0

Necklace Spots A-Fib in Just Over 30 Seconds

A necklace outfitted with a high-tech pendant may be able to screen for signs of an abnormal heart rhythm condition known as atrial fibrillation.




0

Coronavirus Daily Digest: May 7, 2020

A roundup of the latest news about COVID-19




0

European Society of Cardiology 2020 Congress Goes Virtual

COVID-19 has led the ESC to transition its annual congress to a virtual format; ESC 2020 Congress 'Challenging Times, Infinite Possibilities' will run online from August 29 to September 1.




0

100 Days Into COVID-19, Where Do We Stand?

In the 100 days since the U.S. reported its first coronavirus case, we've had more than 1.2 million cases and 73,000 deaths. But are things getting any better?




0

Middle Age More Stressful Now Than in 1990s: Study

Before the COVID-19 pandemic upended people's lives, Americans were already feeling more stressed than they did a generation ago. Now, new research finds that no group is feeling the impact of additional stress more than middle-aged people.




0

Coronavirus Daily Digest: May 8, 2020

A roundup of the latest news about COVID-19




0

PMC Canada to Start in Fall 2009

Canada is soon expected to join the international effort to provide access to health research through the PMC International network of digital archives. PMC Canada is the result of a three-way collaborative effort by the National Library of Medicine (NLM), the Canadian Institutes of Health Research (CIHR), and the National Research Council's Canada Institute for Scientific and Technical Information (NRC-CISTI). Similar to UK PubMed Central, PMC Canada will include most of the health and life sciences literature available through the U.S. PMC. PMC Canada will also include research resulting from funding through the Canadian Institutes of Health Research (CIHR). Components of the new repository will include a bilingual interface as well a manuscript submission system for CIHR researchers.




0

First-Ever Journal Article Tag Suite Conference (JATS-Con) to be Held in November 2010

PMC is pleased to announce the first of what we hope will be an annual series of conferences for users of the Journal Article Tag Suite, that is, for users of any of the “NLM DTDs”. The Journal Article Tag Suite Conference (JATS-Con) is a peer-reviewed conference that will feature a broad range of content on the Tag Suite—from the technical components to publishing theory—as well as the latest news on the Tag Suite. The conference will be hosted by the National Center for Biotechnology Information (NCBI) at the National Library of Medicine on the NIH campus in Bethesda, Maryland on November 1 & 2, 2010.

For more information on the conference, see https://jats.nlm.nih.gov/jats-con.

Note: There is no charge for the conference; however, space is limited so preregistration is required.




0

The PMC 10th Anniversary Video is now on YouTube!

A video celebrating PMC's first decade is now available for viewing on the NCBI YouTube Channel. The PMC 10th Anniversary Video can also be found on the regular YouTube site.




0

JATS-Con Dates Announced for 2012!

The third annual Journal Article Tag Suite Conference (JATS-Con) will be held on October 16 and 17, 2012 on the NIH Campus in Bethesda, Maryland. JATS-Con is a conference for users of the NISO Z39.96 Journal Article Tag Suite: that is, users of any of the NLM DTDs. JATS-Con is a peer-reviewed conference with a broad range of content on the Tag Suite from the technical to publishing theory — and the latest news on the Tag Suite. For more information, see JATS-Con.




0

JATS-Con 2013 Program is Now Available

JATS-Con is a conference for users of the Journal Article Tag Suite, that is, users of any of the "NLM DTDs" or NISO Z39.96. JATS-Con will take place on the NIH campus in Bethesda, Maryland on October 22 and 23, 2013.

The full program is now available, as are proceedings from previous years.

There is no charge for the conference; however, space is limited so registration is required.

You may also sign up for a pre-conference tutorial on October 21, 2013. Details are on the Tutorial Registration page.




0

CC0 Filter Now Available

PMC includes some journals published by US government agencies that make their articles available under a Creative Commons CC0 (public domain) license. Some other journals also apply a CC0 license to selected articles in PMC. All these articles may be used and reproduced without special permission. However, anyone using the material is requested to properly cite and acknowledge the source.

You may now search for CC0 articles by using special filters in both PMC (cc0 license[filter]) and PubMed (pmc cc0 license[filter]). These filters are based on license information that is provided to PMC by publishers and encoded as machine-readable identifiers in the source XML of each article. For more information, see the Open Access Subset page.

Please bear in mind that these articles, although made available under a CC0 license, may still contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.




0

Open Access Week 2018 and PMC

Collaboration with publishers and funders to ensure the openness and preservation of the scientific record is one of PMC’s core principles. Open Access Week offers an opportunity to celebrate some of the recent outcomes of these collaborations:

  • In July 2018, the PMC corpus of publicly accessible articles hit 5 million articles.
  • In May 2018, the PMC Open Access Subset surpassed the 2 million article mark.
  • The Author Manuscript Collection now includes more than 500,000 papers for text mining.
  • The PMC and Research Funder Policy page underwent an update in September 2018 to increase transparency around funder support in PMC for publishers, authors, and the public.
  • Funder policy support in PMC has been extended to the US Department of Homeland Security, in addition to several new US private research funders via the Health Research Alliance.

In FY2018 more than 200 new journals committed to archiving their complete contents in PMC, to be made publicly accessible in 12 months or less.




0

Trump Signs Massive Relief Package Into Law as U.S. Coronavirus Cases Reach 9,000

Title: Trump Signs Massive Relief Package Into Law as U.S. Coronavirus Cases Reach 9,000
Category: Health News
Created: 3/19/2020 12:00:00 AM
Last Editorial Review: 3/19/2020 12:00:00 AM




0

4 in 10 Security Guards Suffer PTSD, Study Finds

Title: 4 in 10 Security Guards Suffer PTSD, Study Finds
Category: Health News
Created: 4/14/2020 12:00:00 AM
Last Editorial Review: 4/15/2020 12:00:00 AM




0

Middle Age More Stressful Now Than in 1990s: Study

Title: Middle Age More Stressful Now Than in 1990s: Study
Category: Health News
Created: 5/7/2020 12:00:00 AM
Last Editorial Review: 5/8/2020 12:00:00 AM




0

There's a Virus Spreading in U.S. That's Killed 10,000: The Flu

Title: There's a Virus Spreading in U.S. That's Killed 10,000: The Flu
Category: Health News
Created: 2/7/2020 12:00:00 AM
Last Editorial Review: 2/7/2020 12:00:00 AM




0

Dangerously Hot Days for U.S. Farm Workers Could Double by 2050

Title: Dangerously Hot Days for U.S. Farm Workers Could Double by 2050
Category: Health News
Created: 5/5/2020 12:00:00 AM
Last Editorial Review: 5/6/2020 12:00:00 AM




0

Phase I Dose-Escalation and -Expansion Study of Telisotuzumab (ABT-700), an Anti-c-Met Antibody, in Patients with Advanced Solid Tumors

This first-in-human phase I study evaluated the pharmacokinetics, safety, and preliminary efficacy of telisotuzumab, formerly called ABT-700, an antagonistic antibody directed against c-Met. For dose escalation (3+3 design), 3 to 6 patients with advanced solid tumors were enrolled into four dose cohorts (5–25 mg/kg). In the dose-expansion phase, a subset of patients was prospectively selected for MET amplification (FISH screening). Patients received telisotuzumab intravenously on day 1 every 21 days. For dose expansion, 15 mg/kg was chosen as the dose on the basis of safety, pharmacokinetics, and other data from the escalation cohorts. Forty-five patients were enrolled and received at least one dose of telisotuzumab (dose escalation, n = 15; dose expansion, n = 30). Telisotuzumab showed a linear pharmacokinetics profile; peak plasma concentration was proportional to dose level. There were no acute infusion reactions and no dose-limiting toxicities were observed. The most common treatment-related adverse events included hypoalbuminemia (n = 9, 20.0%) and fatigue (n = 5, 11.1%). By Response Evaluation Criteria In Solid Tumors (RECIST), 4 of 10 (40.0%) patients with MET-amplified tumors had confirmed partial response in target lesions (one ovarian, two gastric, and one esophageal), two (20.0%) had stable disease, three (30.0%) had progressive disease; one patient was unable to be evaluated. Among patients with nonamplified tumors (n = 35), no objective responses were observed; however, 11 patients had stable disease per RECIST criteria. In conclusion, telisotuzumab has an acceptable safety profile with clinical activity observed in patients with MET-amplified advanced solid tumors.




0

Long Noncoding RNA MALAT1 Contributes to Sorafenib Resistance by Targeting miR-140-5p/Aurora-A Signaling in Hepatocellular Carcinoma

Long noncoding RNAs (lncRNA) have been found to play critical roles in tumorigenesis and the development of various cancers, including hepatocellular carcinoma (HCC). Metastasis associated with lung adenocarcinoma transcript-1 (MALAT1) has been identified as an oncogene and prognostic biomarker in HCC. Here, we demonstrated that MALAT1 expression was obviously high in sorafenib-resistant HCC cells. Furthermore, knockdown of MALAT1 increased sorafenib sensitivity in nonresponsive HCC cells, whereas forced expression of MALAT1 conferred sorafenib resistance to responsive HCC cells in vitro. In addition, loss/gain-of-function assays revealed that MALAT1 promoted cell proliferation, migration, and epithelial–mesenchymal transition in HCC cells. Mechanistically, MALAT1 regulated Aurora-A expression by sponging miR-140-5p, thus promoting sorafenib resistance in HCC cells. Moreover, MALAT1 inhibition enhanced the antitumor efficacy of sorafenib in vivo. Clinically, we found that MALAT1 expression was negatively correlated with miR-140-5p expression but positively correlated with Aurora-A expression in patients with HCC and that upregulated MALAT1 was closely correlated with poor survival outcomes in patients with HCC. These findings indicated that MALAT1 may be a novel target for prognosis prediction and therapeutic strategies in patients with HCC treated with sorafenib.




0

Yorkshire Geological Society Registered Charity No. 220014 Society Proceedings 2018




0

Subject Index to Volume 83 (2019)




0

Author Index to Volume 83 (2019)




0

Top-Cited Articles from Dental Education Journals, 2009 to 2018: A Bibliometric Analysis

The number of citations an article receives is an important indicator to quantify its influence in its field. The aim of this study was to identify and analyze the characteristics of the 50 top-cited articles addressing dental education published in two journals dedicated to dental education (European Journal of Dental Education and Journal of Dental Education). The Web of Science database was searched to retrieve the 50 most-cited articles from the two journals in December 2018. The top-cited articles were analyzed for journal of publication, number of citations, institution and country of origin, year of publication, study type, keywords, theme and subtheme, and international collaborations. The results showed the 50 top-cited articles were cited between 24 and 146 times each. The majority of these top-cited articles (n=34) were published in the Journal of Dental Education. Half (n=25) of the articles were by authors in the U.S. The most common study types were surveys (n=26) and reviews (n=10). The main themes of these top-cited articles were curriculum and learner characteristics. This bibliometric analysis can serve as a reference for recognizing studies with the most impact in the scholarship of dental education.




0

Role of Plasmodium falciparum Protein GEXP07 in Maurers Cleft Morphology, Knob Architecture, and P. falciparum EMP1 Trafficking

ABSTRACT

The malaria parasite Plasmodium falciparum traffics the virulence protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of infected red blood cells (RBCs) via membranous organelles, known as the Maurer’s clefts. We developed a method for efficient enrichment of Maurer’s clefts and profiled the protein composition of this trafficking organelle. We identified 13 previously uncharacterized or poorly characterized Maurer’s cleft proteins. We generated transfectants expressing green fluorescent protein (GFP) fusions of 7 proteins and confirmed their Maurer’s cleft location. Using co-immunoprecipitation and mass spectrometry, we generated an interaction map of proteins at the Maurer’s clefts. We identified two key clusters that may function in the loading and unloading of PfEMP1 into and out of the Maurer’s clefts. We focus on a putative PfEMP1 loading complex that includes the protein GEXP07/CX3CL1-binding protein 2 (CBP2). Disruption of GEXP07 causes Maurer’s cleft fragmentation, aberrant knobs, ablation of PfEMP1 surface expression, and loss of the PfEMP1-mediated adhesion. GEXP07 parasites have a growth advantage compared to wild-type parasites, and the infected RBCs are more deformable and more osmotically fragile.

IMPORTANCE The trafficking of the virulence antigen PfEMP1 and its presentation at the knob structures at the surface of parasite-infected RBCs are central to severe adhesion-related pathologies such as cerebral and placental malaria. This work adds to our understanding of how PfEMP1 is trafficked to the RBC membrane by defining the protein-protein interaction networks that function at the Maurer’s clefts controlling PfEMP1 loading and unloading. We characterize a protein needed for virulence protein trafficking and provide new insights into the mechanisms for host cell remodeling, parasite survival within the host, and virulence.




0

Report from the American Society for Microbiology COVID-19 International Summit, 23 March 2020: Value of Diagnostic Testing for SARS-CoV-2/COVID-19




0

The Proteasome Governs Fungal Morphogenesis via Functional Connections with Hsp90 and cAMP-Protein Kinase A Signaling

ABSTRACT

Protein homeostasis is critical for proliferation and viability of all organisms. For Candida albicans, protein homeostasis also modulates the transition between yeast and filamentous forms, which is critical for virulence. A key regulator of morphogenesis is the molecular chaperone Hsp90, which mediates proteostasis under physiological and stress conditions. Hsp90 regulates morphogenesis by repressing cyclic AMP-protein kinase A (cAMP-PKA) signaling, such that inhibition of Hsp90 causes filamentation in the absence of an inducing cue. We explored the effect of perturbation of another facet of protein homeostasis and discovered that morphogenesis is also regulated by the proteasome, a large 33-subunit protein complex consisting of a 20S catalytic core and two 19S regulatory particles, which controls degradation of intracellular proteins. We identified a conserved role of the proteasome in morphogenesis as pharmacological inhibition of the proteasome induced filamentation of C. albicans and the related species Candida dubliniensis, Candida tropicalis, Candida krusei, and Candida parapsilosis. For C. albicans, genetic depletion of any of 29 subunits of the 19S or 20S particle induced filamentation. Filaments induced by inhibition of either the proteasome or Hsp90 have shared structural characteristics, such as aberrant nuclear content, and shared genetic dependencies, such as intact cAMP-PKA signaling. Consistent with a functional connection between these facets of protein homeostasis that modulate morphogenesis, we observed that proteasome inhibition results in an accumulation of ubiquitinated proteins that overwhelm Hsp90 function, relieving Hsp90-mediated repression of morphogenesis. Together, our findings provide a mechanism whereby interconnected facets of proteostasis regulate C. albicans morphogenesis.

IMPORTANCE Fungi cause life-threatening infections and pose a serious threat to human health as there are very few effective antifungal drugs. Candida albicans is a major human fungal pathogen and cause of morbidity and mortality in immunocompromised individuals. A key trait that enables C. albicans virulence is its ability to transition between yeast and filamentous forms. Understanding the mechanisms regulating this virulence trait can facilitate the development of much-needed, novel therapeutic strategies. A key regulator of morphogenesis is the molecular chaperone Hsp90, which is crucial for proteostasis. Here, we expanded our understanding of how proteostasis regulates fungal morphogenesis and identified the proteasome as a repressor of filamentation in C. albicans and related species. Our work suggests that proteasome inhibition overwhelms Hsp90 function, thereby inducing morphogenesis. This work provides a foundation for understanding the role of the proteasome in fungal virulence and offers potential for targeting the proteasome to disarm fungal pathogens.




0

The Cellular Response to Lanthanum Is Substrate Specific and Reveals a Novel Route for Glycerol Metabolism in Pseudomonas putida KT2440

ABSTRACT

Ever since the discovery of the first rare earth element (REE)-dependent enzyme, the physiological role of lanthanides has become an emerging field of research due to the environmental implications and biotechnological opportunities. In Pseudomonas putida KT2440, the two pyrroloquinoline quinone-dependent alcohol dehydrogenases (PQQ-ADHs) PedE and PedH are inversely regulated in response to REE availability. This transcriptional switch is orchestrated by a complex regulatory network that includes the PedR2/PedS2 two-component system and is important for efficient growth on several alcoholic volatiles. To study whether cellular responses beyond the REE switch exist, the differential proteomic responses that occur during growth on various model carbon sources were analyzed. Apart from the Ca2+-dependent enzyme PedE, the differential abundances of most identified proteins were conditional. During growth on glycerol—and concomitant with the proteomic changes—lanthanum (La3+) availability affected different growth parameters, including the onset of logarithmic growth and final optical densities. Studies with mutant strains revealed a novel metabolic route for glycerol utilization, initiated by PedE and/or PedH activity. Upon oxidation to glycerate via glyceraldehyde, phosphorylation by the glycerate kinase GarK most likely yields glycerate-2-phosphate, which is eventually channeled into the central metabolism of the cell. This new route functions in parallel with the main degradation pathway encoded by the glpFKRD operon and provides a growth advantage to the cells by allowing an earlier onset of growth with glycerol as the sole source of carbon and energy.

IMPORTANCE The biological role of REEs has long been underestimated, and research has mainly focused on methanotrophic and methylotrophic bacteria. We have recently demonstrated that P. putida, a plant growth-promoting bacterium that thrives in the rhizosphere of various food crops, possesses a REE-dependent alcohol dehydrogenase (PedH), but knowledge about REE-specific effects on physiological traits in nonmethylotrophic bacteria is still scarce. This study demonstrates that the cellular response of P. putida to lanthanum (La3+) is mostly substrate specific and that La3+ availability highly affects the growth of cells on glycerol. Further, a novel route for glycerol metabolism is identified, which is initiated by PedE and/or PedH activity and provides a growth advantage to this biotechnologically relevant organism by allowing a faster onset of growth. Overall, these findings demonstrate that lanthanides can affect physiological traits in nonmethylotrophic bacteria and might influence their competitiveness in various environmental niches.




0

US pedestrian deaths from vehicle crashes increasing in 30 states

Pedestrian fatalities from vehicle impacts in 2019 were the highest in the U.S. in over three decades, a February report finds.




0

US programs field 11,000 requests daily on domestic violence

On a single day in September, nearly 43,000 adults and children in the U.S. were living in emergency housing because of domestic violence.




0

NPHW 2020 work moves online

Health advocates across the country used National Public Health Week in April to highlight the important role of public health, which became even more crucial in the wake of the COVID-19 outbreak.




0

Mode of Action of the Catalytic Site in the N-Terminal Ribosome-Inactivating Domain of JIP60

Jasmonate-induced protein 60 (JIP60) is a ribosome-inactivating protein (RIP) from barley (Hordeum vulgare) and is involved in the plant immune response dependent on jasmonate hormones. Here, we demonstrate in Nicotiana benthamiana that transient expression of the N-terminal domain of JIP60, from which the inhibitor domain (amino acids 163–185) is removed, initiates cell death, leading to extensive necrosis of leaf tissues. We used structure prediction of JIP60 to identify potential catalytic amino acids in the active site and tested these by mutagenesis and in planta assays of necrosis induction by expression in N. benthamiana, as well as through an in vitro translation-inactivation assay. We found that Tyr 96, Glu 201, Arg 204, and Trp 234 in the presumptive active site of JIP60 are conserved in 815 plant RIPs in the Pfam database that were identified by HUMMR as containing a RIP domain. When these amino acid residues are individually mutated, the necrosis-inducing activity is completely abolished. We therefore propose that the role of these amino acids in JIP60 activity is to depurinate adenosine in ribosomes. This study provides insight into the catalytic mechanism of JIP60.




0

The Unfolded Protein Response Modulates a Phosphoinositide-Binding Protein through the IRE1-bZIP60 Pathway

Phosphoinositides function as lipid signals in plant development and stress tolerance by binding with partner proteins. We previously reported that Arabidopsis (Arabidopsis thaliana) phosphoinositide-specific phospholipase C2 functions in the endoplasmic reticulum (ER) stress response. However, the underlying molecular mechanisms of how phosphoinositides act in the ER stress response remain elusive. Here, we report that a phosphoinositide-binding protein, SMALLER TRICHOMES WITH VARIABLE BRANCHES (SVB), is involved in the ER stress tolerance. SVB contains a DUF538 domain with unknown function; orthologs are exclusively found in Viridiplantae. We established that SVB is ubiquitously expressed in plant tissues and is localized to the ER, Golgi apparatus, prevacuolar compartment, and plasma membrane. The knockout mutants of svb showed enhanced tolerance to ER stress, which was genetically complemented by transducing genomic SVB. SVB showed time-dependent induction after tunicamycin-induced ER stress, which depended on IRE1 and bZIP60 but not bZIP17 and bZIP28 in the unfolded protein response (UPR). A protein–lipid overlay assay showed specific binding of SVB to phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate. SVB is therefore suggested to be the plant-specific phosphoinositide-binding protein whose expression is controlled by the UPR through the IRE1-bZIP60 pathway in Arabidopsis.




0

"Detection of SV40 like viral DNA and viral antigens in malignant pleural mesothelioma." M. Ramael, J. Nagels, H. Heylen, S. De Schepper, J. Paulussen, M. De Maeyer and C. Van Haesendonck. Eur Respir J 1999; 14: 1381-1386.




0

Factors associated with 30-day readmission for patients hospitalized for seizures

Background

We sought to determine the cumulative incidence of readmissions after a seizure-related hospitalization and identify risk factors and readmission diagnoses.

Methods

We performed a retrospective cohort study of adult patients hospitalized with a primary discharge diagnosis of seizure (International Classification of Diseases, Ninth Edition, Clinical Modification codes 345.xx and 780.3x) using the State Inpatient Databases across 11 states from 2009 to 2012. Hospital and community characteristics were obtained from the American Hospital Association and Robert Wood Johnson Foundation. We performed logistic regressions to explore effects of patient, hospital, and community factors on readmissions within 30 days of discharge.

Results

Of 98,712 patients, 13,929 (14%) were readmitted within 30 days. Reasons for readmission included epilepsy/convulsions (30% of readmitted patients), mood disorders (5%), schizophrenia (4%), and septicemia (4%). The strongest predictors of readmission were diagnoses of CNS tumor (odds ratio [OR] 2.1, 95% confidence interval [CI] 1.9–2.4) or psychosis (OR 1.8, 95% CI 1.7–1.8), urgent index admission (OR 2.0, 95% CI 1.8–2.2), transfer to nonacute facilities (OR 1.7, 95% CI 1.6–1.8), long length of stay (OR 1.7, 95% CI 1.6–1.8), and for-profit hospitals (OR 1.7, 95% CI 1.6–1.8). Our main model's c-statistic was 0.66. Predictors of readmission for status epilepticus included index admission for status epilepticus (OR 3.5, 95% CI 2.6–4.7), low hospital epilepsy volume (OR 0.4, 95% CI 0.3–0.7), and rural hospitals (OR 4.8, 95% CI 2.1–10.9).

Conclusion

Readmission is common after hospitalization for seizures. Prevention strategies should focus on recurrent seizures, the most common readmission diagnosis. Many factors were associated with readmission, although readmissions remain challenging to predict.




0

Shellhaas RA, Burns JW, Barks JDE, Fauziya Hassan F, Chervin RD. Maternal Voice and Infant Sleep in the Neonatal Intensive Care Unit. Pediatrics. 2019;144(3):e30190288




0

Ames SG, Davis BS, Marin JR, L. Fink EL, Olson LM, Gausche-Hill M, Kahn JM. Emergency Department Pediatric Readiness and Mortality in Critically Ill Children. Pediatrics. 2019;144(3):e20190568




0

Ahmed A, Fend PI, Gaensbauer JT, Reves RR, Khurana R, Salcedo K, Punnoose R, Katz DJ, for the TUBERCULOSIS EPIDEMIOLOGIC STUDIES CONSORTIUM. Interferon-{gamma} Release Assays in Children <15 Years of Age. Pediatrics. 2020:145(1):e20191930




0

Every Child Counts: The Importance of the 2020 Census for Pediatric Health Equity




0

Trends in Outpatient Procedural Sedation: 2007-2018

BACKGROUND:

Pediatric subspecialists routinely provide procedural sedation outside the operating room. No large study has reported trends in outpatient pediatric procedural sedation. Our purpose in this study was to identify significant trends in outpatient procedural sedation using the Pediatric Sedation Research Consortium.

METHODS:

Prospectively collected data from 2007 to 2018 were used for trending procedural sedation. Patient characteristics, medications, type of providers, serious adverse events, and interventions were reported. The Cochran–Armitage test for trend was used to explore the association between the year and a given characteristic.

RESULTS:

A total of 432 842 sedation encounters were identified and divided into 3 4-year epochs (2007–2011, 2011–2014, and 2014–2018). There was a significant decrease in infants <3 months of age receiving procedural sedation (odds ratio = 0.97; 95% confidence interval, 0.96–0.98). A large increase was noticed in pediatric hospitalists providing procedural sedation (0.6%–9.5%; P < .001); there was a decreasing trend in sedation by other providers who were not in emergency medicine, critical care, or anesthesiology (13.9%–3.9%; P < .001). There was an increasing trend in the use of dexmedetomidine (6.3%–9.3%; P < .001) and a decreasing trend in the use of chloral hydrate (6.3%–0.01%; P < .001) and pentobarbital (7.3%–0.5%; P < .001). Serious adverse events showed a nonsignificant increase overall (1.35%–1.75%).

CONCLUSIONS:

We report an increase in pediatric hospitalists providing sedation and a significant decrease in the use of chloral hydrate and pentobarbital by providers. Further studies are required to see if sedation services decrease costs and optimize resource use.




0

Leishmania donovani Subverts Host Immune Response by Epigenetic Reprogramming of Macrophage M(Lipopolysaccharides + IFN-{gamma})/M(IL-10) Polarization [INFECTIOUS DISEASE AND HOST RESPONSE]

Key Points

  • L. donovani induces histone lysine methyltransferases/demethylases in the host.

  • L. donovani–induced epigenetic enzymes induce host M(IL-10) polarization.

  • Knockdown of epigenetic enzymes inhibited parasite multiplication in infected host.




    0

    The Legionella pneumophila Metaeffector Lpg2505 (MesI) Regulates SidI-Mediated Translation Inhibition and Novel Glycosyl Hydrolase Activity [Molecular Pathogenesis]

    Legionella pneumophila, the etiological agent of Legionnaires’ disease, employs an arsenal of hundreds of Dot/Icm-translocated effector proteins to facilitate replication within eukaryotic phagocytes. Several effectors, called metaeffectors, function to regulate the activity of other Dot/Icm-translocated effectors during infection. The metaeffector Lpg2505 is essential for L. pneumophila intracellular replication only when its cognate effector, SidI, is present. SidI is a cytotoxic effector that interacts with the host translation factor eEF1A and potently inhibits eukaryotic protein translation by an unknown mechanism. Here, we evaluated the impact of Lpg2505 on SidI-mediated phenotypes and investigated the mechanism of SidI function. We determined that Lpg2505 binds with nanomolar affinity to SidI and suppresses SidI-mediated inhibition of protein translation. SidI binding to eEF1A and Lpg2505 is not mutually exclusive, and the proteins bind distinct regions of SidI. We also discovered that SidI possesses GDP-dependent glycosyl hydrolase activity and that this activity is regulated by Lpg2505. We have therefore renamed Lpg2505 MesI (metaeffector of SidI). This work reveals novel enzymatic activity for SidI and provides insight into how intracellular replication of L. pneumophila is regulated by a metaeffector.




    0

    Differential Response of the Chicken Trachea to Chronic Infection with Virulent Mycoplasma gallisepticum Strain Ap3AS and Vaxsafe MG (Strain ts-304): a Transcriptional Profile [Host Response and Inflammation]

    Mycoplasma gallisepticum is the primary etiological agent of chronic respiratory disease in chickens. Live attenuated vaccines are most commonly used in the field to control the disease, but current vaccines have some limitations. Vaxsafe MG (strain ts-304) is a new vaccine candidate that is efficacious at a lower dose than the current commercial vaccine strain ts-11, from which it is derived. In this study, the transcriptional profiles of the trachea of unvaccinated chickens and chickens vaccinated with strain ts-304 were compared 2 weeks after challenge with M. gallisepticum strain Ap3AS during the chronic stage of infection. After challenge, genes, gene ontologies, pathways, and protein classes involved in inflammation, cytokine production and signaling, and cell proliferation were upregulated, while those involved in formation and motor movement of cilia, formation of intercellular junctional complexes, and formation of the cytoskeleton were downregulated in the unvaccinated birds compared to the vaccinated birds, reflecting immune dysregulation and the pathological changes induced in the trachea by infection with M. gallisepticum. Vaccination appears to protect the structural and functional integrity of the tracheal mucosa 2 weeks after infection with M. gallisepticum.




    0

    Long-Acting BMS-378806 Analogues Stabilize the State-1 Conformation of the Human Immunodeficiency Virus Type 1 Envelope Glycoproteins [Vaccines and Antiviral Agents]

    During human immunodeficiency virus type 1 (HIV-1) entry into cells, the viral envelope glycoprotein (Env) trimer [(gp120/gp41)3] binds the receptors CD4 and CCR5 and fuses the viral and cell membranes. CD4 binding changes Env from a pretriggered (state-1) conformation to more open downstream conformations. BMS-378806 (here called BMS-806) blocks CD4-induced conformational changes in Env important for entry and is hypothesized to stabilize a state-1-like Env conformation, a key vaccine target. Here, we evaluated the effects of BMS-806 on the conformation of Env on the surface of cells and virus-like particles. BMS-806 strengthened the labile, noncovalent interaction of gp120 with the Env trimer, enhanced or maintained the binding of most broadly neutralizing antibodies, and decreased the binding of poorly neutralizing antibodies. Thus, in the presence of BMS-806, the cleaved Env on the surface of cells and virus-like particles exhibits an antigenic profile consistent with a state-1 conformation. We designed novel BMS-806 analogues that stabilized the Env conformation for several weeks after a single application. These long-acting BMS-806 analogues may facilitate enrichment of the metastable state-1 Env conformation for structural characterization and presentation to the immune system.

    IMPORTANCE The envelope glycoprotein (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) mediates the entry of the virus into host cells and is also the target for antibodies. During virus entry, Env needs to change shape. Env flexibility also contributes to the ability of HIV-1 to evade the host immune response; many shapes of Env raise antibodies that cannot recognize the functional Env and therefore do not block virus infection. We found that an HIV-1 entry inhibitor, BMS-806, stabilizes the functional shape of Env. We developed new variants of BMS-806 that stabilize Env in its natural state for long periods of time. The availability of such long-acting stabilizers of Env shape will allow the natural Env conformation to be characterized and tested for efficacy as a vaccine.




    0

    Long Noncoding RNA NRAV Promotes Respiratory Syncytial Virus Replication by Targeting the MicroRNA miR-509-3p/Rab5c Axis To Regulate Vesicle Transportation [Virus-Cell Interactions]

    Respiratory syncytial virus (RSV) is an enveloped RNA virus which is responsible for approximately 80% of lower respiratory tract infections in children. Current lines of evidence have supported the functional involvement of long noncoding RNA (lncRNA) in many viral infectious diseases. However, the overall biological effect and clinical role of lncRNAs in RSV infection remain unclear. In this study, lncRNAs related to respiratory virus infection were obtained from the lncRNA database, and we collected 144 clinical sputum specimens to identify lncRNAs related to RSV infection. Quantitative PCR (qPCR) detection indicated that the expression of lncRNA negative regulator of antiviral response (NRAV) in RSV-positive patients was significantly lower than that in uninfected patients, but lncRNA psoriasis-associated non-protein coding RNA induced by stress (PRINS), nuclear paraspeckle assembly transcript 1 (NEAT1), and Nettoie Salmonella pas Theiler’s (NeST) showed no difference in vivo and in vitro. Meanwhile, overexpression of NRAV promoted RSV proliferation in A549 and BEAS-2B cells, and vice versa, indicating that the downregulation of NRAV was part of the host antiviral defense. RNA fluorescent in situ hybridization (FISH) confirmed that NRAV was mainly located in the cytoplasm. Through RNA sequencing, we found that Rab5c, which is a vesicle transporting protein, showed the same change trend as NRAV. Subsequent investigation revealed that NRAV was able to favor RSV production indirectly by sponging microRNA miR-509-3p so as to release Rab5c and facilitate vesicle transportation. The study provides a new insight into virus-host interaction through noncoding RNA, which may contribute to exploring potential antivirus targets for respiratory virus.

    IMPORTANCE The mechanism of interaction between RSV and host noncoding RNAs is not fully understood. In this study, we found that the expression of long noncoding RNA (lncRNA) negative regulator of antiviral response (NRAV) was reduced in RSV-infected patients, and overexpression of NRAV facilitated RSV production in vitro, suggesting that the reduction of NRAV in RSV infection was part of the host antiviral response. We also found that NRAV competed with vesicle protein Rab5c for microRNA miR509-3p in cytoplasm to promote RSV vesicle transport and accelerate RSV proliferation, thereby improving our understanding of the pathogenic mechanism of RSV infection.




    0

    Asking young children to &#x201C;do science&#x201D; instead of &#x201C;be scientists&#x201D; increases science engagement in a randomized field experiment [Psychological and Cognitive Sciences]

    Subtle features of common language can imply to young children that scientists are a special and distinct kind of person—a way of thinking that can interfere with the development of children’s own engagement with science. We conducted a large field experiment (involving 45 prekindergarten schools, 130 teachers, and over 1,100...




    0

    Inner Workings: Molecular biologists offer &#x201C;wartime service&#x201D; in the effort to test for COVID-19 [Medical Sciences]

    As the novel coronavirus spreads, communities across the United States are struggling to offer public testing. The need is urgent. Testing got off to a delayed start in the United States as a result of technical missteps and a slow response from government officials. Now cities across the country are...




    0

    Landscape analysis of ad&#x0237;acent gene rearrangements reveals BCL2L14-ETV6 gene fusions in more aggressive triple-negative breast cancer [Genetics]

    Triple-negative breast cancer (TNBC) accounts for 10 to 20% of breast cancer, with chemotherapy as its mainstay of treatment due to lack of well-defined targets, and recent genomic sequencing studies have revealed a paucity of TNBC-specific mutations. Recurrent gene fusions comprise a class of viable genetic targets in solid tumors;...




    0

    Profile of Xiaowei Zhuang, winner of the 2020 Vilcek Prize in Biomedical Science [Profiles]

    In 2006, the New York City-based Vilcek Foundation created an annual prize program for foreign-born biomedical scientists who have made major contributions to their fields while living and working in the United States. The founders, themselves immigrants from Czechoslovakia, established the program to raise public awareness of the indispensable role...




    0

    NRF3-POMP-20S Proteasome Assembly Axis Promotes Cancer Development via Ubiquitin-Independent Proteolysis of p53 and Retinoblastoma Protein [Research Article]

    Proteasomes are essential protease complexes that maintain cellular homeostasis, and aberrant proteasomal activity supports cancer development. The regulatory mechanisms and biological function of the ubiquitin-26S proteasome have been studied extensively, while those of the ubiquitin-independent 20S proteasome system remain obscure. Here, we show that the cap ’n’ collar (CNC) family transcription factor NRF3 specifically enhances 20S proteasome assembly in cancer cells and that 20S proteasomes contribute to colorectal cancer development through ubiquitin-independent proteolysis of the tumor suppressor p53 and retinoblastoma (Rb) proteins. The NRF3 gene is highly expressed in many cancer tissues and cell lines and is important for cancer cell growth. In cancer cells, NRF3 upregulates the assembly of the 20S proteasome by directly inducing the gene expression of the 20S proteasome maturation protein POMP. Interestingly, NRF3 knockdown not only increases p53 and Rb protein levels but also increases p53 activities for tumor suppression, including cell cycle arrest and induction of apoptosis. Furthermore, protein stability and cell viability assays using two distinct proteasome inhibitor anticancer drugs, the 20S proteasome inhibitor bortezomib and the ubiquitin-activating enzyme E1 inhibitor TAK-243, show that the upregulation of the NRF3-POMP axis leads to ubiquitin-independent proteolysis of p53 and Rb and to impaired sensitivity to bortezomib but not TAK-243. More importantly, the NRF3-POMP axis supports tumorigenesis and metastasis, with higher NRF3/POMP expression levels correlating with poor prognoses in patients with colorectal or rectal adenocarcinoma. These results suggest that the NRF3-POMP-20S proteasome assembly axis is significant for cancer development via ubiquitin-independent proteolysis of tumor suppressor proteins.