bal

The house of Islam : a global history / Ed Husain.

Muslims.




bal

Australian island arks : conservation, management and opportunities / editors: Dorian Moro, Derek Ball and Sally Bryant.

Islands -- Australia -- Government policy.




bal

The art of feminism : images that shaped the fight for equality / Helena Reckitt, consultant editor ; written by Lucinda Gosling, Hilary Robinson, and Amy Tobin ; preface by Maria Balshaw ; foreword by Xabier Arakistain.

Feminism and art.




bal

Global meat : social and environmental consequences of the expanding meat industry / edited by Bill Winders and Elizabeth Ransom.

Meat industry and trade -- Environmental aspects.




bal

Secondhand : travels in the new global garage sale / Adam Minter.

Minter, Adam, 1970- -- Travel.




bal

Kansas City Data-Sharing Effort Showcases Ballmer Group's Strategy

A $59 million investment in software developer Social Solutions aims to ease the flow of data among schools and social service providers.




bal

Diabetic coma / by Balthazar Foster and Robert Saundby.

[Place of publication not identified] : [publisher not identified], 1883.




bal

Diagnose und Therapie der Krankheiten des Menschen : mit Zugrundelegung der Lehren und Recepturen der ersten medicinisch-chirurgischen Autoritäten, und Anführung von 1500 Receptformeln im metrischen Gewichte, nebst einem Anhange über Balneo

Wien : M. Perles, 1878.




bal

Dr. H. Helfft's Handbuch der Balneotherapie : practischer Leitfaden bei Verordnung der Mineralquellen, Molken, Seebäder, klimatischen Kurorte, &c. / mit Benutsung der vom Verfasser hinterlassenen Notizen neu bearbeitet und herausgegeben von E

Berlin : A. Hirschwald, 1870.




bal

The elements of embryology / by M. Foster and Francis M. Balfour.

London : Macmillan, 1883.




bal

Eminent medical men of Asia, Africa, Europe and America, who have advanced medical science; for the use of students and for the Vydians and Hakims of India / by Edward Balfour.

Madras : printed by C. Foster, 1876.




bal

Ernestus Godofredus Baldinger ... disputationem inauguralem ... Ioan. Conr. Stockar à Neuforn ... de usu cantharidum interno ... habendam annunciat. Praemittitur: historia mercurii et mercurialium medica, et nunc quidem eius pars III.

Goettingae : Litteris Ioann. Christ. Dieterich, Acad. Typogr, [1781]




bal

Education Is on the Ballot in These Governors' Races

Voters in three southern states will head to the polls for governors races that have shined a spotlight on educator activism, school funding, and teacher pay.




bal

The baldachino in St Peter's, Rome. Engraving by G. Patigny, 16--, after G.L. Bernini.

Romae [Rome] : Apud Carolum Losi, Anno 1773.




bal

King Louis XVI and Queen Marie-Antoinette, escorted by soldiers, arrive at a masked ball held to celebrate the birth of their son, the Dauphin. Etching by Jean-Michel Moreau the younger, 1782, after P.L. Moreau-Desproux.

[Paris] : [publisher not identified], 1782.




bal

The Latest: China's football association to cut pay

In a video posted along with the schedule, the Seahawks gave season tickets to 12 workers who had been nominated for consideration. The 12 were told of receiving season tickets in video calls with Seahawks players Shaquill and Shaquem Griffin, DK Metcalf, Tyler Lockett, Will Dissly and coach Pete Carroll. The Royal St. John’s Regatta in Canada has been canceled because of the COVID-19 pandemic.




bal

Taking Herbal Baths | a zine about using herbs for bathing | relax rejuvenate soothing personal care | natural health bath spa | hand drawn

2019




bal

Texas women's basketball coach Karen Aston dismissed

AUSTIN, Texas (AP) -- Texas dismissed women's basketball coach Karen Aston on Friday, ending an eight-year stint that included four straight trips to the NCAA Tournament Sweet 16 from 2015-2018.




bal

Top three Satou Sabally moments: Sharpshooter's 33-point game in Pullman was unforgettable

Since the day she stepped on campus, Satou Sabally's game has turned heads — and for good reason. She's had many memorable moments in a Duck uniform, including a standout performance against the USA Women in Nov. 2019, a monster game against Cal in Jan. 2020 and a career performance in Pullman in Jan. 2019.




bal

Kobe, Duncan, Garnett headline Basketball Hall of Fame class

Kobe Bryant was already immortal. Bryant and fellow NBA greats Tim Duncan and Kevin Garnett headlined a nine-person group announced Saturday as this year’s class of enshrinees into the Naismith Memorial Basketball Hall of Fame. Two-time NBA champion coach Rudy Tomjanovich finally got his call, as did longtime Baylor women’s coach Kim Mulkey, 1,000-game winner Barbara Stevens of Bentley and three-time Final Four coach Eddie Sutton.




bal

The Class of 2020: A look at basketball's new Hall of Famers

A look at the newest members of the Naismith Memorial Basketball Hall of Fame, announced on Saturday:




bal

Oregon's Sabrina Ionescu, Ruthy Hebard, Satou Sabally share meaning of Naismith Starting 5 honor

Pac-12 Networks' Ashley Adamson speaks with Oregon stars Sabrina Ionescu, Ruthy Hebard and Satou Sabally to hear how special their recent Naismith Starting 5 honor was, as the Ducks comprise three of the nation's top five players. Ionescu (point guard), Sabally (small forward) and Hebard (power forward) led the Ducks to a 31-2 record in the 2019-20 season before it was cut short.




bal

Sabrina Ionescu, Ruthy Hebard, Satou Sabally on staying connected, WNBA Draft, Oregon's historic season

Pac-12 Networks' Ashley Adamson catches up with Oregon's "Big 3" of Sabrina Ionescu, Ruthy Hebard and Satou Sabally to hear how they're adjusting to the new world without sports while still preparing for the WNBA Draft on April 17. They also share how they're staying hungry for basketball during the hiatus.




bal

WNBA Draft Profile: Versatile forward Satou Sabally can provide instant impact

Athletic forward Satou Sabally is preparing to take the leap to the WNBA level following three productive seasons at Oregon. As a junior, she averaged 16.2 points and 6.9 rebounds per game while helping the Ducks sweep the Pac-12 regular season and tournament titles. At 6-foot-4, she also drained 45 3-pointers for Oregon in 2019-20 while notching a career-best average of 2.3 assists per game.




bal

Ruthy Hebard, Sabrina Ionescu 'represent everything that is great about basketball'

Ruthy Hebard and Sabrina Ionescu have had a remarkable four years together in Eugene, rewriting the history books and pushing the Ducks into the national spotlight. Catch the debut of "Our Stories Unfinished Business: Sabrina Ionescu and Ruthy Hebard" at Wednesday, April 15 at 7 p.m. PT/ 8 p.m. MT on Pac-12 Network.




bal

Chicago State women's basketball coach Misty Opat resigns

CHICAGO (AP) -- Chicago State women’s coach Misty Opat resigned Thursday after two seasons and a 3-55 record.




bal

Detroit Mercy hires Gilbert as women's basketball coach

DETROIT (AP) -- Detroit Mercy hired AnnMarie Gilbert as women’s basketball coach.




bal

UCLA's Natalie Chou on her role models, inspiring Asian-American girls in basketball

Pac-12 Networks' Mike Yam has a conversation with UCLA's Natalie Chou during Wednesday's "Pac-12 Perspective" podcast. Chou reflects on her role models, passion for basketball and how her mom has made a big impact on her hoops career.




bal

Oregon State women's basketball receives Pac-12 Sportsmanship Award for supporting rival Oregon in tragedy

On the day Kobe Bryant suddenly passed away, the Beavers embraced their rivals at midcourt in a moment of strength to support the Ducks, many of whom had personal connections to Bryant and his daughter, Gigi. For this, Oregon State is the 2020 recipient of the Pac-12 Sportsmanship Award.




bal

Pac-12 women's basketball student-athletes reflect on the influence of their moms ahead of Mother's Day

Pac-12 student-athletes give shout-outs to their moms ahead of Mother's Day on May 10th, 2020 including UCLA's Michaela Onyenwere, Oregon's Sabrina Ionescu and Satou Sabally, Arizona's Aari McDonald, Cate Reese, and Lacie Hull, Stanford's Kiana Williams, USC's Endyia Rogers, and Aliyah Jeune, and Utah's Brynna Maxwell.




bal

(1 + epsilon)-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets

Anomaly detection is not an easy problem since distribution of anomalous samples is unknown a priori. We explore a novel method that gives a trade-off possibility between one-class and two-class approaches, and leads to a better performance on anomaly detection problems with small or non-representative anomalous samples. The method is evaluated using several data sets and compared to a set of conventional one-class and two-class approaches.




bal

Keeping the balance—Bridge sampling for marginal likelihood estimation in finite mixture, mixture of experts and Markov mixture models

Sylvia Frühwirth-Schnatter.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 706--733.

Abstract:
Finite mixture models and their extensions to Markov mixture and mixture of experts models are very popular in analysing data of various kind. A challenge for these models is choosing the number of components based on marginal likelihoods. The present paper suggests two innovative, generic bridge sampling estimators of the marginal likelihood that are based on constructing balanced importance densities from the conditional densities arising during Gibbs sampling. The full permutation bridge sampling estimator is derived from considering all possible permutations of the mixture labels for a subset of these densities. For the double random permutation bridge sampling estimator, two levels of random permutations are applied, first to permute the labels of the MCMC draws and second to randomly permute the labels of the conditional densities arising during Gibbs sampling. Various applications show very good performance of these estimators in comparison to importance and to reciprocal importance sampling estimators derived from the same importance densities.




bal

Globalizing capital : a history of the international monetary system

Eichengreen, Barry J., author.
9780691193908 (paperback)




bal

A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging. (arXiv:2004.12314v3 [cs.CV] UPDATED)

Segmentation of cardiac images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) widely used for visualizing diseased cardiac structures, is a crucial first step for clinical diagnosis and treatment. However, direct segmentation of LGE-MRIs is challenging due to its attenuated contrast. Since most clinical studies have relied on manual and labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the "2018 Left Atrium Segmentation Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double, sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved far superior results than traditional methods and pipelines containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for cardiac LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field.




bal

Domain Adaptation in Highly Imbalanced and Overlapping Datasets. (arXiv:2005.03585v1 [cs.LG])

In many Machine Learning domains, datasets are characterized by highly imbalanced and overlapping classes. Particularly in the medical domain, a specific list of symptoms can be labeled as one of various different conditions. Some of these conditions may be more prevalent than others by several orders of magnitude. Here we present a novel unsupervised Domain Adaptation scheme for such datasets. The scheme, based on a specific type of Quantification, is designed to work under both label and conditional shifts. It is demonstrated on datasets generated from Electronic Health Records and provides high quality results for both Quantification and Domain Adaptation in very challenging scenarios. Potential benefits of using this scheme in the current COVID-19 outbreak, for estimation of prevalence and probability of infection, are discussed.




bal

Predictive Modeling of ICU Healthcare-Associated Infections from Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling Approach. (arXiv:2005.03582v1 [cs.LG])

Early detection of patients vulnerable to infections acquired in the hospital environment is a challenge in current health systems given the impact that such infections have on patient mortality and healthcare costs. This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units by means of machine-learning methods. The aim is to support decision making addressed at reducing the incidence rate of infections. In this field, it is necessary to deal with the problem of building reliable classifiers from imbalanced datasets. We propose a clustering-based undersampling strategy to be used in combination with ensemble classifiers. A comparative study with data from 4616 patients was conducted in order to validate our proposal. We applied several single and ensemble classifiers both to the original dataset and to data preprocessed by means of different resampling methods. The results were analyzed by means of classic and recent metrics specifically designed for imbalanced data classification. They revealed that the proposal is more efficient in comparison with other approaches.




bal

Estimating customer impatience in a service system with balking. (arXiv:2005.03576v1 [math.PR])

This paper studies a service system in which arriving customers are provided with information about the delay they will experience. Based on this information they decide to wait for service or to leave the system. The main objective is to estimate the customers' patience-level distribution and the corresponding potential arrival rate, using knowledge of the actual workload process only. We cast the system as a queueing model, so as to evaluate the corresponding likelihood function. Estimating the unknown parameters relying on a maximum likelihood procedure, we prove strong consistency and derive the asymptotic distribution of the estimation error. Several applications and extensions of the method are discussed. In particular, we indicate how our method generalizes to a multi-server setting. The performance of our approach is assessed through a series of numerical experiments. By fitting parameters of hyperexponential and generalized-hyperexponential distributions our method provides a robust estimation framework for any continuous patience-level distribution.




bal

On unbalanced data and common shock models in stochastic loss reserving. (arXiv:2005.03500v1 [q-fin.RM])

Introducing common shocks is a popular dependence modelling approach, with some recent applications in loss reserving. The main advantage of this approach is the ability to capture structural dependence coming from known relationships. In addition, it helps with the parsimonious construction of correlation matrices of large dimensions. However, complications arise in the presence of "unbalanced data", that is, when (expected) magnitude of observations over a single triangle, or between triangles, can vary substantially. Specifically, if a single common shock is applied to all of these cells, it can contribute insignificantly to the larger values and/or swamp the smaller ones, unless careful adjustments are made. This problem is further complicated in applications involving negative claim amounts. In this paper, we address this problem in the loss reserving context using a common shock Tweedie approach for unbalanced data. We show that the solution not only provides a much better balance of the common shock proportions relative to the unbalanced data, but it is also parsimonious. Finally, the common shock Tweedie model also provides distributional tractability.




bal

Multi-Label Sampling based on Local Label Imbalance. (arXiv:2005.03240v1 [cs.LG])

Class imbalance is an inherent characteristic of multi-label data that hinders most multi-label learning methods. One efficient and flexible strategy to deal with this problem is to employ sampling techniques before training a multi-label learning model. Although existing multi-label sampling approaches alleviate the global imbalance of multi-label datasets, it is actually the imbalance level within the local neighbourhood of minority class examples that plays a key role in performance degradation. To address this issue, we propose a novel measure to assess the local label imbalance of multi-label datasets, as well as two multi-label sampling approaches based on the local label imbalance, namely MLSOL and MLUL. By considering all informative labels, MLSOL creates more diverse and better labeled synthetic instances for difficult examples, while MLUL eliminates instances that are harmful to their local region. Experimental results on 13 multi-label datasets demonstrate the effectiveness of the proposed measure and sampling approaches for a variety of evaluation metrics, particularly in the case of an ensemble of classifiers trained on repeated samples of the original data.




bal

Joint Multi-Dimensional Model for Global and Time-Series Annotations. (arXiv:2005.03117v1 [cs.LG])

Crowdsourcing is a popular approach to collect annotations for unlabeled data instances. It involves collecting a large number of annotations from several, often naive untrained annotators for each data instance which are then combined to estimate the ground truth. Further, annotations for constructs such as affect are often multi-dimensional with annotators rating multiple dimensions, such as valence and arousal, for each instance. Most annotation fusion schemes however ignore this aspect and model each dimension separately. In this work we address this by proposing a generative model for multi-dimensional annotation fusion, which models the dimensions jointly leading to more accurate ground truth estimates. The model we propose is applicable to both global and time series annotation fusion problems and treats the ground truth as a latent variable distorted by the annotators. The model parameters are estimated using the Expectation-Maximization algorithm and we evaluate its performance using synthetic data and real emotion corpora as well as on an artificial task with human annotations




bal

In china's wake : how the commodity boom transformed development strategies in the global south

Jepson, Nicholas, author.
9780231547598 electronic book




bal

Handbook of Global Health

9783030053253 978-3-030-05325-3




bal

Almost sure uniqueness of a global minimum without convexity

Gregory Cox.

Source: The Annals of Statistics, Volume 48, Number 1, 584--606.

Abstract:
This paper establishes the argmin of a random objective function to be unique almost surely. This paper first formulates a general result that proves almost sure uniqueness without convexity of the objective function. The general result is then applied to a variety of applications in statistics. Four applications are discussed, including uniqueness of M-estimators, both classical likelihood and penalized likelihood estimators, and two applications of the argmin theorem, threshold regression and weak identification.




bal

Bayesian factor models for probabilistic cause of death assessment with verbal autopsies

Tsuyoshi Kunihama, Zehang Richard Li, Samuel J. Clark, Tyler H. McCormick.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 241--256.

Abstract:
The distribution of deaths by cause provides crucial information for public health planning, response and evaluation. About 60% of deaths globally are not registered or given a cause, limiting our ability to understand disease epidemiology. Verbal autopsy (VA) surveys are increasingly used in such settings to collect information on the signs, symptoms and medical history of people who have recently died. This article develops a novel Bayesian method for estimation of population distributions of deaths by cause using verbal autopsy data. The proposed approach is based on a multivariate probit model where associations among items in questionnaires are flexibly induced by latent factors. Using the Population Health Metrics Research Consortium labeled data that include both VA and medically certified causes of death, we assess performance of the proposed method. Further, we estimate important questionnaire items that are highly associated with causes of death. This framework provides insights that will simplify future data




bal

Outline analyses of the called strike zone in Major League Baseball

Dale L. Zimmerman, Jun Tang, Rui Huang.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2416--2451.

Abstract:
We extend statistical shape analytic methods known as outline analysis for application to the strike zone, a central feature of the game of baseball. Although the strike zone is rigorously defined by Major League Baseball’s official rules, umpires make mistakes in calling pitches as strikes (and balls) and may even adhere to a strike zone somewhat different than that prescribed by the rule book. Our methods yield inference on geometric attributes (centroid, dimensions, orientation and shape) of this “called strike zone” (CSZ) and on the effects that years, umpires, player attributes, game situation factors and their interactions have on those attributes. The methodology consists of first using kernel discriminant analysis to determine a noisy outline representing the CSZ corresponding to each factor combination, then fitting existing elliptic Fourier and new generalized superelliptic models for closed curves to that outline and finally analyzing the fitted model coefficients using standard methods of regression analysis, factorial analysis of variance and variance component estimation. We apply these methods to PITCHf/x data comprising more than three million called pitches from the 2008–2016 Major League Baseball seasons to address numerous questions about the CSZ. We find that all geometric attributes of the CSZ, except its size, became significantly more like those of the rule-book strike zone from 2008–2016 and that several player attribute/game situation factors had statistically and practically significant effects on many of them. We also establish that the variation in the horizontal center, width and area of an individual umpire’s CSZ from pitch to pitch is smaller than their variation among CSZs from different umpires.




bal

The classification permutation test: A flexible approach to testing for covariate imbalance in observational studies

Johann Gagnon-Bartsch, Yotam Shem-Tov.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1464--1483.

Abstract:
The gold standard for identifying causal relationships is a randomized controlled experiment. In many applications in the social sciences and medicine, the researcher does not control the assignment mechanism and instead may rely upon natural experiments or matching methods as a substitute to experimental randomization. The standard testable implication of random assignment is covariate balance between the treated and control units. Covariate balance is commonly used to validate the claim of as good as random assignment. We propose a new nonparametric test of covariate balance. Our Classification Permutation Test (CPT) is based on a combination of classification methods (e.g., random forests) with Fisherian permutation inference. We revisit four real data examples and present Monte Carlo power simulations to demonstrate the applicability of the CPT relative to other nonparametric tests of equality of multivariate distributions.




bal

Austin-Area District Looks for Digital/Blended Learning Program; Baltimore Seeks High School Literacy Program

The Round Rock Independent School District in Texas is looking for a digital curriculum and blended learning program. Baltimore is looking for a comprehensive high school literacy program.

The post Austin-Area District Looks for Digital/Blended Learning Program; Baltimore Seeks High School Literacy Program appeared first on Market Brief.



  • Purchasing Alert
  • Curriculum / Digital Curriculum
  • Educational Technology/Ed-Tech
  • Learning Management / Student Information Systems
  • Procurement / Purchasing / RFPs

bal

‘Selfish, tribal and divided’: Barack Obama warns of changes to American way of life in leaked audio slamming Trump administration

Barack Obama said the “rule of law is at risk” following the justice department’s decision to drop charges against former Trump advisor Mike Flynn, as he issued a stark warning about the long-term impact on the American way of life by his successor.





bal

Hārta jbalē = Heart burn. / design : Biman Mullick.

London : Cleanair (33 Stillness Rd, London, SE23 1NG), [198-?]




bal

Circuit Stability to Perturbations Reveals Hidden Variability in the Balance of Intrinsic and Synaptic Conductances

Sebastian Onasch
Apr 15, 2020; 40:3186-3202
Systems/Circuits