ge Multiplex Genetic Engineering Exploiting Pyrimidine Salvage Pathway-Based Endogenous Counterselectable Markers By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT Selectable markers are indispensable for genetic engineering, yet their number and variety are limited. Most selection procedures for prototrophic cells rely on the introduction of antibiotic resistance genes. New minimally invasive tools are needed to facilitate sophisticated genetic manipulations. Here, we characterized three endogenous genes in the human fungal pathogen Aspergillus fumigatus for their potential as markers for targeted genomic insertions of DNAs of interest (DOIs). Since these genes are involved in uptake and metabolization of pyrimidines, resistance to the toxic effects of prodrugs 5-fluorocytosine and 5-fluorouracil can be used to select successfully integrated DOIs. We show that DOI integration, resulting in the inactivation of these genes, caused no adverse effects with respect to nutrient requirements, stress resistance, or virulence. Beside the individual use of markers for site-directed integration of reporter cassettes, including the 17-kb penicillin biosynthetic cluster, we demonstrate their sequential use by inserting three genes encoding fluorescent proteins into a single strain for simultaneous multicolor localization microscopy. In addition to A. fumigatus, we validated the applicability of this novel toolbox in Penicillium chrysogenum and Fusarium oxysporum. Enabling multiple targeted insertions of DOIs without the necessity for exogenous markers, this technology has the potential to significantly advance genetic engineering. IMPORTANCE This work reports the discovery of a novel genetic toolbox comprising multiple, endogenous selectable markers for targeted genomic insertions of DNAs of interest (DOIs). Marker genes encode proteins involved in 5-fluorocytosine uptake and pyrimidine salvage activities mediating 5-fluorocytosine deamination as well as 5-fluorouracil phosphoribosylation. The requirement for their genomic replacement by DOIs to confer 5-fluorocytosine or 5-fluorouracil resistance for transformation selection enforces site-specific integrations. Due to the fact that the described markers are endogenously encoded, there is no necessity for the exogenous introduction of commonly employed markers such as auxotrophy-complementing genes or antibiotic resistance cassettes. Importantly, inactivation of the described marker genes had no adverse effects on nutrient requirements, growth, or virulence of the human pathogen Aspergillus fumigatus. Given the limited number and distinct types of selectable markers available for the genetic manipulation of prototrophic strains such as wild-type strains, we anticipate that the proposed methodology will significantly advance genetic as well as metabolic engineering of fungal species. Full Article
ge Romo1-Derived Antimicrobial Peptide Is a New Antimicrobial Agent against Multidrug-Resistant Bacteria in a Murine Model of Sepsis By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT To overcome increasing bacterial resistance to conventional antibiotics, many antimicrobial peptides (AMPs) derived from host defense proteins have been developed. However, there are considerable obstacles to their application to systemic infections because of their low bioavailability. In the present study, we developed an AMP derived from Romo1 (AMPR-11) that exhibits a broad spectrum of antimicrobial activity. AMPR-11 showed remarkable efficacy against sepsis-causing bacteria, including multidrug-resistant strains, with low toxicity in a murine model of sepsis after intravenous administration. It seems that AMPR-11 disrupts bacterial membranes by interacting with cardiolipin and lipid A. From the results of this study, we suggest that AMPR-11 is a new class of agent for overcoming low efficacy in the intravenous application of AMPs and is a promising candidate to overcome multidrug resistance. IMPORTANCE Abuse of antibiotics often leads to increase of multidrug-resistant (MDR) bacteria, which threatens the life of human beings. To overcome threat of antibiotic resistance, scientists are developing a novel class of antibiotics, antimicrobial peptides, that can eradicate MDR bacteria. Unfortunately, these antibiotics have mainly been developed to cure bacterial skin infections rather than others, such as life-threatening sepsis. Major pharmaceutical companies have tried to develop antiseptic drugs; however, they have not been successful. Here, we report that AMPR-11, the antimicrobial peptide (AMP) derived from mitochondrial nonselective channel Romo1, has antimicrobial activity against Gram-positive and Gram-negative bacteria comprising many clinically isolated MDR strains. Moreover, AMPR-11 increased the survival rate in a murine model of sepsis caused by MDR bacteria. We propose that AMPR-11 could be a novel antiseptic drug candidate with a broad antimicrobial spectrum to overcome MDR bacterial infection. Full Article
ge The WblC/WhiB7 Transcription Factor Controls Intrinsic Resistance to Translation-Targeting Antibiotics by Altering Ribosome Composition By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Bacteria that encounter antibiotics can efficiently change their physiology to develop resistance. This intrinsic antibiotic resistance is mediated by multiple pathways, including a regulatory system(s) that activates specific genes. In some Streptomyces and Mycobacterium spp., the WblC/WhiB7 transcription factor is required for intrinsic resistance to translation-targeting antibiotics. Wide conservation of WblC/WhiB7 within Actinobacteria indicates a critical role of WblC/WhiB7 in developing resistance to such antibiotics. Here, we identified 312 WblC target genes in Streptomyces coelicolor, a model antibiotic-producing bacterium, using a combined analysis of RNA sequencing and chromatin immunoprecipitation sequencing. Interestingly, WblC controls many genes involved in translation, in addition to previously identified antibiotic resistance genes. Moreover, WblC promotes translation rate during antibiotic stress by altering the ribosome-associated protein composition. Our genome-wide analyses highlight a previously unappreciated antibiotic resistance mechanism that modifies ribosome composition and maintains the translation rate in the presence of sub-MIC levels of antibiotics. IMPORTANCE The emergence of antibiotic-resistant bacteria is one of the top threats in human health. Therefore, we need to understand how bacteria acquire resistance to antibiotics and continue growth even in the presence of antibiotics. Streptomyces coelicolor, an antibiotic-producing soil bacterium, intrinsically develops resistance to translation-targeting antibiotics. Intrinsic resistance is controlled by the WblC/WhiB7 transcription factor that is highly conserved within Actinobacteria, including Mycobacterium tuberculosis. Here, identification of the WblC/WhiB7 regulon revealed that WblC/WhiB7 controls ribosome maintenance genes and promotes translation in the presence of antibiotics by altering the composition of ribosome-associated proteins. Also, the WblC-mediated ribosomal alteration is indeed required for resistance to translation-targeting antibiotics. This suggests that inactivation of the WblC/WhiB7 regulon could be a potential target to treat antibiotic-resistant mycobacteria. Full Article
ge EspFu-Mediated Actin Assembly Enhances Enteropathogenic Escherichia coli Adherence and Activates Host Cell Inflammatory Signaling Pathways By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT The translocation of effectors into the host cell through type 3 secretion systems (T3SS) is a sophisticated strategy employed by pathogenic bacteria to subvert host responses and facilitate colonization. Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) utilize the Tir and EspFu (also known as TccP) effectors to remodel the host cytoskeleton, culminating in the formation of attaching and effacing (AE) lesions on enterocytes. While some EPEC strains require tyrosine phosphorylation of Tir and recruitment of the host Nck to trigger actin polymerization, EHEC and certain EPEC strains, whose Tir is not phosphorylated, rely on the effector EspFu for efficient actin remodeling. Here, we investigated the role played by Tir-Nck and Tir-EspFu actin polymerization pathways during the infection of epithelial cells, as well as the host transcriptional response to the AE lesion formation induced by EPEC. We found that EspFu-mediated actin assembly promotes bacterial attachment and epithelial colonization more efficiently than Tir-Nck. Moreover, we showed that both actin polymerization mechanisms can activate inflammatory pathways and reverse the anti-inflammatory response induced by EPEC in epithelial cells. However, this activity is remarkably more evident in infections with EspFu-expressing EPEC strains. This study demonstrates the complex interactions between effector-mediated actin remodeling and inflammation. Different strains carry different combinations of these two effectors, highlighting the plasticity of pathogenic E. coli enteric infections. IMPORTANCE EPEC is among the leading causes of diarrheal disease worldwide. The colonization of the gut mucosa by EPEC results in actin pedestal formation at the site of bacterial attachment. These pedestals are referred to as attaching and effacing (AE) lesions. Here, we exploit the different molecular mechanisms used by EPEC to induce AE lesions on epithelial cells, showing that the effector EspFu is associated with increased bacterial attachment and enhanced epithelial colonization compared to the Tir-Nck pathway. Moreover, we also showed that actin pedestal formation can counterbalance the anti-inflammatory activity induced by EPEC, especially when driven by EspFu. Collectively, our findings provide new insights into virulence mechanisms employed by EPEC to colonize epithelial cells, as well as the host response to this enteric pathogen. Full Article
ge Targeting Hidden Pathogens: Cell-Penetrating Enzybiotics Eradicate Intracellular Drug-Resistant Staphylococcus aureus By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Staphylococcus aureus is a major concern in human health care, mostly due to the increasing prevalence of antibiotic resistance. Intracellular localization of S. aureus plays a key role in recurrent infections by protecting the pathogens from antibiotics and immune responses. Peptidoglycan hydrolases (PGHs) are highly specific bactericidal enzymes active against both drug-sensitive and -resistant bacteria. However, PGHs able to effectively target intracellular S. aureus are not yet available. To overcome this limitation, we first screened 322 recombineered PGHs for staphylolytic activity under conditions found inside eukaryotic intracellular compartments. The most active constructs were modified by fusion to different cell-penetrating peptides (CPPs), resulting in increased uptake and enhanced intracellular killing (reduction by up to 4.5 log units) of various S. aureus strains (including methicillin-resistant S. aureus [MRSA]) in different tissue culture infection models. The combined application of synergistic PGH-CPP constructs further enhanced their intracellular efficacy. Finally, synergistically active PGH-CPP cocktails reduced the total S. aureus by more than 2.2 log units in a murine abscess model after peripheral injection. Significantly more intracellular bacteria were killed by the PGH-CPPs than by the PGHs alone. Collectively, our findings show that CPP-fused PGHs are effective novel protein therapeutics against both intracellular and drug-resistant S. aureus. IMPORTANCE The increasing prevalence of antibiotic-resistant bacteria is one of the most urgent problems of our time. Staphylococcus aureus is an important human pathogen that has acquired several mechanisms to evade antibiotic treatment. In addition, S. aureus is able to invade and persist within human cells, hiding from the immune response and antibiotic therapies. For these reasons, novel antibacterial strategies against these pathogens are needed. Here, we developed lytic enzymes which are able to effectively target drug-resistant and intracellular S. aureus. Fusion of these so-called enzybiotics to cell-penetrating peptides enhanced their uptake and intracellular bactericidal activity in cell culture and in an abscess mouse model. Our results suggest that cell-penetrating enzybiotics are a promising new class of therapeutics against staphylococcal infections. Full Article
ge Coping with COVID: How a Research Team Learned To Stay Engaged in This Time of Physical Distancing By mbio.asm.org Published On :: 2020-04-17T14:59:27-07:00 ABSTRACT Physical distancing imposed by the COVID-19 pandemic has led to alterations in routines and new responsibilities for much of the research community. We provide some tips for how research teams can cope with physical distancing, some of which require a change in how we define productivity. Importantly, we need to maintain and strengthen social connections in this time when we can’t be physically together. Full Article
ge Simian Immunodeficiency Virus-Infected Memory CD4+ T Cells Infiltrate to the Site of Infected Macrophages in the Neuroparenchyma of a Chronic Macaque Model of Neurological Complications of AIDS By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Simian immunodeficiency virus (SIV)-infected nonhuman primates can serve as a relevant model for AIDS neuropathogenesis. Current SIV-induced encephalitis (SIVE)/neurological complications of AIDS (neuroAIDS) models are generally associated with rapid progression to neuroAIDS, which does not reflect the tempo of neuroAIDS progression in humans. Recently, we isolated a neuropathogenic clone, SIVsm804E-CL757 (CL757), obtained from an SIV-infected rhesus macaque (RM). CL757 causes a more protracted progression to disease, inducing SIVE in 50% of inoculated animals, with high cerebral spinal fluid viral loads, multinucleated giant cells (MNGCs), and perivascular lymphocytic cuffing in the central nervous system (CNS). This latter finding is reminiscent of human immunodeficiency virus (HIV) encephalitis in humans but not generally observed in rapid progressor animals with neuroAIDS. Here, we studied which subsets of cells within the CNS were targeted by CL757 in animals with neurological symptoms of SIVE. Immunohistochemistry of brain sections demonstrated infiltration of CD4+ T cells (CD4) and macrophages (Ms) to the site of MNGCs. Moreover, an increase in mononuclear cells isolated from the brain tissues of RMs with SIVE correlated with increased cerebrospinal fluid (CSF) viral load. Subset analysis showed a specific increase in brain CD4+ memory T cells (Br-mCD4), brain-Ms (Br-Ms), and brain B cells (Br-B cells). Both Br-mCD4s and Br-Ms harbored replication-competent viral DNA, as demonstrated by virus isolation by coculture. However, only in animals exhibiting SIVE/neuroAIDS was virus isolated from Br-Ms. These findings support the use of CL757 to study the pathogenesis of AIDS viruses in the central nervous system and indicate a previously unanticipated role of CD4s cells as a potential reservoir in the brain. IMPORTANCE While the use of combination antiretroviral therapy effectively suppresses systemic viral replication in the body, neurocognitive disorders as a result of HIV infection of the central nervous system (CNS) remain a clinical problem. Therefore, the use of nonhuman primate models is necessary to study mechanisms of neuropathogenesis. The neurotropic, molecular clone SIVsm804E-CL757 (CL757) results in neuroAIDS in 50% of infected rhesus macaques approximately 1 year postinfection. Using CL757-infected macaques, we investigate disease progression by examining subsets of cells within the CNS that were targeted by CL757 and could potentially serve as viral reservoirs. By isolating mononuclear cells from the brains of SIV-infected rhesus macaques with and without encephalitis, we show that immune cells invade the neuroparenchyma and increase in number in the CNS in animals with SIV-induced encephalitis (SIVE). Of these cells, both brain macrophages and brain memory CD4+ T cells harbor replication-competent SIV DNA; however, only brain CD4+ T cells harbored SIV DNA in animals without SIVE. These findings support use of CL757 as an important model to investigate disease progression in the CNS and as a model to study virus reservoirs in the CNS. Full Article
ge "Candidatus Ethanoperedens," a Thermophilic Genus of Archaea Mediating the Anaerobic Oxidation of Ethane By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Cold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation. Here, using hydrothermal sediments of the Guaymas Basin (Gulf of California) and ethane as the substrate, we cultured microbial consortia of a novel anaerobic ethane oxidizer, "Candidatus Ethanoperedens thermophilum" (GoM-Arc1 clade), and its partner bacterium "Candidatus Desulfofervidus auxilii," previously known from methane-oxidizing consortia. The sulfate reduction activity of the culture doubled within one week, indicating a much faster growth than in any other alkane-oxidizing archaea described before. The dominance of a single archaeal phylotype in this culture allowed retrieval of a closed genome of "Ca. Ethanoperedens," a sister genus of the recently reported ethane oxidizer "Candidatus Argoarchaeum." The metagenome-assembled genome of "Ca. Ethanoperedens" encoded a complete methanogenesis pathway including a methyl-coenzyme M reductase (MCR) that is highly divergent from those of methanogens and methanotrophs. Combined substrate and metabolite analysis showed ethane as the sole growth substrate and production of ethyl-coenzyme M as the activation product. Stable isotope probing demonstrated that the enzymatic mechanism of ethane oxidation in "Ca. Ethanoperedens" is fully reversible; thus, its enzymatic machinery has potential for the biotechnological development of microbial ethane production from carbon dioxide. IMPORTANCE In the seabed, gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing bacterium known to aid in methane oxidation and have retrieved the first complete genome of a short-chain alkane-degrading archaeon. This will greatly enhance the understanding of nonmethane alkane activation by noncanonical methyl-coenzyme M reductase enzymes and provide insights into additional metabolic steps and the mechanisms underlying syntrophic partnerships. Ultimately, this knowledge could lead to the biotechnological development of alkanogenic microorganisms to support the carbon neutrality of industrial processes. Full Article
ge The Proteasome Governs Fungal Morphogenesis via Functional Connections with Hsp90 and cAMP-Protein Kinase A Signaling By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Protein homeostasis is critical for proliferation and viability of all organisms. For Candida albicans, protein homeostasis also modulates the transition between yeast and filamentous forms, which is critical for virulence. A key regulator of morphogenesis is the molecular chaperone Hsp90, which mediates proteostasis under physiological and stress conditions. Hsp90 regulates morphogenesis by repressing cyclic AMP-protein kinase A (cAMP-PKA) signaling, such that inhibition of Hsp90 causes filamentation in the absence of an inducing cue. We explored the effect of perturbation of another facet of protein homeostasis and discovered that morphogenesis is also regulated by the proteasome, a large 33-subunit protein complex consisting of a 20S catalytic core and two 19S regulatory particles, which controls degradation of intracellular proteins. We identified a conserved role of the proteasome in morphogenesis as pharmacological inhibition of the proteasome induced filamentation of C. albicans and the related species Candida dubliniensis, Candida tropicalis, Candida krusei, and Candida parapsilosis. For C. albicans, genetic depletion of any of 29 subunits of the 19S or 20S particle induced filamentation. Filaments induced by inhibition of either the proteasome or Hsp90 have shared structural characteristics, such as aberrant nuclear content, and shared genetic dependencies, such as intact cAMP-PKA signaling. Consistent with a functional connection between these facets of protein homeostasis that modulate morphogenesis, we observed that proteasome inhibition results in an accumulation of ubiquitinated proteins that overwhelm Hsp90 function, relieving Hsp90-mediated repression of morphogenesis. Together, our findings provide a mechanism whereby interconnected facets of proteostasis regulate C. albicans morphogenesis. IMPORTANCE Fungi cause life-threatening infections and pose a serious threat to human health as there are very few effective antifungal drugs. Candida albicans is a major human fungal pathogen and cause of morbidity and mortality in immunocompromised individuals. A key trait that enables C. albicans virulence is its ability to transition between yeast and filamentous forms. Understanding the mechanisms regulating this virulence trait can facilitate the development of much-needed, novel therapeutic strategies. A key regulator of morphogenesis is the molecular chaperone Hsp90, which is crucial for proteostasis. Here, we expanded our understanding of how proteostasis regulates fungal morphogenesis and identified the proteasome as a repressor of filamentation in C. albicans and related species. Our work suggests that proteasome inhibition overwhelms Hsp90 function, thereby inducing morphogenesis. This work provides a foundation for understanding the role of the proteasome in fungal virulence and offers potential for targeting the proteasome to disarm fungal pathogens. Full Article
ge Ehrlichia chaffeensis Uses an Invasin To Suppress Reactive Oxygen Species Generation by Macrophages via CD147-Dependent Inhibition of Vav1 To Block Rac1 Activation By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT The obligatory intracellular pathogen Ehrlichia chaffeensis lacks most factors that could respond to oxidative stress (a host cell defense mechanism). We previously found that the C terminus of Ehrlichia surface invasin, entry-triggering protein of Ehrlichia (EtpE; EtpE-C) directly binds mammalian DNase X, a glycosylphosphatidylinositol-anchored cell surface receptor and that binding is required to induce bacterial entry and simultaneously to block the generation of reactive oxygen species (ROS) by host monocytes and macrophages. However, how the EtpE-C–DNase X complex mediates the ROS blockade was unknown. A mammalian transmembrane glycoprotein CD147 (basigin) binds to the EtpE-DNase X complex and is required for Ehrlichia entry and infection of host cells. Here, we found that bone marrow-derived macrophages (BMDM) from myeloid cell lineage-selective CD147-null mice had significantly reduced Ehrlichia-induced or EtpE-C-induced blockade of ROS generation in response to phorbol myristate acetate. In BMDM from CD147-null mice, nucleofection with CD147 partially restored the Ehrlichia-mediated inhibition of ROS generation. Indeed, CD147-null mice as well as their BMDM were resistant to Ehrlichia infection. Moreover, in human monocytes, anti-CD147 partially abrogated EtpE-C-induced blockade of ROS generation. Both Ehrlichia and EtpE-C could block activation of the small GTPase Rac1 (which in turn activates phagocyte NADPH oxidase) and suppress activation of Vav1, a hematopoietic-specific Rho/Rac guanine nucleotide exchange factor by phorbol myristate acetate. Vav1 suppression by Ehrlichia was CD147 dependent. E. chaffeensis is the first example of pathogens that block Rac1 activation to colonize macrophages. Furthermore, Ehrlichia uses EtpE to hijack the unique host DNase X-CD147-Vav1 signaling to block Rac1 activation. IMPORTANCE Ehrlichia chaffeensis is an obligatory intracellular bacterium with the capability of causing an emerging infectious disease called human monocytic ehrlichiosis. E. chaffeensis preferentially infects monocytes and macrophages, professional phagocytes, equipped with an arsenal of antimicrobial mechanisms, including rapid reactive oxygen species (ROS) generation upon encountering bacteria. As Ehrlichia isolated from host cells are readily killed upon exposure to ROS, Ehrlichia must have evolved a unique mechanism to safely enter phagocytes. We discovered that binding of the Ehrlichia surface invasin to the host cell surface receptor not only triggers Ehrlichia entry but also blocks ROS generation by the host cells by mobilizing a novel intracellular signaling pathway. Knowledge of the mechanisms by which ROS production is inhibited may lead to the development of therapeutics for ehrlichiosis as well as other ROS-related pathologies. Full Article
ge Tracing the Evolutionary History and Global Expansion of Candida auris Using Population Genomic Analyses By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Candida auris has emerged globally as a multidrug-resistant yeast that can spread via nosocomial transmission. An initial phylogenetic study of isolates from Japan, India, Pakistan, South Africa, and Venezuela revealed four populations (clades I, II, III, and IV) corresponding to these geographic regions. Since this description, C. auris has been reported in more than 30 additional countries. To trace this global emergence, we compared the genomes of 304 C. auris isolates from 19 countries on six continents. We found that four predominant clades persist across wide geographic locations. We observed phylogeographic mixing in most clades; clade IV, with isolates mainly from South America, demonstrated the strongest phylogeographic substructure. C. auris isolates from two clades with opposite mating types were detected contemporaneously in a single health care facility in Kenya. We estimated a Bayesian molecular clock phylogeny and dated the origin of each clade within the last 360 years; outbreak-causing clusters from clades I, III, and IV originated 36 to 38 years ago. We observed high rates of antifungal resistance in clade I, including four isolates resistant to all three major classes of antifungals. Mutations that contribute to resistance varied between the clades, with Y132F in ERG11 as the most widespread mutation associated with azole resistance and S639P in FKS1 for echinocandin resistance. Copy number variants in ERG11 predominantly appeared in clade III and were associated with fluconazole resistance. These results provide a global context for the phylogeography, population structure, and mechanisms associated with antifungal resistance in C. auris. IMPORTANCE In less than a decade, C. auris has emerged in health care settings worldwide; this species is capable of colonizing skin and causing outbreaks of invasive candidiasis. In contrast to other Candida species, C. auris is unique in its ability to spread via nosocomial transmission and its high rates of drug resistance. As part of the public health response, whole-genome sequencing has played a major role in characterizing transmission dynamics and detecting new C. auris introductions. Through a global collaboration, we assessed genome evolution of isolates of C. auris from 19 countries. Here, we described estimated timing of the expansion of each C. auris clade and of fluconazole resistance, characterized discrete phylogeographic population structure of each clade, and compared genome data to sensitivity measurements to describe how antifungal resistance mechanisms vary across the population. These efforts are critical for a sustained, robust public health response that effectively utilizes molecular epidemiology. Full Article
ge Killer Archaea: Virus-Mediated Antagonism to CRISPR-Immune Populations Results in Emergent Virus-Host Mutualism By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Theory, simulation, and experimental evolution demonstrate that diversified CRISPR-Cas immunity to lytic viruses can lead to stochastic virus extinction due to a limited number of susceptible hosts available to each potential new protospacer escape mutation. Under such conditions, theory predicts that to evade extinction, viruses evolve toward decreased virulence and promote vertical transmission and persistence in infected hosts. To better understand the evolution of host-virus interactions in microbial populations with active CRISPR-Cas immunity, we studied the interaction between CRISPR-immune Sulfolobus islandicus cells and immune-deficient strains that are infected by the chronic virus SSV9. We demonstrate that Sulfolobus islandicus cells infected with SSV9, and with other related SSVs, kill uninfected, immune strains through an antagonistic mechanism that is a protein and is independent of infectious virus. Cells that are infected with SSV9 are protected from killing and persist in the population. We hypothesize that this infection acts as a form of mutualism between the host and the virus by removing competitors in the population and ensuring continued vertical transmission of the virus within populations with diversified CRISPR-Cas immunity. IMPORTANCE Multiple studies, especially those focusing on the role of lytic viruses in key model systems, have shown the importance of viruses in shaping microbial populations. However, it has become increasingly clear that viruses with a long host-virus interaction, such as those with a chronic lifestyle, can be important drivers of evolution and have large impacts on host ecology. In this work, we describe one such interaction with the acidic crenarchaeon Sulfolobus islandicus and its chronic virus Sulfolobus spindle-shaped virus 9. Our work expands the view in which this symbiosis between host and virus evolved, describing a killing phenotype which we hypothesize has evolved in part due to the high prevalence and diversity of CRISPR-Cas immunity seen in natural populations. We explore the implications of this phenotype in population dynamics and host ecology, as well as the implications of mutualism between this virus-host pair. Full Article
ge Complete Structure of the Enterococcal Polysaccharide Antigen (EPA) of Vancomycin-Resistant Enterococcus faecalis V583 Reveals that EPA Decorations Are Teichoic Acids Covalently Linked to a Rhamnopolysaccharide Backbone By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT All enterococci produce a complex polysaccharide called the enterococcal polysaccharide antigen (EPA). This polymer is required for normal cell growth and division and for resistance to cephalosporins and plays a critical role in host-pathogen interaction. The EPA contributes to host colonization and is essential for virulence, conferring resistance to phagocytosis during the infection. Recent studies revealed that the "decorations" of the EPA polymer, encoded by genetic loci that are variable between isolates, underpin the biological activity of this surface polysaccharide. In this work, we investigated the structure of the EPA polymer produced by the high-risk enterococcal clonal complex Enterococcus faecalis V583. We analyzed purified EPA from the wild-type strain and a mutant lacking decorations and elucidated the structure of the EPA backbone and decorations. We showed that the rhamnan backbone of EPA is composed of a hexasaccharide repeat unit of C2- and C3-linked rhamnan chains, partially substituted in the C3 position by α-glucose (α-Glc) and in the C2 position by β-N-acetylglucosamine (β-GlcNAc). The so-called "EPA decorations" consist of phosphopolysaccharide chains corresponding to teichoic acids covalently bound to the rhamnan backbone. The elucidation of the complete EPA structure allowed us to propose a biosynthetic pathway, a first essential step toward the design of antimicrobials targeting the synthesis of this virulence factor. IMPORTANCE Enterococci are opportunistic pathogens responsible for hospital- and community-acquired infections. All enterococci produce a surface polysaccharide called EPA (enterococcal polysaccharide antigen) required for biofilm formation, antibiotic resistance, and pathogenesis. Despite the critical role of EPA in cell growth and division and as a major virulence factor, no information is available on its structure. Here, we report the complete structure of the EPA polymer produced by the model strain E. faecalis V583. We describe the structure of the EPA backbone, made of a rhamnan hexasaccharide substituted by Glc and GlcNAc residues, and show that teichoic acids are covalently bound to this rhamnan chain, forming the so-called "EPA decorations" essential for host colonization and pathogenesis. This report represents a key step in efforts to identify the structural properties of EPA that are essential for its biological activity and to identify novel targets to develop preventive and therapeutic approaches against enterococci. Full Article
ge Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT The capacity of Candida albicans to reversibly change its morphology between yeast and filamentous stages is crucial for its virulence. Formation of hyphae correlates with the upregulation of genes ALS3 and ECE1, which are involved in pathogenicity processes such as invasion, iron acquisition, and host cell damage. The global repressor Tup1 and its cofactor Nrg1 are considered to be the main antagonists of hyphal development in C. albicans. However, our experiments revealed that Tup1, but not Nrg1, was required for full expression of ALS3 and ECE1. In contrast to NRG1, overexpression of TUP1 was found to inhibit neither filamentous growth nor transcription of ALS3 and ECE1. In addition, we identified the transcription factor Ahr1 as being required for full expression of both genes. A hyperactive version of Ahr1 bound directly to the promoters of ALS3 and ECE1 and induced their transcription even in the absence of environmental stimuli. This regulation worked even in the absence of the crucial hyphal growth regulators Cph1 and Efg1 but was dependent on the presence of Tup1. Overall, our results show that Ahr1 and Tup1 are key contributors in the complex regulation of virulence-associated genes in the different C. albicans morphologies. IMPORTANCE Candida albicans is a major human fungal pathogen and the leading cause of systemic Candida infections. In recent years, Als3 and Ece1 were identified as important factors for fungal virulence. Transcription of both corresponding genes is closely associated with hyphal growth. Here, we describe how Tup1, normally a global repressor of gene expression as well as of filamentation, and the transcription factor Ahr1 contribute to full expression of ALS3 and ECE1 in C. albicans hyphae. Both regulators are required for high mRNA amounts of the two genes to ensure functional relevant protein synthesis and localization. These observations identified a new aspect of regulation in the complex transcriptional control of virulence-associated genes in C. albicans. Full Article
ge Minnesota association acknowledges states ancestral lands, residents By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 In a nod to the people who came before them — and those who still live among them — the Minnesota Public Health Association is acknowledging ancestral lands. Full Article
ge Historical Geography and Health Equity: An Exploratory View of North Carolina Slavery and Sociohealth Factors By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 Current health inequities are rooted in more than simple systems failures and inefficiencies. Historical legacy has corrupted health outcomes, and resolution requires both acknowledgment and intention. Full Article
ge Clinical and pathologic phenotype of a large family with heterozygous STUB1 mutation By ng.neurology.org Published On :: 2020-03-23T12:45:09-07:00 Objective To describe the clinical and pathologic features of a novel pedigree with heterozygous STUB1 mutation causing SCA48. Methods We report a large pedigree of Dutch decent. Clinical and pathologic data were reviewed, and genetic analyses (whole-exome sequencing, whole-genome sequencing, and linkage analysis) were performed on multiple family members. Results Patients presented with adult-onset gait disturbance (ataxia or parkinsonism), combined with prominent cognitive decline and behavioral changes. Whole-exome sequencing identified a novel heterozygous frameshift variant c.731_732delGC (p.C244Yfs*24) in STUB1 segregating with the disease. This variant was present in a linkage peak on chromosome 16p13.3. Neuropathologic examination of 3 cases revealed a consistent pattern of ubiquitin/p62-positive neuronal inclusions in the cerebellum, neocortex, and brainstem. In addition, tau pathology was present in 1 case. Conclusions This study confirms previous findings of heterozygous STUB1 mutations as the cause of SCA48 and highlights its prominent cognitive involvement, besides cerebellar ataxia and movement disorders as cardinal features. The presence of intranuclear inclusions is a pathologic hallmark of the disease. Future studies will provide more insight into its pathologic heterogeneity. Full Article
ge Polygenic risk scores of several subtypes of epilepsies in a founder population By ng.neurology.org Published On :: 2020-03-27T13:08:21-07:00 Objective Polygenic risk scores (PRSs) are used to quantify the cumulative effects of a number of genetic variants, which may individually have a very small effect on susceptibility to a disease; we used PRSs to better understand the genetic contribution to common epilepsy and its subtypes. Methods We first replicated previous single associations using 373 unrelated patients. We then calculated PRSs in the same French Canadian patients with epilepsy divided into 7 epilepsy subtypes and population-based controls. We fitted a logistic mixed model to calculate the variance explained by the PRS using pseudo-R2 statistics. Results We show that the PRS explains more of the variance in idiopathic generalized epilepsy than in patients with nonacquired focal epilepsy. We also demonstrate that the variance explained is different within each epilepsy subtype. Conclusions Globally, we support the notion that PRSs provide a reliable measure to rightfully estimate the contribution of genetic factors to the pathophysiologic mechanism of epilepsies, but further studies are needed on PRSs before they can be used clinically. Full Article
ge Biallelic LINE insertion mutation in HACD1 causing congenital myopathy By ng.neurology.org Published On :: 2020-04-13T12:45:09-07:00 Congenital myopathies are clinically and genetically heterogeneous, resulting from mutations in at least 30 different genes.1 The classical presentation is neonatal hypotonia and nonprogressive weakness with normal creatine phosphokinase, although there is a broad range in terms of age at onset and clinical presentation. Historically, congenital myopathies have been defined and diagnosed based on muscle biopsy. However, with advances in genomics, genetics have taken primacy in the diagnostic pathway.2 Full Article
ge TGM6 L517W is not a pathogenic variant for spinocerebellar ataxia type 35 By ng.neurology.org Published On :: 2020-04-22T12:45:11-07:00 Objective To investigate the pathogenicity of the TGM6 variant for spinocerebellar ataxia 35 (SCA35), which was previously reported to be caused by pathogenic mutations in the gene TGM6. Methods Neurologic assessment and brain MRI were performed to provide detailed description of the phenotype. Whole-exome sequencing and dynamic mutation analysis were performed to identify the genotype. Results The proband, presenting with myoclonic epilepsy, cognitive decline, and ataxia, harbored both the TGM6 p.L517W variant and expanded CAG repeats in gene ATN1. Further analysis of the other living family members in this pedigree revealed that the CAG repeat number was expanded in all the patients and within normal range in all the unaffected family members. However, the TGM6 p.L517W variant was absent in 2 affected family members, but present in 3 healthy individuals. Conclusions The nonsegregation of the TGM6 variant with phenotype does not support this variant as the disease-causing gene in this pedigree, questioning the pathogenicity of TGM6 in SCA35. Full Article
ge A new cheiracanthid acanthodian from the Middle Devonian (Givetian) Orcadian Basin of Scotland and its biostratigraphic and biogeographical significance By sjg.lyellcollection.org Published On :: 2019-11-29T02:21:48-08:00 A number of partial articulated specimens of Cheiracanthus peachi nov. sp. have been collected from the Mey Flagstone Formation and Rousay Flagstone Formation within the Orcadian Basin of northern Scotland. The new, robust-bodied species is mainly distinguished by the scale ornament of radiating grooves rather than ridges. Compared to other Cheiracanthus species in the Orcadian Basin, C. peachi nov. sp. has quite a short range making it a useful zone fossil. As well as describing the general morphology of the specimens, we have also described and figured SEM images of scales and histological sections of all elements, enabling identification of other, isolated remains. Of particular biological interest is the identification of relatively robust, tooth-like gill rakers. Finally, the species has also been identified from isolated scales in Belarus, where it appears earlier and has a longer stratigraphical range, implying the species evolved in the marine deposits of the east and migrated west into the Orcadian Basin via the river systems. Full Article
ge Very large convergent multi-fluted glacigenic deposits in the NW Highlands, Scotland By sjg.lyellcollection.org Published On :: 2019-11-29T02:21:48-08:00 We describe two large convergent multi-fluted glacigenic deposits in the NW Highlands, Scotland, and point out their resemblance to a number of landforms emerging from presently deglaciating areas of Greenland and Antarctica. We suggest that they all result from locally sourced sediment being deposited by local ice-flow, which was laterally confined by the margins of much larger adjacent glaciers or ice-streams. The NW Highlands features thus seem likely to be the result of processes active during the latter part of the Devensian Glaciation. One of these deposits, on the peninsula between Loch Broom and Little Loch Broom, is evidently sourced from the west-facing Coire Dearg of Beinn Ghobhlach, but was emplaced in a WNW direction rather than along the WSW fall-line. This suggests that the ice that emplaced it was confined by the margins of large glaciers then occupying the adjacent valleys of Loch Broom and Little Loch Broom. The second much larger and more prominent deposit, in Applecross, is composed of bouldery Torridonian sandstone till emplaced on to glacially scoured bedrock; the only feasible source location for this material is about 12 km distant, which requires that the deposit was carried by ice across the trough of Strath Maol Chalum and emplaced while active ice-streams confined it laterally to its present-day location. This, in turn, requires that ice lay in the Inner Sound between Applecross and Skye to an elevation 400–500 m above present-day sea-level. The Wester Ross Re-advance of 15–14 ka left a fragment of lateral moraine against the most easterly flute and buried the distal end of the flutes with hummocky moraine. We hypothesize that the fluted deposits reflect the locations of the ice-stream margins that constrained deposition of locally derived ice-transported sediment, rather than the flow-lines of the ice-stream itself. Full Article
ge A large Taenidium burrow from the Upper Carboniferous of Corrie, Isle of Arran, and remarks on the association of Taenidium burrows and Diplichnites trails By sjg.lyellcollection.org Published On :: 2019-11-29T02:21:48-08:00 Large un-walled backfilled burrows of the Taenidium type are known from Paleozoic deltaic marine environments worldwide where they are often associated with Diplichnites trackways. The latter are generally attributed to arthropleurid myriapods and it may be that the burrows were also made by these animals. Here we describe a Taenidium burrow from the Limestone Coal Formation of the Isle of Arran, a formation that also hosts a well-known example of Diplichnites, supporting the association of the two types of trace fossil and extending their known co-occurrence upward into the Upper Carboniferous. Full Article
ge Digging deeper: The influence of historical mining on Glasgow's subsurface thermal state to inform geothermal research By sjg.lyellcollection.org Published On :: 2019-11-29T02:21:48-08:00 Studies of the former NE England coalfield in Tyneside demonstrated that heat flow perturbations in boreholes were due to the entrainment and lateral dispersion of heat from deeper in the subsurface through flooded mine workings. This work assesses the influence of historical mining on geothermal observations across Greater Glasgow. The regional heat flow for Glasgow is 60 mW m–2 and, after correction for palaeoclimate, is estimated as c. 80 mW m–2. An example of reduced heat flow above mine workings is observed at Hallside (c. 10 km SE of Glasgow), where the heat flow through a 352 m deep borehole is c. 14 mW m–2. Similarly, the heat flow across the 199 m deep GGC01 borehole in the Glasgow Geothermal Energy Research Field Site is c. 44 mW m–2. The differences between these values and the expected regional heat flow suggest a significant component of horizontal heat flow into surrounding flooded mine workings. This deduction also influences the quantification of deeper geothermal resources, as extrapolation of the temperature gradient above mine workings would underestimate the temperature at depth. Future projects should consider the influence of historical mining on heat flow when temperature datasets such as these are used in the design of geothermal developments. Supplementary material: Background information on the chronology of historical mining at each borehole location and a summary of groundwater flow in mine workings beneath Glasgow are available at https://doi.org/10.6084/m9.figshare.c.4681100 Thematic collection: This article is part of the ‘Early Career Research’ available at: https://www.lyellcollection.org/cc/SJG-early-career-research Full Article
ge Low-carbon GeoEnergy resource options in the Midland Valley of Scotland, UK By sjg.lyellcollection.org Published On :: 2019-11-29T02:21:48-08:00 Scotland is committed to be a carbon-neutral society by 2040 and has achieved the important initial step of decarbonizing power production. However, more ambitious measures are required to fully decarbonize all of the electricity, transport and heating sectors. We explore the potential to use low-carbon GeoEnergy resources and bioenergy combined with Carbon Capture and Storage (BECCS) in the Midland Valley area to decarbonize the Scottish economy and society. The Midland Valley has a long history of geological resource extraction and, as a result, the geology of the region is well characterized. Geothermal energy and subsurface energy storage have the potential to be implemented. Some of them, such as gravity and heat storage, could re-use the redundant mining infrastructure to decrease investment costs. Hydrogen storage could be of particular interest as the Midland Valley offers the required caprock–reservoir assemblages. BECCS is also a promising option to reduce overall CO2 emissions by between 1.10 and 4.40 MtCO2 a–1. The Midland Valley has enough space to grow the necessary crops, but CO2 storage will most likely be implemented in North Sea saline aquifers. The studied aspects suggest that the Midland Valley represents a viable option in Scotland for the exploitation of the majority of low-carbon GeoEnergy resources. Thematic collection: This article is part of the ‘Early Career Research’ available at: https://www.lyellcollection.org/cc/SJG-early-career-research Full Article
ge Rupture geometries in anisotropic amphibolite recorded by pseudotachylytes in the Gairloch Shear Zone, NW Scotland By sjg.lyellcollection.org Published On :: 2019-11-29T02:21:48-08:00 Recent earthquakes involving complex multi-fault rupture have increased our appreciation of the variety of rupture geometries and fault interactions that occur within the short duration of coseismic slip. Geometrical complexities are intrinsically linked with spatially heterogeneous slip and stress drop distributions, and hence need incorporating into seismic hazard analysis. Studies of exhumed ancient fault zones facilitate investigation of rupture processes in the context of lithology and structure at seismogenic depths. In the Gairloch Shear Zone, NW Scotland, foliated amphibolites host pseudotachylytes that record rupture geometries of ancient low-magnitude (≤MW 3) seismicity. Pseudotachylyte faults are commonly foliation parallel, indicating exploitation of foliation planes as weak interfaces for seismic rupture. Discordance and complexity are introduced by fault segmentation, stepovers, branching and brecciated dilational volumes. Pseudotachylyte geometries indicate that slip nucleation initiated simultaneously across several parallel foliation planes with millimetre and centimetre separations, leading to progressive interaction and ultimately linkage of adjacent segments and branches within a single earthquake. Interacting with this structural control, a lithological influence of abundant low disequilibrium melting-point amphibole facilitated coseismic melting, with relatively high coseismic melt pressure encouraging transient dilational sites. These faults elucidate controls and processes that may upscale to large active fault zones hosting major earthquake activity. Supplementary material: Supplementary Figures 1 and 2, unannotated versions of field photographs displayed in Figures 4a and 5 respectively, are available at https://doi.org/10.6084/m9.figshare.c.4573256 Thematic collection: This article is part of the SJG Collection on Early-Career Research available at: https://www.lyellcollection.org/cc/SJG-early-career-research Full Article
ge WRKY13 Enhances Cadmium Tolerance by Promoting D-CYSTEINE DESULFHYDRASE and Hydrogen Sulfide Production By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Hydrogen sulfide (H2S), a plant gasotransmitter, functions in the plant response to cadmium (Cd) stress, implying a role for cysteine desulfhydrase in producing H2S in this process. Whether d-CYSTEINE DESULFHYDRASE (DCD) acts in the plant Cd response remains to be identified, and if it does, how DCD is regulated in this process is also unknown. Here, we report that DCD-mediated H2S production enhances plant Cd tolerance in Arabidopsis (Arabidopsis thaliana). When subjected to Cd stress, a dcd mutant accumulated more Cd and reactive oxygen species and showed increased Cd sensitivity, whereas transgenic lines overexpressing DCD had decreased Cd and reactive oxygen species levels and were more tolerant to Cd stress compared with wild-type plants. Furthermore, the expression of DCD was stimulated by Cd stress, and this up-regulation was mediated by a Cd-induced transcription factor, WRKY13, which bound to the DCD promoter. Consistently, the higher Cd sensitivity of the wrky13-3 mutant was rescued by the overexpression of DCD. Together, our results demonstrate that Cd-induced WRKY13 activates DCD expression to increase the production of H2S, leading to higher Cd tolerance in plants. Full Article
ge Arabidopsis DNA Replication Initiates in Intergenic, AT-Rich Open Chromatin By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 The selection and firing of DNA replication origins play key roles in ensuring that eukaryotes accurately replicate their genomes. This process is not well documented in plants due in large measure to difficulties in working with plant systems. We developed a new functional assay to label and map very early replicating loci that must, by definition, include at least a subset of replication origins. Arabidopsis (Arabidopsis thaliana) cells were briefly labeled with 5-ethynyl-2'-deoxy-uridine, and nuclei were subjected to two-parameter flow sorting. We identified more than 5500 loci as initiation regions (IRs), the first regions to replicate in very early S phase. These were classified as strong or weak IRs based on the strength of their replication signals. Strong initiation regions were evenly spaced along chromosomal arms and depleted in centromeres, while weak initiation regions were enriched in centromeric regions. IRs are AT-rich sequences flanked by more GC-rich regions and located predominantly in intergenic regions. Nuclease sensitivity assays indicated that IRs are associated with accessible chromatin. Based on these observations, initiation of plant DNA replication shows some similarity to, but is also distinct from, initiation in other well-studied eukaryotic systems. Full Article
ge ONE-HELIX PROTEIN1 and 2 Form Heterodimers to Bind Chlorophyll in Photosystem II Biogenesis By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Members of the light-harvesting complex protein family participate in multiple processes connected with light sensing, light absorption, and pigment binding within the thylakoid membrane. Amino acid residues of the light-harvesting chlorophyll a/b-binding proteins involved in pigment binding have been precisely identified through x-ray crystallography experiments. In vitro pigment-binding studies have been performed with LIGHT-HARVESTING-LIKE3 proteins, and the pigment-binding ability of cyanobacterial high-light-inducible proteins has been studied in detail. However, analysis of pigment binding by plant high-light-inducible protein homologs, called ONE-HELIX PROTEINS (OHPs), is lacking. Here, we report on successful in vitro reconstitution of Arabidopsis (Arabidopsis thaliana) OHPs with chlorophylls and carotenoids and show that pigment binding depends on the formation of OHP1/OHP2 heterodimers. Pigment-binding capacity was completely lost in each of the OHPs when residues of the light-harvesting complex chlorophyll-binding motif required for chlorophyll binding were mutated. Moreover, the mutated OHP variants failed to rescue the respective knockout (T-DNA insertion) mutants, indicating that pigment-binding ability is essential for OHP function in vivo. The scaffold protein HIGH CHLOROPHYLL FLUORESCENCE244 (HCF244) is tethered to the thylakoid membrane by the OHP heterodimer. We show that HCF244 stability depends on OHP heterodimer formation and introduce the concept of a functional unit consisting of OHP1, OHP2, and HCF244, in which each protein requires the others. Because of their pigment-binding capacity, we suggest that OHPs function in the delivery of pigments to the D1 subunit of PSII. Full Article
ge Transcription Factors BLH2 and BLH4 Regulate Demethylesterification of Homogalacturonan in Seed Mucilage By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 The polysaccharide pectin is a major component of the plant cell wall. The pectic glycan homogalacturonan (HG) is a proportionally small but important component of a specialized seed cell wall called mucilage. HG is synthesized in a highly methylesterified form, and, following secretion, is de-methylesterified by pectin methylesterases (PMEs). The degree of methylesterification of HG determines the structural and functional properties of pectin, but how methylesterification is regulated remains largely unknown. Here, we identified two BEL1-Like homeodomain (BLH) transcription factors, BLH2 and BLH4, as positive regulators of HG de-methylesterification in Arabidopsis (Arabidopsis thaliana) seed coat mucilage. BLH2 and BLH4 were significantly expressed in mucilage secretory cells during seed mucilage production. BLH2 and BLH4 single mutants exhibited no obvious mucilage phenotype, but the blh2 blh4 double mutant displayed significantly reduced mucilage adherence to the seed. Reduced mucilage adherence in blh2 blh4 was caused by decreased PME activity in the seed coat, which increased the degree of methylesterification of HG in mucilage. The expression of several PME metabolism-related genes, including PME58, PECTIN METHYLESTERASE INHIBITOR6, SEEDSTICK, and MYB52 was significantly altered in blh2 blh4 seeds. BLH2 and BLH4 directly activated PME58 expression by binding to its TGACAGGT cis-element. Moreover, pme58 mutants exhibited reduced mucilage adherence similar to that of blh2 blh4, and the blh2 blh4 pme58 triple mutant exhibited no additional mucilage adherence defects. Furthermore, overexpression of PME58 in blh2 blh4 rescued the mucilage adherence defect. Together, these results demonstrate that BLH2 and BLH4 redundantly regulate de-methylesterification of HG in seed mucilage by directly activating PME58. Full Article
ge Allelic Mutations in the Ripening-Inhibitor Locus Generate Extensive Variation in Tomato Ripening By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 RIPENING INHIBITOR (RIN) is a transcription factor with transcriptional activator activity that plays a major role in regulating fruit ripening in tomato (Solanum lycopersicum). Recent studies have revealed that (1) RIN is indispensable for full ripening but not for the induction of ripening; and (2) the rin mutation, which produces nonripening fruits that never turn red or soften, is not a null mutation but instead converts the encoded transcriptional activator into a repressor. Here, we have uncovered aspects of RIN function by characterizing a series of allelic mutations within this locus that were produced by CRISPR/Cas9. Fruits of RIN-knockout plants, which are characterized by partial ripening and low levels of lycopene but never turn fully red, showed excess flesh softening compared to the wild type. The knockout mutant fruits also showed accelerated cell wall degradation, suggesting that, contrary to the conventional view, RIN represses over-ripening in addition to facilitating ripening. A C-terminal domain-truncated RIN protein, encoded by another allele of the RIN locus (rinG2), did not activate transcription but formed transcription factor complexes that bound to target genomic regions in a manner similar to that observed for wild-type RIN protein. Fruits expressing this truncated RIN protein exhibited extended shelf life, but unlike rin fruits, they accumulated lycopene and appeared orange. The diverse ripening properties of the RIN allelic mutants suggest that substantial phenotypic variation can be produced by tuning the activity of a transcription factor. Full Article
ge Sensory-Directed Genetic and Biochemical Characterization of Volatile Terpene Production in Kiwifruit By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Terpene volatiles are found in many important fruit crops, but their relationship to flavor is poorly understood. Here, we demonstrate using sensory descriptive and discriminant analysis that 1,8-cineole contributes a key floral/eucalyptus note to the aroma of ripe 'Hort16A’ kiwifruit (Actinidia chinensis). Two quantitative trait loci (QTLs) for 1,8-cineole production were identified on linkage groups 27 and 29a in a segregating A. chinensis population, with the QTL on LG29a colocating with a complex cluster of putative terpene synthase (TPS)-encoding genes. Transient expression in Nicotiana benthamiana and analysis of recombinant proteins expressed in Escherichia coli showed four genes in the cluster (AcTPS1a–AcTPS1d) encoded functional TPS enzymes, which produced predominantly sabinene, 1,8-cineole, geraniol, and springene, respectively. The terpene profile produced by AcTPS1b closely resembled the terpenes detected in red-fleshed A. chinensis. AcTPS1b expression correlated with 1,8-cineole content in developing/ripening fruit and also showed a positive correlation with 1,8-cineole content in the mapping population, indicating the basis for segregation is an expression QTL. Transient overexpression of AcTPS1b in Actinidia eriantha fruit confirmed this gene produced 1,8-cineole in Actinidia. Structure-function analysis showed AcTPS1a and AcTPS1b are natural variants at key TPS catalytic site residues previously shown to change enzyme specificity in vitro. Together, our results indicate that AcTPS1b is a key gene for production of the signature flavor terpene 1,8-cineole in ripe kiwifruit. Using a sensory-directed strategy for compound identification provides a rational approach for applying marker-aided selection to improving flavor in kiwifruit as well as other fruits. Full Article
ge From Fuzz to Fiber: Identification of Genes Involved in Cotton Fiber Elongation By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Full Article
ge "Detection of SV40 like viral DNA and viral antigens in malignant pleural mesothelioma." M. Ramael, J. Nagels, H. Heylen, S. De Schepper, J. Paulussen, M. De Maeyer and C. Van Haesendonck. Eur Respir J 1999; 14: 1381-1386. By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 Full Article
ge Severe Pulmonary Hypertension Management Across Europe (PHAROS): an ERS Clinical Research Collaboration By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 The past 20 years have seen major advances in the understanding and treatment of pulmonary arterial hypertension (PAH; group 1 of the pulmonary hypertension (PH) clinical classification) [1]. A strong basis of knowledge has been acquired in: 1) large randomised clinical trials for drug development; 2) national registries for epidemiology and outcome; and 3) smaller studies on the pathophysiological mechanisms of the disease. This knowledge has been reviewed at World Symposia on Pulmonary Hypertension (the most recent in 2018 [2]) and summarised in European Respiratory Society (ERS)/European Society of Cardiology (ESC) clinical guidelines (the most recent in 2015 [3, 4]). We are, however, much less knowledgeable on specific aspects such as 1) the implementation of guidelines and access to therapies in different European countries; 2) the management of PH crises and progressive (acute on chronic) heart failure; and 3) other groups of PH, such as PH due to lung diseases. Therapeutic strategies also need to be optimised, in particular regarding the combination of drugs, the use of anticoagulants, the place for new medications targeting different pathophysiological pathways, etc. Full Article
ge Therapeutic drug monitoring using saliva as matrix: an opportunity for linezolid, but challenge for moxifloxacin By erj.ersjournals.com Published On :: 2020-05-07T01:15:54-07:00 The World Health Organization (WHO) has listed moxifloxacin and linezolid among the preferred "group A" drugs in the treatment of multidrug-resistant (MDR)-tuberculosis (TB) [1]. Therapeutic drug monitoring (TDM) could potentially optimise MDR-TB therapy, since moxifloxacin and linezolid show large pharmacokinetic variability [1–4]. TDM of moxifloxacin focuses on identifying patients with low drug exposure who are at risk of treatment failure and acquired fluoroquinolone resistance [5, 6]. Alternatively, TDM of linezolid strives to reduce toxicity while ensuring an adequate drug exposure because of its narrow therapeutic index [1, 3, 7]. Full Article
ge Neurology consults in emergency departments: Opportunities to streamline care By cp.neurology.org Published On :: 2020-04-06T12:45:20-07:00 Objective To use the variations in neurology consultations requested by emergency department (ED) physicians to identify opportunities to implement multidisciplinary interventions in an effort to reduce ED overcrowding. Methods We retrospectively analyzed ED visits across 3 urban hospitals to determine the top 10 most common chief complaints leading to neurology consultation. For each complaint, we evaluated the likelihood of consultation, admission rate, admitting services, and provider-to-provider variability of consultation. Results Of 145,331 ED encounters analyzed, 3,087 (2.2%) involved a neurology consult, most commonly with chief complaints of acute-onset neurologic deficit, subacute neurologic deficit, or altered mental status. ED providers varied most in their consultation for acute-onset neurologic deficit, dizziness, and headache. Neurology consultation was associated with a 2.3-hour-longer length of stay (LOS) (95% CI: 1.6–3.1). Headache in particular has an average of 6.7-hour-longer ED LOS associated with consultation, followed by weakness or extremity weakness (4.4 hours) and numbness (4.1 hours). The largest estimated cumulative difference (number of patients with the specific consultation multiplied by estimated difference in LOS) belongs to headache, altered mental status, and seizures. Conclusion A systematic approach to identify variability in neurology consultation utilization and its effect on ED LOS helps pinpoint the conditions most likely to benefit from protocolized pathways. Full Article
ge Risk of stroke after emergency department visits for neurologic complaints By cp.neurology.org Published On :: 2020-04-06T12:45:20-07:00 Objective To assess the risk of subsequent stroke among older patients discharged from an emergency department (ED) without a diagnosis of TIA or stroke. Methods Using electronic health record data from a large urban, university hospital and a community-based hospital, we analyzed patients aged 60–89 years discharged to home from the ED without an International Statistical Classification of Diseases and Related Health Problems, 9th or 10th Revision diagnosis of TIA or stroke. Based on the presence/absence of a head CT and the presence/absence of a chief complaint suggestive of TIA or stroke ("symptoms") during the index ED visit, we created 4 mutually exclusive groups (group 1, reference: head CT no, symptoms no; group 2: head CT no, symptoms yes; group 3: head CT yes, symptoms no; and group 4: head CT yes, symptoms yes). We calculated rates of stroke in the 30, 90, and 365 days after the index visit and used multivariable logistic regression to estimate odds ratios (ORs) for subsequent stroke. Results Among 35,622 patients (mean age 70 years, 59% women, and 16% African American), unadjusted rates of stroke in 365 days were as follows: group 4: 2.5%; group 3: 1.1%; group 2: 0.69%; and group 1: 0.54%. The adjusted OR for stroke was 3.30 (95% confidence interval [CI], 1.61–6.76) in group 4, 1.56 (95% CI, 1.16–2.09) in group 3, and 0.61 (95% CI, 0.22–1.67) in group 2. Conclusions Among patients discharged from the ED without a diagnosis of TIA or stroke, the occurrence of a head CT and/or specific neurologic symptoms established a clinically meaningful risk gradient for subsequent stroke. Full Article
ge Optimizing Resources in Childrens Surgical Care: An Update on the American College of Surgeons' Verification Program By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Surgical procedures are performed in the United States in a wide variety of clinical settings and with variation in clinical outcomes. In May 2012, the Task Force for Children’s Surgical Care, an ad hoc multidisciplinary group comprising physicians representing specialties relevant to pediatric perioperative care, was convened to generate recommendations to optimize the delivery of children’s surgical care. This group generated a white paper detailing the consensus opinions of the involved experts. Following these initial recommendations, the American College of Surgeons (ACS), Children’s Hospital Association, and Task Force for Children’s Surgical Care, with input from all related perioperative specialties, developed and published specific and detailed resource and quality standards designed to improve children’s surgical care (https://www.facs.org/quality-programs/childrens-surgery/childrens-surgery-verification). In 2015, with the endorsement of the American Academy of Pediatrics (https://pediatrics.aappublications.org/content/135/6/e1538), the ACS established a pilot verification program. In January 2017, after completion of the pilot program, the ACS Children’s Surgery Verification Quality Improvement Program was officially launched. Verified sites are listed on the program Web site at https://www.facs.org/quality-programs/childrens-surgery/childrens-surgery-verification/centers, and more than 150 are interested in verification. This report provides an update on the ACS Children’s Surgery Verification Quality Improvement Program as it continues to evolve. Full Article
ge Ames SG, Davis BS, Marin JR, L. Fink EL, Olson LM, Gausche-Hill M, Kahn JM. Emergency Department Pediatric Readiness and Mortality in Critically Ill Children. Pediatrics. 2019;144(3):e20190568 By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Full Article
ge Ahmed A, Fend PI, Gaensbauer JT, Reves RR, Khurana R, Salcedo K, Punnoose R, Katz DJ, for the TUBERCULOSIS EPIDEMIOLOGIC STUDIES CONSORTIUM. Interferon-{gamma} Release Assays in Children <15 Years of Age. Pediatrics. 2020:145(1):e20191930 By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Full Article
ge Adolescent Sexual Health Interventions: Innovation, Efficacy, Cost, and the Urgent Need to Scale By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Full Article
ge Racial and Ethnic Differences in Emergency Department Pain Management of Children With Fractures By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 OBJECTIVES: To test the hypotheses that minority children with long-bone fractures are less likely to (1) receive analgesics, (2) receive opioid analgesics, and (3) achieve pain reduction. METHODS: We performed a 3-year retrospective cross-sectional study of children <18 years old with long-bone fractures using the Pediatric Emergency Care Applied Research Network Registry (7 emergency departments). We performed bivariable and multivariable logistic regression to measure the association between patient race and ethnicity and (1) any analgesic, (2) opioid analgesic, (3) ≥2-point pain score reduction, and (4) optimal pain reduction (ie, to mild or no pain). RESULTS: In 21 069 visits with moderate-to-severe pain, 86.1% received an analgesic and 45.4% received opioids. Of 8533 patients with reassessment of pain, 89.2% experienced ≥2-point reduction in pain score and 62.2% experienced optimal pain reduction. In multivariable analyses, minority children, compared with non-Hispanic (NH) white children, were more likely to receive any analgesics (NH African American: adjusted odds ratio [aOR] 1.72 [95% confidence interval 1.51–1.95]; Hispanic: 1.32 [1.16–1.51]) and achieve ≥2-point reduction in pain (NH African American: 1.42 [1.14–1.76]; Hispanic: 1.38 [1.04–1.83]) but were less likely to receive opioids (NH African American: aOR 0.86 [0.77–0.95]; Hispanic: aOR 0.86 [0.76–0.96]) or achieve optimal pain reduction (NH African American: aOR 0.78 [0.67–0.90]; Hispanic: aOR 0.80 [0.67–0.95]). CONCLUSIONS: There are differences in process and outcome measures by race and ethnicity in the emergency department management of pain among children with long-bone fractures. Although minority children are more likely to receive analgesics and achieve ≥2-point reduction in pain, they are less likely to receive opioids and achieve optimal pain reduction. Full Article
ge ACA Medicaid Expansion and Insurance Coverage Among New Mothers Living in Poverty By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 BACKGROUND: Medicaid plays a critical role during the perinatal period, but pregnancy-related Medicaid eligibility only extends for 60 days post partum. In 2014, the Affordable Care Act’s (ACA’s) Medicaid expansions increased adult Medicaid eligibility to 138% of the federal poverty level in participating states, allowing eligible new mothers to remain covered after pregnancy-related coverage expires. We investigate the impact of ACA Medicaid expansions on insurance coverage among new mothers living in poverty. METHODS: We define new mothers living in poverty as women ages 19 to 44 with incomes below the federal poverty level who report giving birth in the past 12 months. We use 2010–2017 American Community Survey data and a difference-in-differences approach using parental Medicaid-eligibility thresholds to estimate the effect of ACA Medicaid expansions on insurance coverage among poor new mothers. RESULTS: A 100-percentage-point increase in parental Medicaid-eligibility is associated with an 8.8-percentage-point decrease (P < .001) in uninsurance, a 13.2-percentage-point increase (P < .001) in Medicaid coverage, and a 4.4-percentage-point decrease in private or other coverage (P = .001) among poor new mothers. The average increase in Medicaid eligibility is associated with a 28% decrease in uninsurance, a 13% increase in Medicaid coverage, and an 18% decline in private or other insurance among poor new mothers in expansion states. However, in 2017, there were ~142 000 remaining uninsured, poor new mothers. CONCLUSIONS: ACA Medicaid expansions are associated with increased Medicaid coverage and reduced uninsurance among poor new mothers. Opportunities remain for expansion and nonexpansion states to increase insurance coverage among new mothers living in poverty. Full Article
ge Climate Change as a Social Determinant of Health By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Full Article
ge Teenage Use of Smartphone Applications for Menstrual Cycle Tracking By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Full Article
ge Enhancing CPR During Transition From Prehospital to Emergency Department: A QI Initiative By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 BACKGROUND AND OBJECTIVES: High-quality cardiopulmonary resuscitation (CPR) increases the likelihood of survival of pediatric out-of-hospital cardiac arrest (OHCA). Maintenance of high-quality CPR during transition of care between prehospital and pediatric emergency department (PED) providers is challenging. Our objective for this initiative was to minimize pauses in compressions, in alignment with American Heart Association recommendations, for patients with OHCA during the handoffs from prehospital to PED providers. We aimed to decrease interruptions in compressions during the first 2 minutes of PED care from 17 seconds (baseline data) to 10 seconds over 12 months. Our secondary aims were to decrease the length of the longest pause in compressions to <10 seconds and eliminate encounters in which time to defibrillator pad placement was >120 seconds. METHODS: Our multidisciplinary team outlined our theory for improvement and designed interventions aimed at key drivers. Interventions included specific roles and responsibilities, CPR handoff choreography, and empowerment of frontline providers. Data were abstracted from video recordings of patients with OHCA receiving manual CPR on arrival. RESULTS: We analyzed 33 encounters between March 2018 and July 2019. We decreased total interruptions from 17 to 12 seconds during the first 2 minutes and decreased the time of the longest single pause from 14 to 7 seconds. We saw a decrease in variability of time to defibrillator pad placement. CONCLUSIONS: Implementation of a quality improvement initiative involving CPR transition choreography resulted in decreased interruptions in compressions and decreased variability of time to defibrillator pad placement. Full Article
ge Early Childhood Factors Associated With Peer Victimization Trajectories From 6 to 17 Years of Age By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 OBJECTIVES: To describe (1) the developmental trajectories of peer victimization from 6 to 17 years of age and (2) the early childhood behaviors and family characteristics associated with the trajectories. METHODS: We used data from 1760 children enrolled in the Quebec Longitudinal Study of Child Development, a population-based birth cohort. Participants self-reported peer victimization at ages 6, 7, 8, 10, 12, 13, 15, and 17 years. Participants’ behavior and family characteristics were measured repeatedly between ages 5 months and 5 years. RESULTS: We identified 4 trajectories of peer victimization from 6 to 17 years of age: low (32.9%), moderate-emerging (29.8%), childhood-limited (26.2%), and high-chronic (11.1%). Compared with children in the low peer victimization trajectory, children in the other 3 trajectories were more likely to exhibit externalizing behaviors in early childhood, and those in the high-chronic and moderate-emerging trajectories were more likely to be male. Paternal history of antisocial behavior was associated with moderate-emerging (odds ratio [OR] = 1.54; 95% confidence interval [CI] = 1.09–2.19) and high-chronic (OR = 1.93; 95% CI = 1.25–2.99) relative to low peer victimization. Living in a nonintact family in early childhood was associated with childhood-limited (OR = 1.48; 95% CI = 1.11–1.97) and high-chronic (OR = 1.59; 95% CI = 1.09–2.31) relative to low peer victimization. CONCLUSIONS: Early childhood externalizing behaviors and family vulnerabilities were associated with the development of peer victimization. Some children entered the cascade of persistent peer victimization at the beginning of primary school. Support to these children and their families early in life should be an important component of peer victimization preventive interventions. Full Article
ge Teenager With Abdominal Pain and Decreased Appetite By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 A 16-year-old girl presented to her primary care physician with a one-month history of decreased appetite and abdominal pain. She had normal bowel movements and no vomiting, but her periumbilical pain limited her ability to finish most meals. She had gradual weight loss over the previous 2 years, and during the previous 4 years, she intermittently received counseling for depression after the loss of her mother. Her initial physical examination and laboratory evaluation were unremarkable. She was referred to a nutritionist, adolescent medicine, and pediatric gastroenterology. Her presentation evolved over time, which ultimately led to a definitive diagnosis. Full Article
ge Breastfeeding and Mortality Under 2 Years of Age in Sub-Saharan Africa By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 BACKGROUND: Several studies have investigated the association of breastfeeding status with offspring mortality in Africa, but most studies were from one center only or had limited statistical power to draw robust conclusions. METHODS: Data came from 75 nationally representative cross-sectional Demographic and Health Surveys in 35 countries in sub-Saharan Africa conducted between 2000 and 2016. Our study relied on 217 112 individuals aged 4 days to 23 months for breastfeeding pattern analysis, 161 322 individuals aged 6 to 23 months for breastfeeding history analysis, and 104 427 individuals aged 12 to 23 months for breastfeeding duration analysis. RESULTS: Compared with children aged 4 days to 23 months exclusively breastfed in the first 3 days of life, those not breastfed had a high risk of mortality at <2 years of age (odds ratio [OR] = 13.45; 95% confidence interval [CI] = 11.43–15.83). Young children who were predominantly breastfed or partially breastfed had moderately increased risk of mortality at <2 years of age (OR = 1.11, 95% CI = 1.03–1.21 for predominant pattern; OR = 1.12, 95% CI = 0.99–1.27 for partial pattern). Compared with children aged 6 to 23 months who were breastfed within the first 6 months of life, those not breastfed had a high risk of mortality (OR = 5.65; 95% CI = 4.27–7.47). Compared with children aged 12 to 23 months who were breastfed for ≥6 months, those who were breastfed for shorter periods had a higher risk of mortality (OR = 2.78, 95% CI = 1.45–5.32 for duration of <3 months; OR = 5.28, 95% CI = 3.24–8.61 for those who were not breastfed). CONCLUSIONS: Our findings support exclusive breastfeeding during the first 6 months of life and continued breastfeeding up to 2 years of age recommended by the World Health Organization for reducing mortality of children <2 years old in sub-Saharan Africa. Full Article