated forms, were higher in the colon contents of SMOF and EXP than in IL pigs. Colonic microbial communities of SMOF and EXP pigs had lower relative abundance of several Gram-positive anaerobes, including Clostridrium XIVa, and higher abundance of Enterobacteriaceae than those of IL and ENT pigs. Differences in lipid and microbial-derived compounds were also observed in colon metabolite profiles. These results indicate that multi-component lipid emulsions prevent cholestasis and restore enterohepatic bile flow in association with gut microbial and metabolomic changes. We conclude that sustained bile flow induced by multi-component lipid emulsions likely exerts a dominant effect in reducing bile acid–sensitive, Gram-positive bacteria.




cle

Sphingolipids distribution at mitochondria-associated membranes (MAM) upon induction of apoptosis. [Research Articles]

The levels and composition of sphingolipids and related metabolites are altered in aging and common disorders such as diabetes and cancers, as well as in neurodegenerative, cardiovascular, and respiratory diseases. Changes in sphingolipids have been implicated as being an essential step in mitochondria-driven cell death. However, little is known about the precise sphingolipid composition and modulation in mitochondria or related organelles. Here, we used LC–MS/MS to analyze the presence of key components of the ceramide metabolic pathway in vivo and in vitro in purified endoplasmic reticulum (ER), mitochondria-associated membranes (MAM), and mitochondria. Specifically, we analyzed the sphingolipids in the three pathways that generate ceramide: sphinganine in the de novo ceramide pathway, sphingomyelin in the breakdown pathway, and sphingosine in the salvage pathway. We observed sphingolipid profiles in mouse liver, mouse brain, and a human glioma cell line (U251). We analyzed the quantitative and qualitative changes of these sphingolipids during staurosporine (STS)-induced apoptosis in U251 cells. Ceramide, especially C16-ceramide, levels increased during early apoptosis possibly through a conversion from mitochondrial sphinganine and sphingomyelin, but sphingosine and lactosyl- and glucosyl-ceramide levels were unaffected. We also found that ceramide generation is enhanced in mitochondria when sphingomyelin levels are decreased in the MAM. This decrease was associated with an increase in acid sphingomyelinase (ASM) activity in MAM. We conclude that meaningful sphingolipid modifications occur in MAM, the mitochondria, and ER during the early phases of apoptosis.




cle

Mass spectrometry imaging and LC-MS reveal decreased cerebellar phosphoinositides in Niemann-Pick type C1-null mice [Research Articles]

Niemann-Pick disease, type C1 (NPC1) is a lipid storage disorder in which cholesterol and glycosphingolipids accumulate in late endosomal/lysosomal compartments because of mutations in the NPC1 gene. A hallmark of NPC1 is progressive neurodegeneration of the cerebellum as well as visceral organ damage; however, the mechanisms driving this disease pathology are not fully understood. Phosphoinositides are phospholipids that play distinct roles in signal transduction and vesicle trafficking. Here, we utilized consensus spectra analysis of MS imaging datasets and orthogonal LC–MS analyses to evaluate the spatial distribution of phosphoinositides and quantify them in cerebellar tissue from Npc1-null mice. Our results suggest significant depletion of multiple phosphoinositide species, including phosphatidylinositol (PI), phosphatidylinositol monophosphate (PIP), and bisphosphate (PIP2), in the cerebellum of the Npc1-null mice in both whole-tissue lysates and myelin-enriched fractions. Additionally, we observed altered levels of the regulatory enzyme phosphatidylinositol 4-kinase type 2 α (PI4K2A) in Npc1-null mice. In contrast, the levels of related kinases, phosphatases, and transfer proteins were unaltered in the Npc1-null mouse model as observed by Western blot analysis. Our discovery of phosphoinositide lipid biomarkers for NPC1 opens new perspectives on the pathophysiology underlying this fatal neurodegenerative disease.




cle

2-Chlorofatty acids are biomarkers of sepsis mortality and mediators of barrier dysfunction in rats [Research Articles]

Sepsis is defined as the systemic, dysregulated host immune response to an infection that leads to injury to host organ systems, and, often, death. Complex interactions between pathogens and their hosts elicit microcirculatory dysfunction. Neutrophil myeloperoxidase (MPO) is critical for combating pathogens, but MPO-derived hypochlorous acid (HOCl) can react with host molecular species as well. Plasmalogens are targeted by HOCl, leading to the production of 2-chlorofatty acids (2-CLFAs). 2-CLFAs are associated with human sepsis mortality, decrease in vitroendothelial barrier function, and activate human neutrophil extracellular trap formation. Here, we sought to examine 2-CLFAs in an in vivorat sepsis model. Intraperitoneal cecal slurry sepsis with clinically relevant rescue therapies led to ~73% mortality and evidence of microcirculatory dysfunction. Plasma concentrations of 2-CLFAs assessed 8h after sepsis induction were lower in rats that survived sepsis than in non-survivors. 2-CLFA levels were elevated in kidney, liver, spleen, lung, colon and ileum in septic animals. In vivo, exogenous 2-CLFA treatments increased kidney permeability, and in in vitroexperiments 2-CLFA also increased epithelial surface expression of vascular cell adhesion molecule 1 and decreased epithelial barrier function. Collectively, these studies support a role of free 2-CLFAs as biomarkers of sepsis mortality, potentially mediated, in part, by 2-CLFA-elicited endothelial and epithelial barrier dysfunction.




cle

Nuclear Tensions Must Not Be Sidelined During Coronavirus

1 May 2020

Ana Alecsandru

Research Assistant, International Security Programme
Although the pandemic means the Nuclear Non-Proliferation Treaty (NPT) Review Conference (RevCon) is postponed, the delay could be an opportunity to better the health of the NPT regime.

2020-05-01-Iran-Peace-Nuclear

Painted stairs in Tehran, Iran symbolizing hope. Photo by Fatemeh Bahrami/Anadolu Agency/Getty Images.

Despite face-to-face diplomatic meetings being increasingly rare during the current disruption, COVID-19 will ultimately force a redefinition of national security and defence spending priorities, and this could provide the possibility of an improved political climate at RevCon when it happens in 2021.

With US presidential elections due in November and a gradual engagement growing between the EU and Iran, there could be a new context for more cooperation between states by 2021. Two key areas of focus over the coming months will be the arms control talks between the United States and Russia, and Iran’s compliance with the 2015 Joint Comprehensive Plan of Action (JCPOA), also known as the Iran Nuclear Deal.

It is too early to discern the medium- and longer-term consequences of COVID-19 for defence ministries, but a greater focus on societal resilience and reinvigorating economic productivity will likely undercut the rationale for expensive nuclear modernization.

Therefore, extending the current New START (Strategic Arms Reduction Treaty) would be the best, most practical option to give both Russia and the United States time to explore more ambitious multilateral arms control measures, while allowing their current focus to remain on the pandemic and economic relief.

Continuing distrust

But with the current treaty — which limits nuclear warheads, missiles, bombers, and launchers — due to expire in February 2021, the continuing distrust between the United States and Russia makes this extension hard to achieve, and a follow-on treaty even less likely.

Prospects for future bilateral negotiations are hindered by President Donald Trump’s vision for a trilateral arms control initiative involving both China and Russia. But China opposes this on the grounds that its nuclear arsenal is far smaller than that of the two others.

While there appears to be agreement that the nuclear arsenals of China, France, and the UK (the NPT nuclear-weapons states) and those of the states outside the treaty (India, Pakistan, North Korea, and Israel) will all have to be taken into account going forward, a practical mechanism for doing so proves elusive.

If Joe Biden wins the US presidency he seems likely to pursue an extension of the New START treaty and could also prevent a withdrawal from the Open Skies treaty, the latest arms control agreement targeted by the Trump administration.

Under a Biden administration, the United States would also probably re-join the JCPOA, provided Tehran returned to strict compliance with the deal. Biden could even use the team that negotiated the Iran deal to advance the goal of denuclearization of the Korean peninsula.

For an NPT regime already confronted by a series of longstanding divergences, it is essential that Iran remains a signatory especially as tensions between Iran and the United States have escalated recently — due to the Qassim Suleimani assassination and the recent claim by Iran’s Revolutionary Guard Corps to have successfully placed the country’s first military satellite into orbit.

This announcement raised red flags among experts about whether Iran is developing intercontinental ballistic missiles due to the dual-use nature of space technology. The satellite launch — deeply troubling for Iran’s neighbours and the EU countries — may strengthen the US argument that it is a cover for the development of ballistic missiles capable of delivering nuclear weapons.

However, as with many other countries, Iran is struggling with a severe coronavirus crisis and will be pouring its scientific expertise and funds into that rather than other efforts — including the nuclear programme.

Those European countries supporting the trading mechanism INSTEX (Instrument in Support of Trade Exchanges) for sending humanitarian goods into Iran could use this crisis to encourage Iran to remain in compliance with the JCPOA and its NPT obligations.

France, Germany and the UK (the E3) have already successfully concluded the first transaction, which was to facilitate the export of medical goods from Europe to Iran. But the recent Iranian escalatory steps will most certainly place a strain on the preservation of this arrangement.

COVID-19 might have delayed Iran’s next breach of the 2015 nuclear agreement but Tehran will inevitably seek to strengthen its hand before any potential negotiations with the United States after the presidential elections.

As frosty US-Iranian relations — exacerbated by the coronavirus pandemic — prevent diplomatic negotiations, this constructive engagement between the E3 and Iran might prove instrumental in reviving the JCPOA and ensuring Iran stays committed to both nuclear non-proliferation and disarmament.

While countries focus their efforts on tackling the coronavirus pandemic, it is understandable resources may be limited for other global challenges, such as the increasing risk of nuclear weapons use across several regions.

But the potential ramifications of the COVID-19 crisis for the NPT regime are profound. Ongoing tensions between the nuclear-armed states must not be ignored while the world’s focus is elsewhere, and the nuclear community should continue to work together to progress nuclear non-proliferation and disarmament, building bridges of cooperation and trust that can long outlast the pandemic.




cle

Detection of multiple autoantibodies in patients with ankylosing spondylitis using nucleic acid programmable protein arrays [11. Microarrays/Combinatorics/Display Technology]

Ankylosing Spondylitis (AS) is a common, inflammatory rheumatic disease, which primarily affects the axial skeleton and is associated with sacroiliitis, uveitis and enthesitis. Unlike other autoimmune rheumatic diseases, such as rheumatoid arthritis or systemic lupus erythematosus, autoantibodies have not yet been reported to be a feature of AS. We therefore wished to determine if plasma from patients with AS contained autoantibodies and if so, characterize and quantify this response in comparison to patients with Rheumatoid Arthritis (RA) and healthy controls. Two high-density nucleic acid programmable protein arrays expressing a total of 3498 proteins were screened with plasma from 25 patients with AS, 17 with RA and 25 healthy controls. Autoantigens identified were subjected to Ingenuity Pathway Analysis in order to determine patterns of signalling cascades or tissue origin. 44% of patients with Ankylosing Spondylitis demonstrated a broad autoantibody response, as compared to 33% of patients with RA and only 8% of healthy controls. Individuals with AS demonstrated autoantibody responses to shared autoantigens, and 60% of autoantigens identified in the AS cohort were restricted to that group. The AS patients autoantibody responses were targeted towards connective, skeletal and muscular tissue, unlike those of RA patients or healthy controls. Thus, patients with AS show evidence of systemic humoral autoimmunity and multispecific autoantibody production. Nucleic Acid Programmable Protein Arrays constitute a powerful tool to study autoimmune diseases.




cle

Perspectives on Nuclear Deterrence in the 21st Century

20 April 2020

Nuclear deterrence theory, with its roots in the Cold War era, may not account for all eventualities in the 21st century. Researchers at Chatham House have worked with eight experts to produce this collection of essays examining four contested themes in contemporary policymaking on deterrence.

Dr Beyza Unal

Senior Research Fellow, International Security Programme

Yasmin Afina

Research Assistant, International Security Programme

Dr Patricia Lewis

Research Director, Conflict, Science & Transformation; Director, International Security Programme

Dr John Borrie

Associate Fellow, International Security Programme

Dr Jamie Shea

Associate Fellow, International Security Programme

Peter Watkins

Associate Fellow, International Security Programme

Dr Maria Rost Rublee

Associate Professor of International Relations, Monash University

Cristina Varriale

Research Fellow in Proliferation and Nuclear Policy, RUSI

Dr Tanya Ogilvie-White

Adjunct Senior Fellow, Griffith Asia Institute, Griffith University

Dr Andrew Futter

Associate Professor of International Politics, University of Leicester

Christine Parthemore

Chief Executive Officer, Council on Strategic Risks (CSR)

2020-04-20-NuclearDeterrence.jpeg

Royal Navy Vanguard Class submarine HMS Vigilant returning to HMNB Clyde after extended deployment. The four Vanguard-class submarines form the UK's strategic nuclear deterrent force. Photo: Ministry of Defence.

Summary

  • This collection of essays explores, from the perspectives of eight experts, four areas of deterrence theory and policymaking: the underlying assumptions that shape deterrence practice; the enduring value of extended deterrence; the impact of emerging technologies; and the ‘blurring’ of the lines between conventional and nuclear weapons.
  • Nuclear deterrence theory, with its roots in the Cold War era, may not account for all eventualities in security and defence in the 21st century, given the larger number of nuclear actors in a less binary geopolitical context. It is clear that a number of present factors challenge the overall credibility of ‘classical’ nuclear deterrence, meaning that in-depth analysis is now needed.
  • Uncertainty as to the appetite to maintain the current nuclear weapons policy architecture looms large in discussions and concerns on global and regional security. The demise of the Intermediate-Range Nuclear Forces Treaty, doubts over the potential extension of the New Strategic Arms Reduction Treaty, heightened regional tensions in Northeast and South Asia, together with the current and likely future risks and challenges arising from global technological competition, making it all the more urgent to examine long-held assumptions in the real-world context.
  • Extended deterrence practices differ from region to region, depending on the domestic and regional landscape. Increased focus on diplomatic capabilities to reduce risks and improve the long-term outlook at regional level, including by spearheading new regional arms-control initiatives, may be a viable way forward. Addressing the bigger picture – notably including, on the Korean peninsula, Pyongyang’s own threat perception – and the links between conventional and nuclear missile issues will need to remain prominent if long-term and concrete changes are to take hold.
  • Most states have long held nuclear weapons to be ‘exceptional’: their use would represent a dramatic escalation of a conflict that must never be attained. Latterly, however, some officials and scholars have made the case that the impact of the use of a low-yield nuclear weapon would not be entirely distinct from that of a large-scale conventional attack. This blurring of lines between conventional and nuclear deterrence strips nuclear weapons of their exceptional nature, in a context in which states are faced with diverse, complex and concurrent threats from multiple potential adversaries that are able to synchronize non-military and military options, up to and including nuclear forces. The use of nuclear weapons risks becoming a ‘new normal’, potentially reducing the threshold for use – to cyberattacks, for example. This has direct implications for discussions around strategic stability. 
  • While emerging technologies may offer tremendous opportunities in the modernization of nuclear weapons, they also present major risks and destabilizing challenges. Artificial intelligence, automation, and other developments in the cyber sphere affect dynamics on both the demand and supply sides of the nuclear deterrence equation. States and alliance such as NATO must adapt their deterrence thinking in light of these technological developments, and define their primary purpose and priorities in this shifting security context. Resilience planning, adaptation to the evolving security environment, threat anticipation, and consistent crisis management and incident response – as well as thinking about the mitigation measures necessary to prevent conflict escalation should deterrence fail – will all be critical in upholding nuclear deterrence as both policy and practice.




cle

Nuclear Weapons: Trident is the Answer, Now What was the Question?

1 February 2007 , Number 3

Next month, parliament will vote on whether to replace Britain’s Trident nuclear missile submarines with a new and similar system. There is little doubt the proposal will be approved with support from the Conservative opposition. But the facts used to back the government’s favourite option raise as many questions as answers. The future of Britain’s defence is in doubt.

Andrew Norman

Senior Lecturer, Defence Studies, King's College London

GettyImages-51273218.jpg

Trident Submarine USS Georgia




cle

Chemical, Biological, Radiological and Nuclear Terrorism: Tomorrow's Threat

1 March 2007 , Number 11

In early November, the retiring head of Britain’s Security Service MI5, Dame Eliza Manningham-Buller, warned that the danger of a terror attack was ‘serious’ and ‘growing’, with as many as thirty plots underway. Traditional terrorism of the sort practised by the Irish Republican Army has given way to the possibility, if not the expectation, that groups such as Al Qaeda might make use of chemical, biological, radiological and nuclear weapons and materials in an attack in Britain. So what are the dangers?

GettyImages-200457787-001 copy.jpg

Syrian Special Forces in gas masks, Saudi Arabia 1990




cle

Breaking the Cycle of Violence: Transitional Justice for the Victims of ISIS in Syria

28 April 2020

This paper aims to assist the region’s local authorities, and their key foreign backers, in understanding how transitional justice can provide alternative avenues for holding local ISIS members to account while contributing to the healing of communities.

Haid Haid

Senior Consulting Fellow, Middle East and North Africa Programme

2020-04-28-Syria-prison.jpg

A fighter with the Syrian Democratic Forces monitors prisoners accused of being affiliated with ISIS, at a prison in the northeastern Syrian city of Hassakeh on 25 October 2019. Photo: Getty Images.

Summary

  • Following the territorial defeat of Islamic State of Iraq and Syria (ISIS) in northeastern Syria, the Kurdish-led autonomous administration in the region is now grappling with the task of quickly dealing with thousands of the group’s detained members while bringing justice to their victims. To that end, local authorities are focusing on the use of counterterrorism laws and courts to charge captured ISIS members and determine their guilt accordingly.
  • The piecemeal approach to justice is deeply flawed, and raises particular concerns about due process. No precise instruments exist to determine the personal responsibility of ISIS individuals for specific crimes, or for their role in war crimes committed by the group. In any event, the scale of the crimes and the number of victims – as well as severe shortages of resources and workers – make dispensation of justice extremely difficult through the traditional legal system.
  • Not all detained ISIS members receive prison sentences. Individuals who did not hold senior roles in the group’s apparatus and are not accused of ‘major’ crimes (in practice, largely defined as fighting for ISIS and murder) are being released under limited reconciliation deals with tribal leaders. But the involvement of local community leaders in those efforts is not enough to ensure positive results. Many victims are upset at seeing ISIS members walk free without even admitting their guilt publicly or apologizing for the pain they caused.
  • To overcome the limitations of the current, counterterrorism-focused framework, a ‘transitional justice’ approach could provide judicial and non-judicial instruments to establish accountability for ISIS crimes and reduce community resistance to the reintegration of group members. A combination of non-judicial mechanisms such as truth commissions, missing persons’ committees, and reparations and victim-healing programmes could play a vital role in providing ISIS victims with a sense of justice while contributing to peacebuilding and stability.
  • Ignoring the urgency of developing a long-term plan to serve justice and contribute to community healing will almost certainly allow ISIS to continue to prevent the recovery and development of northeastern Syria. This, in turn, risks undermining the stability of the country and the region at large.




cle

Metallopeptidase Stp1 activates the transcription factor Sre1 in the carotenogenic yeast Xanthophyllomyces dendrorhous [Research Articles]

Xanthophyllomyces dendrorhous is a basidiomycete yeast known as a natural producer of astaxanthin, a carotenoid of commercial interest because of its antioxidant properties. Recent studies indicated that X. dendrorhous has a functional SREBP pathway involved in the regulation of isoprenoid compound biosynthesis, which includes ergosterol and carotenoids. SREBP is a major regulator of sterol metabolism and homeostasis in mammals; characterization in fungi also provides information about its role in the hypoxia adaptation response and virulence. SREBP protease processing is required to activate SREBP pathway functions in fungi. Here, we identified and described the STP1 gene, which encodes a metallopeptidase of the M50 family involved in the proteolytic activation of the transcription factor Sre1 of the SREBP pathway, in X. dendrorhous. We assessed STP1 function in stp1 strains derived from the wild-type and a mutant of ergosterol biosynthesis that overproduces carotenoids and sterols. Bioinformatic analysis of the deduced protein predicted the presence of characteristic features identified in homologs from mammals and fungi. The stp1 mutation decreased yeast growth in the presence of azole drugs and reduced transcript levels of Sre1-dependent genes. This mutation also negatively affected the carotenoid- and sterol-overproducing phenotype. Western blot analysis demonstrated that Sre1 was activated in the yeast ergosterol biosynthesis mutant and that the stp1 mutation introduced in this strain prevented Sre1 proteolytic activation. Overall, our results demonstrate that STP1 encodes a metallopeptidase involved in proteolytic activation of Sre1 in X. dendrorhous, contributing to our understanding of fungal SREBP pathways.




cle

Effects of omega-O-acylceramide structures and concentrations in healthy and diseased skin barrier lipid membrane models [Research Articles]

Ceramides (Cers) with ultralong (~32-carbon) chains and -esterified linoleic acid, composing a subclass called omega-O-acylceramides (acylCers), are indispensable components of the skin barrier. Normal barriers typically contain acylCer concentrations of ~10 mol%; diminished concentrations, along with altered or missing long periodicity lamellar phase (LPP), and increased permeability accompany an array of skin disorders, including atopic dermatitis, psoriasis, and ichthyoses. We developed model membranes to investigate the effects of the acylCer structure and concentration on skin lipid organization and permeability. The model membrane systems contained six to nine Cer subclasses as well as fatty acids, cholesterol, and cholesterol sulfate; acylCer content—namely, acylCers containing sphingosine (Cer EOS), dihydrosphingosine (Cer EOdS), and phytosphingosine (Cer EOP) ranged from zero to 30 mol%. Systems with normal physiologic concentrations of acylCer mixture mimicked the permeability and nanostructure of human skin lipids (with regard to LPP, chain order, and lateral packing). The models also showed that the sphingoid base in acylCer significantly affects the membrane architecture and permeability and that Cer EOP, notably, is a weaker barrier component than Cer EOS and Cer EOdS. Membranes with diminished or missing acylCers displayed some of the hallmarks of diseased skin lipid barriers (i.e., lack of LPP, less ordered lipids, less orthorhombic chain packing, and increased permeability). These results could inform the rational design of new and improved strategies for the barrier-targeted treatment of skin diseases.




cle

Endocytosis of very low-density lipoproteins: an unexpected mechanism for lipid acquisition by breast cancer cells [Research Articles]

We previously described the expression of CD36 and LPL by breast cancer (BC) cells and tissues and the growth-promoting effect of VLDL observed only in the presence of LPL. We now report a model in which LPL is bound to a heparan sulfate proteoglycan motif on the BC cell surface and acts in concert with the VLDL receptor to internalize VLDLs via receptor-mediated endocytosis. We also demonstrate that gene-expression programs for lipid synthesis versus uptake respond robustly to triglyceride-rich lipoprotein availability. The literature emphasizes de novo FA synthesis and exogenous free FA uptake using CD36 as paramount mechanisms for lipid acquisition by cancer cells. We find that the uptake of intact lipoproteins is also an important mechanism for lipid acquisition and that the relative reliance on lipid synthesis versus uptake varies among BC cell lines and in response to VLDL availability. This metabolic plasticity has important implications for the development of therapies aimed at the lipid dependence of many types of cancer, in that the inhibition of FA synthesis may elicit compensatory upregulation of lipid uptake. Moreover, the mechanism that we have elucidated provides a direct connection between dietary fat and tumor biology.­.




cle

A nematode sterol C4{alpha}-methyltransferase catalyzes a new methylation reaction responsible for sterol diversity [Research Articles]

Primitive sterol evolution plays an important role in fossil record interpretation and offers potential therapeutic avenues for human disease resulting from nematode infections. Recognizing that C4-methyl stenol products [8(14)-lophenol] can be synthesized in bacteria while C4-methyl stanol products (dinosterol) can be synthesized in dinoflagellates and preserved as sterane biomarkers in ancient sedimentary rock is key to eukaryotic sterol evolution. In this regard, nematodes have been proposed to convert dietary cholesterol to 8(14)-lophenol by a secondary metabolism pathway that could involve sterol C4 methylation analogous to the C2 methylation of hopanoids (radicle-type mechanism) or C24 methylation of sterols (carbocation-type mechanism). Here, we characterized dichotomous cholesterol metabolic pathways in Caenorhabditis elegans that generate 3-oxo sterol intermediates in separate paths to lophanol (4-methyl stanol) and 8(14)-lophenol (4-methyl stenol). We uncovered alternate C3-sterol oxidation and 7 desaturation steps that regulate sterol flux from which branching metabolite networks arise, while lophanol/8(14)-lophenol formation is shown to be dependent on a sterol C4α-methyltransferse (4-SMT) that requires 3-oxo sterol substrates and catalyzes a newly discovered 3-keto-enol tautomerism mechanism linked to S-adenosyl-l-methionine-dependent methylation. Alignment-specific substrate-binding domains similarly conserved in 4-SMT and 24-SMT enzymes, despite minimal amino acid sequence identity, suggests divergence from a common, primordial ancestor in the evolution of methyl sterols. The combination of these results provides evolutionary leads to sterol diversity and points to cryptic C4-methyl steroidogenic pathways of targeted convergence that mediate lineage-specific adaptations.­­




cle

Lipid droplet-associated kinase STK25 regulates peroxisomal activity and metabolic stress response in steatotic liver [Research Articles]

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are emerging as leading causes of liver disease worldwide and have been recognized as one of the major unmet medical needs of the 21st century. Our recent translational studies in mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine kinase (STK)25 as a protein that coats intrahepatocellular lipid droplets (LDs) and critically regulates liver lipid homeostasis and progression of NAFLD/NASH. Here, we studied the mechanism-of-action of STK25 in steatotic liver by relative quantification of the hepatic LD-associated phosphoproteome from high-fat diet-fed Stk25 knockout mice compared with their wild-type littermates. We observed a total of 131 proteins and 60 phosphoproteins that were differentially represented in STK25-deficient livers. Most notably, a number of proteins involved in peroxisomal function, ubiquitination-mediated proteolysis, and antioxidant defense were coordinately regulated in Stk25–/– versus wild-type livers. We confirmed attenuated peroxisomal biogenesis and protection against oxidative and ER stress in STK25-deficient human liver cells, demonstrating the hepatocyte-autonomous manner of STK25’s action. In summary, our results suggest that regulation of peroxisomal function and metabolic stress response may be important molecular mechanisms by which STK25 controls the development and progression of NAFLD/NASH.




cle

Quantification of bile acids: a mass spectrometry platform for studying gut microbe connection to metabolic diseases [Research Articles]

Bile acids (BAs) serve multiple biological functions, ranging from the absorption of lipids and fat-soluble vitamins to serving as signaling molecules through the direct activation of dedicated cellular receptors. Synthesized by both host and microbial pathways, BAs are increasingly understood as participating in the regulation of numerous pathways relevant to metabolic diseases, including lipid and glucose metabolism, energy expenditure, and inflammation. Quantitative analyses of BAs in biological matrices can be problematic due to their unusual and diverse physicochemical properties, making optimization of a method that shows good accuracy, precision, efficiency of extraction, and minimized matrix effects across structurally distinct human and murine BAs challenging. Herein we develop and clinically validate a stable-isotope-dilution LC/MS/MS method for the quantitative analysis of numerous primary and secondary BAs in both human and mouse biological matrices. We also utilize this tool to investigate gut microbiota participation in the generation of structurally specific BAs in both humans and mice. We examine circulating levels of specific BAs and in a clinical case-control study of age- and gender-matched type 2 diabetes mellitus (T2DM) versus nondiabetics. BAs whose circulating levels are associated with T2DM include numerous 12α-hydroxyl BAs (taurocholic acid, taurodeoxycholic acid, glycodeoxycholic acid, deoxycholic acid, and 3-ketodeoxycholic acid), while taurohyodeoxycholic acid was negatively associated with diabetes. The LC/MS/MS-based platform described should serve as a robust, high-throughput investigative tool for studying the potential involvement of structurally specific BAs and the gut microbiome on both physiological and disease processes.




cle

Macrophage polarization is linked to Ca2+-independent phospholipase A2{beta}-derived lipids and cross-cell signaling in mice [Research Articles]

Phospholipases A2 (PLA2s) catalyze hydrolysis of the sn-2 substituent from glycerophospholipids to yield a free fatty acid (i.e., arachidonic acid), which can be metabolized to pro- or anti-inflammatory eicosanoids. Macrophages modulate inflammatory responses and are affected by Ca2+-independent phospholipase A2 (PLA2)β (iPLA2β). Here, we assessed the link between iPLA2β-derived lipids (iDLs) and macrophage polarization. Macrophages from WT and KO (iPLA2β–/–) mice were classically M1 pro-inflammatory phenotype activated or alternatively M2 anti-inflammatory phenotype activated, and eicosanoid production was determined by ultra-performance LC ESI-MS/MS. As a genotypic control, we performed similar analyses on macrophages from RIP.iPLA2β.Tg mice with selective iPLA2β overexpression in β-cells. Compared with WT, generation of select pro-inflammatory prostaglandins (PGs) was lower in iPLA2β–/–, and that of a specialized pro-resolving lipid mediator (SPM), resolvin D2, was higher; both changes are consistent with the M2 phenotype. Conversely, macrophages from RIP.iPLA2β.Tg mice exhibited an opposite landscape, one associated with the M1 phenotype: namely, increased production of pro-inflammatory eicosanoids (6-keto PGF1α, PGE2, leukotriene B4) and decreased ability to generate resolvin D2. These changes were not linked with secretory PLA2 or cytosolic PLA2α or with leakage of the transgene. Thus, we report previously unidentified links between select iPLA2β-derived eicosanoids, an SPM, and macrophage polarization. Importantly, our findings reveal for the first time that β-cell iPLA2β-derived signaling can predispose macrophage responses. These findings suggest that iDLs play critical roles in macrophage polarization, and we posit that they could be targeted therapeutically to counter inflammation-based disorders.




cle

Novel GPR120 agonist TUG891 modulates fat taste perception and preference and activates tongue-brain-gut axis in mice [Research Articles]

GPR120 is implicated as a lipid receptor in the oro-sensory detection of dietary fatty acids. However, the effects of GPR120 activation on dietary fat intake or obesity are not clearly understood. We investigated to determine whether the binding of TUG891, a novel GPR120 agonist, to lingual GPR120 modulates fat preference in mice. We explored the effects of TUG891 on obesity-related hormones and conducted behavioral choice tests on mice to better understand the physiologic relevance of the action of TUG891. In cultured mouse and human taste bud cells (TBCs), TUG891 induced a rapid increase in Ca2+ by acting on GPR120. A long-chain dietary fatty acid, linoleic acid (LA), also recruited Ca2+ via GPR120 in human and mouse TBCs. Both TUG891 and LA induced ERK1/2 phosphorylation and enhanced in vitro release of glucagon-like peptide-1 from cultured human and mouse TBCs. In situ application of TUG891 onto the tongue of anesthetized mice triggered the secretion of pancreatobiliary juice, probably via the tongue-brain-gut axis. Furthermore, lingual application of TUG891 altered circulating concentrations of cholecystokinin and adipokines, associated with decreased circulating LDL, in conscious mice. In behavioral tests, mice exhibited a spontaneous preference for solutions containing either TUG891 or LA instead of a control. However, addition of TUG891 to a solution containing LA significantly curtailed fatty acid preference. Our study demonstrates that TUG891 binds to lingual GPR120 receptors, activates the tongue-brain-gut axis, and modulates fat preference. These findings may support the development of new fat taste analogs that can change the approach to obesity prevention and treatment.




cle

Exon 9-deleted CETP inhibits full length-CETP synthesis and promotes cellular triglyceride storage [Research Articles]

Cholesteryl ester transfer protein (CETP) exists as full-length (FL) and exon 9 (E9)-deleted isoforms. The function of E9-deleted CETP is poorly understood. Here, we investigated the role of E9-deleted CETP in regulating the secretion of FL-CETP by cells and explored its possible role in intracellular lipid metabolism. CETP overexpression in cells that naturally express CETP confirmed that E9-deleted CETP is not secreted, and showed that cellular FL- and E9-deleted CETP form an isolatable complex. Coexpression of CETP isoforms lowered cellular levels of both proteins and impaired FL-CETP secretion. These effects were due to reduced synthesis of both isoforms; however, the predominate consequence of FL- and E9-deleted CETP coexpression is impaired FL-CETP synthesis. We reported previously that reducing both CETP isoforms or overexpressing FL-CETP impairs cellular triglyceride (TG) storage. To investigate this further, E9-deleted CETP was expressed in SW872 cells that naturally synthesize CETP and in mouse 3T3-L1 cells that do not. E9-deleted CETP overexpression stimulated SW872 triglyceride synthesis and increased stored TG 2-fold. Expression of E9-deleted CETP in mouse 3T3-L1 cells produced a similar lipid phenotype. In vitro, FL-CETP promotes the transfer of TG from ER-enriched membranes to lipid droplets. E9-deleted CETP also promoted this transfer, although less effectively, and it inhibited the transfer driven by FL-CETP. We conclude that FL- and E9-deleted CETP isoforms interact to mutually decrease their intracellular levels and impair FL-CETP secretion by reducing CETP biosynthesis. E9-deleted CETP, like FL-CETP, alters cellular TG metabolism and storage but in a contrary manner.




cle

Deficiency in ZMPSTE24 and resulting farnesyl-prelamin A accumulation only modestly affect mouse adipose tissue stores [Research Articles]

Zinc metallopeptidase STE24 (ZMPSTE24) is essential for the conversion of farnesyl–prelamin A to mature lamin A, a key component of the nuclear lamina. In the absence of ZMPSTE24, farnesyl–prelamin A accumulates in the nucleus and exerts toxicity, causing a variety of disease phenotypes. By ~4 months of age, both male and female Zmpste24–/– mice manifest a near-complete loss of adipose tissue, but it has never been clear whether this phenotype is a direct consequence of farnesyl–prelamin A toxicity in adipocytes. To address this question, we generated a conditional knockout Zmpste24 allele and used it to create adipocyte-specific Zmpste24–knockout mice. To boost farnesyl–prelamin A levels, we bred in the "prelamin A–only" Lmna allele. Gene expression, immunoblotting, and immunohistochemistry experiments revealed that adipose tissue in these mice had decreased Zmpste24 expression along with strikingly increased accumulation of prelamin A. In male mice, Zmpste24 deficiency in adipocytes was accompanied by modest changes in adipose stores (an 11% decrease in body weight, a 23% decrease in body fat mass, and significantly smaller gonadal and inguinal white adipose depots). No changes in adipose stores were detected in female mice, likely because prelamin A expression in adipose tissue is lower in female mice. Zmpste24 deficiency in adipocytes did not alter the number of macrophages in adipose tissue, nor did it alter plasma levels of glucose, triglycerides, or fatty acids. We conclude that ZMPSTE24 deficiency in adipocytes, and the accompanying accumulation of farnesyl–prelamin A, reduces adipose tissue stores, but only modestly and only in male mice.




cle

Monitoring the itinerary of lysosomal cholesterol in Niemann-Pick Type C1-deficient cells after cyclodextrin treatment [Research Articles]

Niemann-Pick disease type C (NPC) disease is a lipid-storage disorder that is caused by mutations in the genes encoding NPC proteins and results in lysosomal cholesterol accumulation. 2-Hydroxypropyl-β-cyclodextrin (CD) has been shown to reduce lysosomal cholesterol levels and enhance sterol homeostatic responses, but CD’s mechanism of action remains unknown. Recent work provides evidence that CD stimulates lysosomal exocytosis, raising the possibility that lysosomal cholesterol is released in exosomes. However, therapeutic concentrations of CD do not alter total cellular cholesterol, and cholesterol homeostatic responses at the ER are most consistent with increased ER membrane cholesterol. To address these disparate findings, here we used stable isotope labeling to track the movement of lipoprotein cholesterol cargo in response to CD in NPC1-deficient U2OS cells. Although released cholesterol was detectable, it was not associated with extracellular vesicles. Rather, we demonstrate that lysosomal cholesterol trafficks to the plasma membrane (PM), where it exchanges with lipoprotein-bound cholesterol in a CD-dependent manner. We found that in the absence of suitable extracellular cholesterol acceptors, cholesterol exchange is abrogated, cholesterol accumulates in the PM, and reesterification at the ER is increased. These results support a model in which CD promotes intracellular redistribution of lysosomal cholesterol, but not cholesterol exocytosis or efflux, during the restoration of cholesterol homeostatic responses.




cle

The citrus flavonoid nobiletin confers protection from metabolic dysregulation in high-fat-fed mice independent of AMPK [Research Articles]

Obesity, dyslipidemia, and insulin resistance, the increasingly common metabolic syndrome, are risk factors for CVD and type 2 diabetes that warrant novel therapeutic interventions. The flavonoid nobiletin displays potent lipid-lowering and insulin-sensitizing properties in mice with metabolic dysfunction. However, the mechanisms by which nobiletin mediates metabolic protection are not clearly established. The central role of AMP-activated protein kinase (AMPK) as an energy sensor suggests that AMPK is a target of nobiletin. We tested the hypothesis that metabolic protection by nobiletin required phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in mouse hepatocytes, in mice deficient in hepatic AMPK (Ampkβ1–/–), in mice incapable of inhibitory phosphorylation of ACC (AccDKI), and in mice with adipocyte-specific AMPK deficiency (iβ1β2AKO). We fed mice a high-fat/high-cholesterol diet with or without nobiletin. Nobiletin increased phosphorylation of AMPK and ACC in primary mouse hepatocytes, which was associated with increased FA oxidation and attenuated FA synthesis. Despite loss of ACC phosphorylation in Ampkβ1–/– hepatocytes, nobiletin suppressed FA synthesis and enhanced FA oxidation. Acute injection of nobiletin into mice did not increase phosphorylation of either AMPK or ACC in liver. In mice fed a high-fat diet, nobiletin robustly prevented obesity, hepatic steatosis, dyslipidemia, and insulin resistance, and it improved energy expenditure in Ampkβ1–/–, AccDKI, and iβ1β2AKO mice to the same extent as in WT controls. Thus, the beneficial metabolic effects of nobiletin in vivo are conferred independently of hepatic or adipocyte AMPK activation. These studies further underscore the therapeutic potential of nobiletin and begin to clarify possible mechanisms.




cle

Role of angiopoietin-like protein 3 in sugar-induced dyslipidemia in rhesus macaques: suppression by fish oil or RNAi [Research Articles]

Angiopoietin-like protein 3 (ANGPTL3) inhibits lipid clearance and is a promising target for managing cardiovascular disease. Here we investigated the effects of a high-sugar (high-fructose) diet on circulating ANGPTL3 concentrations in rhesus macaques. Plasma ANGPTL3 concentrations increased ~30% to 40% after 1 and 3 months of a high-fructose diet (both P < 0.001 vs. baseline). During fructose-induced metabolic dysregulation, plasma ANGPTL3 concentrations were positively correlated with circulating indices of insulin resistance [assessed with fasting insulin and the homeostatic model assessment of insulin resistance (HOMA-IR)], hypertriglyceridemia, adiposity (assessed as leptin), and systemic inflammation [C-reactive peptide (CRP)] and negatively correlated with plasma levels of the insulin-sensitizing hormone adropin. Multiple regression analyses identified a strong association between circulating APOC3 and ANGPTL3 concentrations. Higher baseline plasma levels of both ANGPTL3 and APOC3 were associated with an increased risk for fructose-induced insulin resistance. Fish oil previously shown to prevent insulin resistance and hypertriglyceridemia in this model prevented increases of ANGPTL3 without affecting systemic inflammation (increased plasma CRP and interleukin-6 concentrations). ANGPTL3 RNAi lowered plasma concentrations of ANGPTL3, triglycerides (TGs), VLDL-C, APOC3, and APOE. These decreases were consistent with a reduced risk of atherosclerosis. In summary, dietary sugar-induced increases of circulating ANGPTL3 concentrations after metabolic dysregulation correlated positively with leptin levels, HOMA-IR, and dyslipidemia. Targeting ANGPTL3 expression with RNAi inhibited dyslipidemia by lowering plasma TGs, VLDL-C, APOC3, and APOE levels in rhesus macaques.




cle

Alirocumab, evinacumab, and atorvastatin triple therapy regresses plaque lesions and improves lesion composition in mice [Research Articles]

Atherosclerosis-related CVD causes nearly 20 million deaths annually. Most patients are treated after plaques develop, so therapies must regress existing lesions. Current therapies reduce plaque volume, but targeting all apoB-containing lipoproteins with intensive combinations that include alirocumab or evinacumab, monoclonal antibodies against cholesterol-regulating proprotein convertase subtilisin/kexin type 9 and angiopoietin-like protein 3, may provide more benefit. We investigated the effect of such lipid-lowering interventions on atherosclerosis in APOE*3-Leiden.CETP mice, a well-established model for hyperlipidemia. Mice were fed a Western-type diet for 13 weeks and thereafter matched into a baseline group (euthanized at 13 weeks) and five groups that received diet alone (control) or with treatment [atorvastatin; atorvastatin and alirocumab; atorvastatin and evinacumab; or atorvastatin, alirocumab, and evinacumab (triple therapy)] for 25 weeks. We measured effects on cholesterol levels, plaque composition and morphology, monocyte adherence, and macrophage proliferation. All interventions reduced plasma total cholesterol (37% with atorvastatin to 80% with triple treatment; all P < 0.001). Triple treatment decreased non-HDL-C to 1.0 mmol/l (91% difference from control; P < 0.001). Atorvastatin reduced atherosclerosis progression by 28% versus control (P < 0.001); double treatment completely blocked progression and diminished lesion severity. Triple treatment regressed lesion size versus baseline in the thoracic aorta by 50% and the aortic root by 36% (both P < 0.05 vs. baseline), decreased macrophage accumulation through reduced proliferation, and abated lesion severity. Thus, high-intensive cholesterol-lowering triple treatment targeting all apoB-containing lipoproteins regresses atherosclerotic lesion area and improves lesion composition in mice, making it a promising potential approach for treating atherosclerosis.




cle

Role of pyruvate kinase M2 in oxidized LDL-induced macrophage foam cell formation and inflammation [Research Articles]

Pyruvate kinase M2 (PKM2) links metabolic and inflammatory dysfunction in atherosclerotic coronary artery disease; however, its role in oxidized LDL (Ox-LDL)-induced macrophage foam cell formation and inflammation is unknown and therefore was studied. In recombinant mouse granulocyte-macrophage colony-stimulating factor-differentiated murine bone marrow-derived macrophages, early (1–6 h) Ox-LDL treatment induced PKM2 tyrosine 105 phosphorylation and promotes its nuclear localization. PKM2 regulates aerobic glycolysis and inflammation because PKM2 shRNA or Shikonin abrogated Ox-LDL-induced hypoxia-inducible factor-1α target genes lactate dehydrogenase, glucose transporter member 1, interleukin 1β (IL-1β) mRNA expression, lactate, and secretory IL-1β production. PKM2 inhibition significantly increased Ox-LDL-induced ABCA1 and ABCG1 protein expression and NBD-cholesterol efflux to apoA1 and HDL. PKM2 shRNA significantly inhibited Ox-LDL-induced CD36, FASN protein expression, DiI-Ox-LDL binding and uptake, and cellular total cholesterol, free cholesterol, and cholesteryl ester content. Therefore, PKM2 regulates lipid uptake and efflux. DASA-58, a PKM2 activator, downregulated LXR-α, ABCA1, and ABCG1, and augmented FASN and CD36 protein expression. Peritoneal macrophages showed similar results. Ox-LDL induced PKM2- SREBP-1 interaction and FASN expression in a PKM2-dependent manner. Therefore, this study suggests a role for PKM2 in Ox-LDL-induced aerobic glycolysis, inflammation, and macrophage foam cell formation.




cle

Hepatic PLIN5 signals via SIRT1 to promote autophagy and prevent inflammation during fasting [Research Articles]

Lipid droplets (LDs) are energy-storage organelles that are coated with hundreds of proteins, including members of the perilipin (PLIN) family. PLIN5 is highly expressed in oxidative tissues, including the liver, and is thought to play a key role in uncoupling LD accumulation from lipotoxicity; however, the mechanisms behind this action are incompletely defined. We investigated the role of hepatic PLIN5 in inflammation and lipotoxicity in a murine model under both fasting and refeeding conditions and in hepatocyte cultures. PLIN5 ablation with antisense oligonucleotides triggered a pro-inflammatory response in livers from mice only under fasting conditions. Similarly, PLIN5 mitigated lipopolysaccharide- or palmitic acid-induced inflammatory responses in hepatocytes. During fasting, PLIN5 was also required for the induction of autophagy, which contributed to its anti-inflammatory effects. The ability of PLIN5 to promote autophagy and prevent inflammation were dependent upon signaling through sirtuin 1 (SIRT1), which is known to be activated in response to nuclear PLIN5 under fasting conditions. Taken together, these data show that PLIN5 signals via SIRT1 to promote autophagy and prevent FA-induced inflammation as a means to maintain hepatocyte homeostasis during periods of fasting and FA mobilization.




cle

Serum amyloid A is not incorporated into HDL during HDL biogenesis [Research Articles]

Liver-derived serum amyloid A (SAA) is present in plasma where it is mainly associated with HDL and from which it is cleared more rapidly than are the other major HDL-associated apolipoproteins. Although evidence suggests that lipid-free and HDL-associated forms of SAA have different activities, the pathways by which SAA associates and disassociates with HDL are poorly understood. In this study, we investigated SAA lipidation by hepatocytes and how this lipidation relates to the formation of nascent HDL particles. We also examined hepatocyte-mediated clearance of lipid-free and HDL-associated SAA. We prepared hepatocytes from mice injected with lipopolysaccharide or an SAA-expressing adenoviral vector. Alternatively, we incubated primary hepatocytes from SAA-deficient mice with purified SAA. We analyzed conditioned media to determine the lipidation status of endogenously produced and exogenously added SAA. Examining the migration of lipidated species, we found that SAA is lipidated and forms nascent particles that are distinct from apoA-I-containing particles and that apoA-I lipidation is unaltered when SAA is overexpressed or added to the cells, indicating that SAA is not incorporated into apoA-I-containing HDL during HDL biogenesis. Like apoA-I formation, generation of SAA-containing particles was dependent on ABCA1, but not on scavenger receptor class B type I. Hepatocytes degraded significantly more SAA than apoA-I. Taken together, our results indicate that SAA’s lipidation and metabolism by the liver is independent of apoA-I and that SAA is not incorporated into HDL during HDL biogenesis.




cle

Model systems for studying the assembly, trafficking, and secretion of apoB lipoproteins using fluorescent fusion proteins [Research Articles]

apoB exists as apoB100 and apoB48, which are mainly found in hepatic VLDLs and intestinal chylomicrons, respectively. Elevated plasma levels of apoB-containing lipoproteins (Blps) contribute to coronary artery disease, diabetes, and other cardiometabolic conditions. Studying the mechanisms that drive the assembly, intracellular trafficking, secretion, and function of Blps remains challenging. Our understanding of the intracellular and intraorganism trafficking of Blps can be greatly enhanced, however, with the availability of fusion proteins that can help visualize Blp transport within cells and between tissues. We designed three plasmids expressing human apoB fluorescent fusion proteins: apoB48-GFP, apoB100-GFP, and apoB48-mCherry. In Cos-7 cells, transiently expressed fluorescent apoB proteins colocalized with calnexin and were only secreted if cells were cotransfected with microsomal triglyceride transfer protein. The secreted apoB-fusion proteins retained the fluorescent protein and were secreted as lipoproteins with flotation densities similar to plasma HDL and LDL. In a rat hepatoma McA-RH7777 cell line, the human apoB100 fusion protein was secreted as VLDL- and LDL-sized particles, and the apoB48 fusion proteins were secreted as LDL- and HDL-sized particles. To monitor lipoprotein trafficking in vivo, the apoB48-mCherry construct was transiently expressed in zebrafish larvae and was detected throughout the liver. These experiments show that the addition of fluorescent proteins to the C terminus of apoB does not disrupt their assembly, localization, secretion, or endocytosis. The availability of fluorescently labeled apoB proteins will facilitate the exploration of the assembly, degradation, and transport of Blps and help to identify novel compounds that interfere with these processes via high-throughput screening.