el

Liquid level sensor

A quartz glass liquid level sensor includes a support frame, a light masking plate, a quartz glass tube, and a sensor module. The light masking plate is movably mounted on the support frame. The quartz glass tube is movably mounted to the support frame. One end of the quartz glass tube is securely fixed to the light masking plate. The sensor module is mounted on the support frame, for sensing a position of the light masking plate relative to the support frame.




el

System and method for reducing iron oxide to metallic iron using coke oven gas and oxygen steelmaking furnace gas

Novel systems and methods are described for reducing iron oxide to metallic iron in an integrated steel mill or the like that has a coke oven and/or an oxygen steelmaking furnace. More specifically, the present invention relates to novel systems and methods for reducing iron oxide to metallic iron using coke oven gas (COG) or COG and basic oxygen furnace gas (BOFG).




el

Process for producing reduced iron pellets, and process for producing pig iron

In a method for producing a reduced iron pellet, when a powder formed article including iron oxide and carbon is heated and reduced in a rotary hearth furnace, a formed article produced using a raw material, in which an average diameter of the iron oxide is 50 microns or less and a ratio of carbon monoxide to carbon dioxide in a reduction zone is from 0.3 to 1, is reduced at a temperature of 1400° C. or less, thereby producing a reduced iron pellet in which a metallization ratio of iron is 50 to 85% and a ratio of residual carbon is 2% or less.




el

Systems and methods for localization of tire pressure monitoring system wheel modules

Embodiments relate to unidirectional TPMS utilizing information from a corresponding vehicle system in order to correlate with vehicle speed information to be used in a tire localization methodology. In an embodiment, the vehicle system is an anti-lock brake system (ABS), and the vehicle speed can be used in a localization scheme that reconstructs a +/−1 g ripple with waveform, amplitude, frequency and phase parameters. Because the waveform is known to be sinusoidal (due to the wheel rotation), the amplitude is known to be 2 g peak-to-peak (due to the gravitational +/−1 g), the frequency depends on vehicle speed (which can be estimated from centrifugal force measurements), and an algorithm is discussed herein for determining the phase by correlation, the +/−1 g ripple can be reconstructed and the wheels localized therefrom.




el

Device and method for changing the rotational angle position of a pneumatic tire on a wheel rim

A device for changing the rotational angle position of a pneumatic tire relative to a rim, on which the pneumatic tire is fitted to the rim, includes a manipulating device with a gripper adapted to be rotated by a positionable rotary drive mechanism and having radially adjustable gripper fingers with oppositely facing lift-off devices. Via the gripper it is possible to load a wheel into a clamping fixture, and following unseating of the tire beads from the clamped rim the pneumatic tire can be rotated relative to the rim through a computed angular difference.




el

Tyre-changing machine and a relative bead-breaking method

A tire-changing machine comprising support means (4) for a wheel, a tool-bearing arm (50) at an end of which a bead-breaking tool (6) is hinged according to a hinge axis (E) which is perpendicular to an axis (A) of the wheel, and first motorised means (32, 33) for causing a relative movement, in a parallel direction to the axis (A) of the wheel, between the support means (4) and the tool-bearing arm (50), such as to press the bead-breaking tool (6) against a flank of a tire on the wheel, characterized in that it comprises second motorised means (64), activatable independently from the first motorised means (32, 33), which second motorised means (64) are destined to rotate the bead-breaking tool (6) about the hinge axis (E) with the tool-bearing arm (50), in order to vary an inclination of the bead-breaking tool (6) with respect to the axis (A) of the wheel which is mounted on the support means (4).




el

Mounting device, and method for mounting and dismounting a vehicle tire on a wheel rim

A mounting device for mounting or dismounting a vehicle tire on a wheel rim, the wheel rim or the wheel being supported on a mounting table and a pressing-down device being provided for sliding the vehicle tire on the wheel rim. A movement of the pressing-down device is essentially parallel to the wheel axis for sliding the vehicle tire on the wheel rim or pulling off the vehicle tire from the wheel rim.




el

Motorcycle tire/wheel changing tool

A motorcycle wheel changing tool is presented that utilizes a rolling carriage that immobilizes the front or back wheel utilizing flat steel swing arms and a tension spring that holds the wheel in place with a knockout retaining rod through the wheel. The entire unit can be rolled and/or lifted in place to work in conjunction with a motorcycle stand. There is a folding handle that expands or contracts to accommodate different size tire/wheel widths and can pull the unit. The rolling wheels can be raised or lowered for different motorcycles depending on the height of the bike in relation to the wheel stand. Additionally, four large eye hooks can be raised or lowered to secure the wheel. Two threaded rods are utilized that secure both angle ends in place to secure the unit so that it is perpendicular to the wheel and keeps the unit from flexing.




el

Jet assisted tubeless tire seating device

A nozzle for seating a tubeless tire on a rim using pressurized gas includes an outlet, a jet configured to accept pressurized gas and emit a stream of gas through an orifice into a chamber. As the stream of gas enters the chamber, the Venturi effect causes air to enter the chamber through air intake ports and the stream of gas and air from the air intake ports is blown out of the outlet of the nozzle. A system for seating a tubeless tire on a rim includes the nozzle, a tank and a valve configured to control the flow of pressurized gas from the tank to the nozzle. The tire may be seated on the rim by positioning the system so that the air from the nozzle blows into the tire between the bead of the tire and the rim if the valve is opened.




el

Apparatus and method for sealing tubeless tires

An apparatus and method to seat a tire on a rim are described. Protrusions and a handle on the apparatus allow a user to brace the protrusions against the rim to prevent blow back when air is vented into the gap between the tire and the rim to seat the tire bead. The air is vented through a plurality of holes in the apparatus and the flow of the air into the apparatus is controlled by positioning a bridge handle of a flow control valve situated between the apparatus and a tank of air.




el

Apparatus and method for mounting and removing tyres on and from respective wheel rims

An apparatus (1) for mounting and removing a tire (2) on and from a respective rim (3) comprises: a movement element (9) for moving a bead (2a) of the tire (2) in order to insert/remove the bead (2a) into/from a respective groove in the rim (3); means (4) for supporting and moving the rim (3), designed to rotationally drive the rim about its longitudinal axis; characterized in that the means (4) for supporting and moving the rim (3) comprise a sensor (252) for measuring the mechanical strain applied to the supporting and movement means (4) as a result of the mechanical stress on the bead (2a) of the tire (2) during mounting/removal of the latter on/from the rim (3).




el

System and method for processing a tire-wheel assembly

An apparatus for processing a tire and a wheel for forming a tire wheel assembly is disclosed. The apparatus includes a tire support member including a first tire support member, a second tire support member and a third tire support member. Each of the first, second and third tire support members include an upper surface and a lower surface. The apparatus includes a plurality of tire engaging devices including a first tire tread engaging post and a second tire tread engaging post. A method for processing a tire and a wheel for forming a tire wheel assembly is also disclosed.




el

Machine for fitting and removing wheel tires for vehicles

A machine for fitting and removing wheel tires for vehicles includes a bearing structure, at least an apparatus for fastening and rotating the rim of a wheel for vehicles, a tool-carrier unit associated mobile with the bearing structure and having a removal tool, at least an adjustment apparatus suitable for adjusting the position of the tool-carrier unit with respect to the bearing structure, to place the tool-carrier unit into a work configuration wherein the removal tool is arranged in proximity of the apparatus for fastening and rotating, at least a memorisation device for memorising the position of the tool-carrier unit in the work configuration and at least a positioning device for positioning the tool-carrier unit with respect to the bearing structure between the work configuration and a configuration of minimum overall dimensions, wherein the tool-carrier unit is arranged in proximity of the bearing structure.




el

Apparatus for servicing vehicle wheels

Apparatus including a wheel balancing device and a tire changing device, comprising a spindle shaft for rotatably supporting a vehicle wheel or rim, unbalance measuring means operatively connected to the spindle shaft and having a spatial unbalance measuring area in which unbalance forces of the wheel or rim are detected, tire changer tools for assembling a tire onto a rim, spindle supporting means supporting the spindle shaft in a force acting range in which forces are created between the tire changer tools and the tire during the assembling or disassembling of the tire, tool supporting means supporting the tire changer tools within the force acting range which is arranged outside of the spatial unbalance measuring area, and drive means driving the spindle shaft with a rotational speed and torque adapted for assembling and disassembling the tire or for measuring unbalance forces of the wheel or rim.




el

Device for demounting a tire from a rim as well as a tire demounting machine equipped with such device

The present invention relates to a device for demounting a tire (T) from a rim (W) including at least one support element;an articulation pin element borne by the at least one support element;a spring shackle element having a first end and a second end articulated on the articulation pin;a demounting lever;an actuator borne by the at least one support element and set to act on the demounting lever in order to make the demounting lever angularly move during use; andfriction or elastic loading means designed to slow the angular movement of the spring shackle element around the articulation pin with respect to its angular movement around the first axis (x-x).




el

System and method for processing a tire-wheel assembly

An apparatus for processing a tire and a wheel for forming a tire-wheel assembly is disclosed. The apparatus includes at least one linear mounter sub-station that couples the tire with the wheel for forming the tire-wheel assembly. The apparatus also includes a transporting device that transports one of the wheel and the tire along a linear path that traverses the at least one linear mounter sub-station. The component of the at least one linear mounter sub-station resists, but does not prevent, movement of one of the tire and the wheel relative the other of the tire and the wheel along the linear path in order to spatially manipulate one of the tire and the wheel relative the other of the tire and the wheel in order to at least partially couple the tire with the wheel for forming the tire-wheel assembly. A method is also disclosed.




el

System and method for processing a tire-wheel assembly

An apparatus for processing a tire and a wheel for forming a tire wheel assembly is disclosed. The apparatus includes a tire support member including a first tire support member, a second tire support member and a third tire support member. Each of the first, second and third tire support members include an upper surface and a lower surface. The apparatus includes a plurality of tire engaging devices including a first tire tread engaging post and a second tire tread engaging post. A method for processing a tire and a wheel for forming a tire wheel assembly is also disclosed.




el

System and method for processing a tire-wheel assembly

An apparatus for processing a tire and a wheel for forming a tire wheel assembly is disclosed. The apparatus includes a tire support member including a first tire support member, a second tire support member and a third tire support member. Each of the first, second and third tire support members include an upper surface and a lower surface. The apparatus includes a plurality of tire engaging devices including a first tire tread engaging post and a second tire tread engaging post. A method for processing a tire and a wheel for forming a tire wheel assembly is also disclosed.




el

System and method for processing a tire-wheel assembly

An apparatus for processing a tire and a wheel for forming a tire wheel assembly is disclosed. The apparatus includes a tire support member including a first tire support member, a second tire support member and a third tire support member. Each of the first, second and third tire support members include an upper surface and a lower surface. The apparatus includes a plurality of tire engaging devices including a first tire tread engaging post and a second tire tread engaging post. A method for processing a tire and a wheel for forming a tire wheel assembly is also disclosed.




el

System and method for processing a tire-wheel assembly

An apparatus for processing a tire and a wheel for forming a tire wheel assembly is disclosed. The apparatus includes a tire support member including a first tire support member, a second tire support member and a third tire support member. Each of the first, second and third tire support members include an upper surface and a lower surface. The apparatus includes a plurality of tire engaging devices including a first tire tread engaging post and a second tire tread engaging post. A method for processing a tire and a wheel for forming a tire wheel assembly is also disclosed.




el

Tubeless bicycle repair apparatus

The invention relates to bicycle work stands for making repairs and changing and mounting tubeless tires. There is provided a one-sided wheel work stand with a pivotal upper wheel bracket which allows the user to work unobstructed on the wheel and then acts as a device to lay the wheel flat for better sealing. In related embodiments, the work stand is configured to assist a user in adapting 32 mm 15 QR axle hubs and in truing a bicycle wheel while attached to the work stand.




el

Wheel-clamping device for a wheel-service-machine and method for reversibly clamping a wheel on a wheel-clamping device for a wheel-service-machine

The present invention concerns a wheel-clamping device for wheels on wheel-service-machines with only one drive unit and further a method for clamping wheels on a wheel-clamping device of wheel-service-machines with only one drive unit. The innovative wheel-clamping device for a wheel-service-machine according to the present invention comprises a frame 20 having a through-opening 22, and a spindle 30 being rotatably supported in the through-opening 22. Further, the spindle 30 has a through-hole 32 with a mounting-side end 30b and a driving-side end 30a, which is connectable to a drive means which is provided for a rotary movement for the spindle 30, wherein the spindle 30 has an external thread 34 on an external circumferential portion. Moreover, the wheel-clamping device comprises a sleeve 50 with a turntable 58 for the wheel to be clamped, wherein the sleeve 50 has an internal thread portion 52 which is in threaded engagement with the external thread-portion 34 of the spindle 30. Furthermore, a stopping or holding means 70 is able to temporarily hold the sleeve 50, and a clamping means 60 for the temporarily fixation of a fixing element 40 which is inserted through the mounting-side end 30b, to the spindle 30 is also provided in the innovative wheel-clamping device.




el

Method for surface inclusions detection, enhancement of endothelial and osteoblast cells adhesion and proliferation, sterilization of electropolished and magnetoelectropolished nitinol surfaces

The method for surface inclusions detection, enhancement of endothelial and osteoblast cells adhesion and proliferation and sterilization of electropolished and magnetoelectropolished Nitinol implantable medical device surfaces uses an aqueous solution of chemical compounds containing halogenous oxyanions as hypochlorite (ClO−) and hypobromite (BrO−) preferentially 6% sodium hypochlorite (NaClO).




el

Thin gauge steel sheet excellent in surface conditions, formability, and workability and method for producing the same

The present invention provides ultralow carbon thin gauge steel sheet and a method for producing the same where coalescence and growth of inclusions in the molten steel are prevented and the inclusions are finely dispersed in the steel sheet, whereby surface defects and cracks at the time of press forming are prevented, growth of recrystallized grains at the time of continuous annealing is promoted, and a high r value (r value≧2.0) and elongation (total elongation≧50%) are exhibited, that is, ultralow carbon thin gauge steel sheet excellent in surface conditions, formability, and workability comprised of, by mass %, 0.00030.003%≦C≦0.003%, Si≦0.01%, Mn≦0.1%, P≦0.02%, S≦0.01%, 0.0005%≦N≦0.0025%, 0.01%≦acid soluble Ti≦0.07%, acid soluble Al≦0.003%, and 0.002%≦La+Ce+Nd≦0.02% and a balance of iron and unavoidable impurities, said steel sheet characterized by containing at least cerium oxysulfite, lanthanum oxysulfite, and neodymium oxysulfite.




el

Method for producing seamless steel pipe for oil wells excellent in sulfide stress cracking resistance

A high-strength seamless steel pipe for oil wells excellent in sulfide stress cracking resistance which comprises, on the percent by mass basis, C: 0.1 to 0.20%, Si: 0.05 to 1.0%, Mn: 0.05 to 1.0%, Cr: 0.05 to 1.5%, Mo: 0.05 to 1.0%, Al: 0.10% or less, Ti: 0.002 to 0.05% and B: 0.0003 to 0.005%, with a value of equation “C+(Mn/6)+(Cr/5)+(Mo/3)” of 0.43 or more, with the balance being Fe and impurities, and in the impurities P: 0.025% or less, S: 0.010% or less and N: 0.007% or less. The seamless steel pipe may contain a specified amount of one or more element(s) of V and Nb, and/or a specified amount of one or more element(s) of Ca, Mg and REM. The seamless steel pipe can be produced at a low cost by adapting an in-line tube making and heat treatment process having a high production efficiency since a reheating treatment for refinement of grains is not required.




el

Steel material superior in high temperature characteristics and toughness and method of production of same

A steel material superior in high temperature characteristics and toughness is provided, that is, a steel material containing, by mass %, C: 0.005% to 0.03%, Si: 0.05% to 0.40%, Mn: 0.40% to 1.70%, Nb: 0.02% to 0.25%, Ti: 0.005% to 0.025%, N: 0.0008% to 0.0045%, B: 0.0003% to 0.0030%, restricting P: 0.030% or less, S: 0.020% or less, Al: 0.03% or less, and having a balance of Fe and unavoidable impurities, where the contents of C and Nb satisfy C—Nb/7.74≦0.02 and Ti-based oxides of a grain size of 0.05 to 10 μm are present in a density of 30 to 300/mm2.




el

Steel for heat treatment

A steel for heat treatment, which exhibits high strength and high toughness even when the heat treatment (such as quenching and tempering) of the steel is conducted under conventional conditions in an after stage. The steel for heat treatment contains C: 0.10 to 0.70 mass %, Mn: 0.1 to 3.0 mass %, Al: 0.005 to 2.0 mass %, P: 0.050 mass % or less, S: 0.50 mass % or less, O: 0.0030 mass or less, N: 0.0200 mass % or less, and one or more selected from the group consisting of Ti: 0.30 mass % or less and Nb: 0.30 mass or less with the balance being Fe and unavoidable impurities, and has a TH value of 1.0 or above as calculated according to the formula: ({Ti}/48+{Nb}/93) 104 and grain diameters of 10 μm or below. {Ti} and {Nb} refer respectively to the contents of Ti and Nb in precipitates of 5 to 100 nm in size as determined about their respective extraction residues.




el

High Al-content steel sheet excellent in workability and method of production of same

The present invention provides a high Al-content steel sheet having an excellent workability and a method of production of the same at a low cost by mass production, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil, that is, a high Al-content steel sheet having an Al content of 6.5 mass % to 10 mass %, the high Al-content steel sheet characterized by having one or both of a {222} plane integration of an α-Fe crystal with respect to the surface of the steel sheet of 60% to 95% or a {200} plane integration of 0.01% to 15% and a method of production of the same, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil.




el

Method for manufacturing high strength galvanized steel sheet with excellent formability

A method of manufacturing a high-strength galvanized steel sheet includes hot-rolling a slab to form a steel sheet; during continuous annealing, heating the steel sheet to a temperature of 750° C. to 900° C. at an average heating rate of at least 10° C./s at a temperature of 500° C. to an A1 transformation point; holding that temperature for at least 10 seconds; cooling the steel sheet from 750° C. to a temperature of (Ms point—100° C.) to (Ms point—200° C.) at an average cooling rate of at least 10° C./s; reheating the steel sheet to a temperature of 350° C. to 600° C.; holding that temperature for 10 to 600 seconds; and galvanizing the steel sheet.




el

Low nickel austenitic stainless steel

Various embodiments of the invention provide a low nickel austenitic stainless steel alloy composition including about 0.6% to about 0.8% by weight carbon; about 16% to about 18% by weight chromium; about 4.5% to about 5.5% by weight nickel; about 2.0% to about 5.0% by weight manganese; about 0.8% to about 1.2% by weight tungsten; about 0.8% to about 1.2% by weight molybdenum; about 0.65% to about 0.85% by weight niobium; about 0.3% to about 1.0% by weight silicon; balance iron and unavoidable impurities, wherein percentages are based on the overall weight of the composition. The invention further provides articles, such as turbine housings, prepared using the inventive alloys.




el

Build-up welding material, deposited metal, and member with deposited metal

Provided a build-up welding material which contains C: 0.2 to 1.5 mass %, Si: 0.5 to 2 mass %, Mn: 0.5 to 2 mass %, Cr: 20 to 40 mass %, Mo: 2 to 6 mass %, Ni: 0.5 to 6 mass %, V: 1 to 5 mass % and W: 0.5 to 5 mass %, with the balance being Fe and unavoidable impurities.




el

Timepiece barrel assembly with reduced core diameter

A timepiece barrel assembly, including a barrel mainspring mounted between a barrel drum and a receiving surface of a barrel core coaxial to the drum. The spring is made of a multiphase, cobalt-nickel-chromium based alloy, having a Young's modulus of between 200 and 240 GPa and a shear modulus of between 80 and 100 GPa, and having a width to thickness ratio of between 9 and 21, and the maximum radius of the steel or stainless steel core relative to its pivot axis is less than nine times the maximum thickness of the spring, and the barrel assembly includes, on the spring or the drum, a mechanism limiting longitudinal clearance, towards the pivot axis, between the drum and the mainspring.




el

Composite steel part and manufacturing method for the same

A manufacturing method for a composite steel part including manufacturing a first steel part by preparing an intermediate product in which an extra portion is added, and heating the intermediate product to an austenitizing temperature in a carburizing atmosphere to form a carburized layer, cooling the intermediate product at a rate less than a cooling rate at which martensitic transformation is caused and in which the intermediate product is cooled to a temperature equal to or less than a temperature at which structure transformation due to the cooling is completed, heating the intermediate product to an austenitizing range by high-density energy and thereafter cooled at a rate equal to or more than the cooling rate at which martensitic transformation is caused to form a carburized quenched portion, cutting the extra portion of the intermediate product, and welding the first steel part and the second steel part to each other.




el

Compositions promoting the accelerated degradation of metals and composite materials

A composition to decommission firearms is presented. The composition comprises a monomer, a quantity of calcium chloride; and sulfur-containing compound. The sulfur containing compound includes sodium persulfate and/or sodium thiosulfate.




el

Steel sheet for cans with excellent surface properties after drawing and ironing and method for producing the same

A component composition contains, by % by mass, 0.0016 to 0.01% of C, 0.05 to 0.60% of Mn, and 0.020 to 0.080% of Nb so that the C and Nb contents satisfy the expression, 0.4≦(Nb/C)×(12/93)≦2.5. In addition, the amount of Nb-based precipitates is 20 to 500 ppm by mass, the average grain diameter of the Nb-based precipitates is 10 to 100 nm, and the average crystal grain diameter of ferrite is 6 to 10 μm. Nb is added to ultra-low-carbon steel used as a base, and the amount and grain diameter of the Nb-based precipitates are controlled to optimize the pinning effect. Grain refinement of ferrite is achieved by specifying the Mn amount, thereby achieving softening and excellent resistance to surface roughness of steel.




el

Bearing steel being excellent both in workability after spheroidizing-annealing and in hydrogen fatigue resistance property after quenching and tempering

Provided is bearing steel excellent in workability after spheroidizing-annealing and in hydrogen fatigue resistance property after quenching and tempering. The bearing steel has a chemical composition containing, by mass %: 0.85% to 1.10% C; 0.30% to 0.80% Si; 0.90% to 2.00% Mn; 0.025% or less P; 0.02% or less S; 0.05% or less Al; 1.8% to 2.5% Cr; 0.15% to 0.4% Mo; 0.0080% or less N; and 0.0020% or less O, which further contains more than 0.0015% to 0.0050% or less Sb, with the balance being Fe and incidental impurities, to thereby effectively suppress the generation of WEA even in environment where hydrogen penetrates into the steel, so as to improve the roiling contact fatigue life and also the workability such as cuttability and forgeability of the material.




el

Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same

A low alloy steel ingot contains from 0.15 to 0.30% of C, from 0.03 to 0.2% of Si, from 0.5 to 2.0% of Mn, from 0.1 to 1.3% of Ni, from 1.5 to 3.5% of Cr, from 0.1 to 1.0% of Mo, and more than 0.15 to 0.35% of V, and optionally Ni, with a balance being Fe and unavoidable impurities. Performing quality heat treatment including a quenching step and a tempering step to the low alloy steel ingot to obtain a material, which has a grain size number of from 3 to 7 and is free from pro-eutectoid ferrite in a metallographic structure thereof, and which has a tensile strength of from 760 to 860 MPa and a fracture appearance transition temperature of not higher than 40° C.




el

Alumina-forming cobalt-nickel base alloy and method of making an article therefrom

A cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: greater than about 4 % of Al, about 10 to about 20 % of W, about 10 to about 40 % Ni, about 5 to 20 % Cr and the balance Co and incidental impurities. The alloy has a microstructure that is substantially free of a CoAl phase having a B2 crystal structure and configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment. A method of making an article of the alloy includes: selecting the alloy; forming an article from the alloy; solution-treating the alloy; and aging the alloy to form an alloy microstructure that is substantially free of a CoAl phase having a B2 crystal structure, wherein the alloy is configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.




el

Method for welding workpieces made of highly heat-resistant superalloys, including a particular mass feed rate of the welding filler material

A welding method for welding workpieces made of highly heat-resistant superalloys is provided. The method includes generating a heat input zone on the workpiece surface by means of a heat source, feeding welding filler material into the heat input zone by means of a feeding device, and generating a relative motion between the heat source and the feeding device on one hand and the workpiece surface on the other hand by means of a conveying device. Furthermore, according to the welding method, the mass feed rate is ≦350 mg/min.




el

Cold-rolled aluminum killed steel sheet and method of manufacturing packaging from said sheet

The invention concerns a cold-rolled aluminum killed steel sheet, which includes by weight between 0.003 and 0.130% of carbon, between 0.10 and 1% of manganese, between 0.010 and 0.100% of aluminum, between 0.0015 and 0.0140% nitrogen, the remainder being of iron and impurities resulting from the manufacturing, and which has a content of carbon in solid solution (Css) of at least 50 ppm, as well as a method of manufacturing packaging from said sheet.




el

High strength cold rolled steel sheet and method for manufacturing the same

A multiphase steel sheet has a steel composition containing, in percent by mass, more than 0.015% to less than 0.100% of carbon, less than 0.40% of silicon, 1.0% to 1.9% of manganese, more than 0.015% to 0.05% of phosphorus, 0.03% or less of sulfur, 0.01% to 0.3% of soluble aluminum, 0.005% or less of nitrogen, less than 0.30% of chromium, 0.0050% or less of boron, less than 0.15% of molybdenum, 0.4% or less of vanadium, 0.02% or less of titanium, wherein [Mneq] is 2.0 to 2.8, the balance being iron and incidental impurities.




el

Low-nickel austenitic stainless steel

The invention relates to a low-nickel austenitic stainless steel with high resistance to delayed cracking and the use of the steel. The steel contains in weight % 0.02-0.15% carbon, 7-15% manganese, 14-19% chromium, 0.1-4% nickel, 0.1-3% copper, 0.05-0.3% nitrogen, the balance of the steel being iron and inevitable impurities, and the chemical composition range in terms of the sum of carbon and nitrogen contents (C+N) and the measured Md3o-temperature is inside the area defined by the points ABCD which have the following values Point Md30° C. C+N % A−80 0.1 B+7 0.1 C−40 0.40 D−80 0.40.




el

Steel for induction hardening, roughly shaped material for induction hardening, producing method thereof, and induction hardening steel part

A steel for an induction hardening including, by mass %, C: more than 0.75% to 1.20%, Si: 0.002 to 3.00%, Mn: 0.20 to 2.00%, S: 0.002 to 0.100%, Al: more than 0.050% to 3.00%, P: limited to 0.050% or less, N: limited to 0.0200% or less, O: limited to: 0.0030% or less, and the balance composing of iron and unavoidable impurities, wherein an Al content and a N content satisfy, by mass %, Al−(27/14)×N>0.050%.




el

Galvannealed steel sheet having excellent formability and exfoliation resistance after adhesion and production method thereof

The galvannealed steel sheet includes: a galvannealed layer formed on at least one surface of a steel sheet and contains includes an amount of 0.05 mass % to 0.5 mass % of Al, an amount of 6 mass % of 12 mass % of Fe, and the balance composed of Zn and inevitable impurities; and a mixed layer formed on a surface of the galvannealed layer and includes a composite oxide of Mn, Zn, and P and an aqueous P compound, wherein the composite oxide includes 0.1 mg/m2 to 100 mg/m2 of Mn, an amount of 1 mg/m2 to 100 mg/m2 of P, and Zn, and a P/Mn ratio is 0.3 to 50, and wherein the total size of an area of the mixed layer in which an attached amount of P is equal to or more than 20 mg/m2 is 20% to 80% of a surface area of the mixed layer.




el

Electric induction heating of a rail head with non-uniform longitudinal temperature distribution

Apparatus and method are provided for making the longitudinal temperature distribution of the bulbous end of a longitudinally oriented workpiece, such as a rail's head, generally uniform when the head has a non-uniform longitudinal temperature distribution. A combination of crown and skirt electric inductors is used to achieve the generally uniform temperature distribution by modulating the magnetic field intensity produced by current flow through one or more of the combination of crown and skirt inductors as required for the non-uniformly heated regions of the rail's head.




el

Hot-rolled steel sheet and method for producing same

Provided is a hot-rolled steel sheet that has a chemical composition including, by mass %: C: 0.060% to 0.150%; Si: 0.15% to 0.70%; Mn: 1.00% to 1.90%; P: 0.10% or less; S: 0.010% or less; Al: 0.01% to 0.10%; N: 0.010% or less; Nb: 0.010% to 0.100%; and the balance including Fe and incidental impurities. The hot-rolled steel sheet has a microstructure containing ferrite of 18 μm or less in average grain size by a volume fraction of at least 75% and pearlite of at least 2 μm in average grain size by a volume fraction of at least 5%, the balance being low-temperature-induced phases, the pearlite having a mean free path of at least 5.0 μm.




el

Manufacturing method of grain-oriented electrical steel sheet

A predetermined steel containing Te: 0.0005 mass % to 0.0050 mass % is heated to 1320° C. or lower to be subjected to hot rolling, and is subjected to annealing, cold rolling, decarburization annealing, and nitridation annealing, and thereby a decarburized nitrided steel sheet is obtained. Further, an annealing separating agent is applied on the surface of the decarburized nitrided steel sheet and finish annealing is performed, and thereby a glass coating film is formed. The N content of the decarburized nitrided steel sheet is set to 0.0150 mass % to 0.0250 mass % and the relationship of 2×[Te]+[N]≦0.0300 mass % is set to be established. Note that [Te] represents the Te content and [N] represents the N content.




el

Wallet composed of steel fabric

A smart card with an RFID tag is held in a wallet comprising a back layer and at least one front layer stitched to the back layer around part of a perimeter thereof to define at least one pocket in the wallet dimensioned to hold and completely surround the smart card. Both of the layers are composed of a stainless steel fabric capable of blocking RF radiation.




el

Accessory or fashion item that charges various electronic devices

A toteable or wearable fashion item configured to provide an electronic charge to a mobile electronic device. The device includes a battery comprising one USB port and one pin port and a pouch secured to the fashion device and containing the battery substantially concealed therein, the pouch defining at least one opening which facilitates access to the USB port and the pin port.




el

Cellular shield case with twistable cover

The invention relates to carrying cases for wireless devices including cell phones, wireless tablets and laptop PC's which provide EMF shielding for the user. The wireless devices are inserted into a case comprising EMF shielding material and a cover including shielding material is flipped thereover to provide further radiation protection. The case involves several embodiments such as a flat flip case, a fixed bent edging flip case and a flexible folding edge flip case. A flip type case shielded cover added to existing wireless device open faced skin covers. Another embodiment of the invention involves a wireless device pocket shield wherein a shielded insulation envelope having a wireless device placed therein is dropped into an apparel pocket.