tia In Vivo Assay Reveals Microbial OleA Thiolases Initiating Hydrocarbon and {beta}-Lactone Biosynthesis By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT OleA, a member of the thiolase superfamily, is known to catalyze the Claisen condensation of long-chain acyl coenzyme A (acyl-CoA) substrates, initiating metabolic pathways in bacteria for the production of membrane lipids and β-lactone natural products. OleA homologs are found in diverse bacterial phyla, but to date, only one homodimeric OleA has been successfully purified to homogeneity and characterized in vitro. A major impediment for the identification of new OleA enzymes has been protein instability and time-consuming in vitro assays. Here, we developed a bioinformatic pipeline to identify OleA homologs and a new rapid assay to screen OleA enzyme activity in vivo and map their taxonomic diversity. The screen is based on the discovery that OleA displayed surprisingly high rates of p-nitrophenyl ester hydrolysis, an activity not shared by other thiolases, including FabH. The high rates allowed activity to be determined in vitro and with heterologously expressed OleA in vivo via the release of the yellow p-nitrophenol product. Seventy-four putative oleA genes identified in the genomes of diverse bacteria were heterologously expressed in Escherichia coli, and 25 showed activity with p-nitrophenyl esters. The OleA proteins tested were encoded in variable genomic contexts from seven different phyla and are predicted to function in distinct membrane lipid and β-lactone natural product metabolic pathways. This study highlights the diversity of unstudied OleA proteins and presents a rapid method for their identification and characterization. IMPORTANCE Microbially produced β-lactones are found in antibiotic, antitumor, and antiobesity drugs. Long-chain olefinic membrane hydrocarbons have potential utility as fuels and specialty chemicals. The metabolic pathway to both end products share bacterial enzymes denoted as OleA, OleC, and OleD that transform acyl-CoA cellular intermediates into β-lactones. Bacteria producing membrane hydrocarbons via the Ole pathway additionally express a β-lactone decarboxylase, OleB. Both β-lactone and olefin biosynthesis pathways are initiated by OleA enzymes that define the overall structure of the final product. There is currently very limited information on OleA enzymes apart from the single representative from Xanthomonas campestris. In this study, bioinformatic analysis identified hundreds of new, putative OleA proteins, 74 proteins were screened via a rapid whole-cell method, leading to the identification of 25 stably expressed OleA proteins representing seven bacteria phyla. Full Article
tia The Absence of (p)ppGpp Renders Initiation of Escherichia coli Chromosomal DNA Synthesis Independent of Growth Rates By mbio.asm.org Published On :: 2020-03-10T01:30:42-07:00 ABSTRACT The initiation of Escherichia coli chromosomal DNA replication starts with the oligomerization of the DnaA protein at repeat sequences within the origin (ori) region. The amount of ori DNA per cell directly correlates with the growth rate. During fast growth, the cell generation time is shorter than the time required for complete DNA replication; therefore, overlapping rounds of chromosome replication are required. Under these circumstances, the ori region DNA abundance exceeds the DNA abundance in the termination (ter) region. Here, high ori/ter ratios are found to persist in (p)ppGpp-deficient [(p)ppGpp0] cells over a wide range of balanced exponential growth rates determined by medium composition. Evidently, (p)ppGpp is necessary to maintain the usual correlation of slow DNA replication initiation with a low growth rate. Conversely, ori/ter ratios are lowered when cell growth is slowed by incrementally increasing even low constitutive basal levels of (p)ppGpp without stress, as if (p)ppGpp alone is sufficient for this response. There are several previous reports of (p)ppGpp inhibition of chromosomal DNA synthesis initiation that occurs with very high levels of (p)ppGpp that stop growth, as during the stringent starvation response or during serine hydroxamate treatment. This work suggests that low physiological levels of (p)ppGpp have significant functions in growing cells without stress through a mechanism involving negative supercoiling, which is likely mediated by (p)ppGpp regulation of DNA gyrase. IMPORTANCE Bacterial cells regulate their own chromosomal DNA synthesis and cell division depending on the growth conditions, producing more DNA when growing in nutritionally rich media than in poor media (i.e., human gut versus water reservoir). The accumulation of the nucleotide analog (p)ppGpp is usually viewed as serving to warn cells of impending peril due to otherwise lethal sources of stress, which stops growth and inhibits DNA, RNA, and protein synthesis. This work importantly finds that small physiological changes in (p)ppGpp basal levels associated with slow balanced exponential growth incrementally inhibit the intricate process of initiation of chromosomal DNA synthesis. Without (p)ppGpp, initiations mimic the high rates present during fast growth. Here, we report that the effect of (p)ppGpp may be due to the regulation of the expression of gyrase, an important enzyme for the replication of DNA that is a current target of several antibiotics. Full Article
tia A Solution to Antifolate Resistance in Group B Streptococcus: Untargeted Metabolomics Identifies Human Milk Oligosaccharide-Induced Perturbations That Result in Potentiation of Trimethoprim By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 ABSTRACT Adjuvants can be used to potentiate the function of antibiotics whose efficacy has been reduced by acquired or intrinsic resistance. In the present study, we discovered that human milk oligosaccharides (HMOs) sensitize strains of group B Streptococcus (GBS) to trimethoprim (TMP), an antibiotic to which GBS is intrinsically resistant. Reductions in the MIC of TMP reached as high as 512-fold across a diverse panel of isolates. To better understand HMOs’ mechanism of action, we characterized the metabolic response of GBS to HMO treatment using ultrahigh-performance liquid chromatography–high-resolution tandem mass spectrometry (UPLC-HRMS/MS) analysis. These data showed that when challenged by HMOs, GBS undergoes significant perturbations in metabolic pathways related to the biosynthesis and incorporation of macromolecules involved in membrane construction. This study represents reports the metabolic characterization of a cell that is perturbed by HMOs. IMPORTANCE Group B Streptococcus is an important human pathogen that causes serious infections during pregnancy which can lead to chorioamnionitis, funisitis, premature rupture of gestational membranes, preterm birth, neonatal sepsis, and death. GBS is evolving antimicrobial resistance mechanisms, and the work presented in this paper provides evidence that prebiotics such as human milk oligosaccharides can act as adjuvants to restore the utility of antibiotics. Full Article
tia A Sensitive Yellow Fever Virus Entry Reporter Identifies Valosin-Containing Protein (VCP/p97) as an Essential Host Factor for Flavivirus Uncoating By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT While the basic mechanisms of flavivirus entry and fusion are understood, little is known about the postfusion events that precede RNA replication, such as nucleocapsid disassembly. We describe here a sensitive, conditionally replication-defective yellow fever virus (YFV) entry reporter, YFVSK/Nluc, to quantitively monitor the translation of incoming, virus particle-delivered genomes. We validated that YFVSK/Nluc gene expression can be neutralized by YFV-specific antisera and requires known flavivirus entry pathways and cellular factors, including clathrin- and dynamin-mediated endocytosis, endosomal acidification, YFV E glycoprotein-mediated fusion, and cellular LY6E and RPLP1 expression. The initial round of YFV translation was shown to require cellular ubiquitylation, consistent with recent findings that dengue virus capsid protein must be ubiquitylated in order for nucleocapsid uncoating to occur. Importantly, translation of incoming YFV genomes also required valosin-containing protein (VCP)/p97, a cellular ATPase that unfolds and extracts ubiquitylated client proteins from large complexes. RNA transfection and washout experiments showed that VCP/p97 functions at a postfusion, pretranslation step in YFV entry. Finally, VCP/p97 activity was required by other flaviviruses in mammalian cells and by YFV in mosquito cells. Together, these data support a critical role for VCP/p97 in the disassembly of incoming flavivirus nucleocapsids during a postfusion step in virus entry. IMPORTANCE Flaviviruses are an important group of RNA viruses that cause significant human disease. The mechanisms by which flavivirus nucleocapsids are disassembled during virus entry remain unclear. Here, we used a yellow fever virus entry reporter, which expresses a sensitive reporter enzyme but does not replicate, to show that nucleocapsid disassembly requires the cellular protein-disaggregating enzyme valosin-containing protein, also known as p97. Full Article
tia Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Cell division requires proper spatial coordination with the chromosome, which undergoes dynamic changes during chromosome replication and segregation. FtsZ is a bacterial cytoskeletal protein that assembles into the Z-ring, providing a platform to build the cell division apparatus. In the model bacterium Caulobacter crescentus, the cellular localization of the Z-ring is controlled during the cell cycle in a chromosome replication-coupled manner. Although dynamic localization of the Z-ring at midcell is driven primarily by the replication origin-associated FtsZ inhibitor MipZ, the mechanism ensuring accurate positioning of the Z-ring remains unclear. In this study, we showed that the Z-ring colocalizes with the replication terminus region, located opposite the origin, throughout most of the C. crescentus cell cycle. Spatial organization of the two is mediated by ZapT, a previously uncharacterized protein that interacts with the terminus region and associates with ZapA and ZauP, both of which are part of the incipient division apparatus. While the Z-ring and the terminus region coincided with the presence of ZapT, colocalization of the two was perturbed in cells lacking zapT, which is accompanied by delayed midcellular positioning of the Z-ring. Moreover, cells overexpressing ZapT showed compromised positioning of the Z-ring and MipZ. These findings underscore the important role of ZapT in controlling cell division processes. We propose that ZapT acts as a molecular bridge that physically links the terminus region to the Z-ring, thereby ensuring accurate site selection for the Z-ring. Because ZapT is conserved in proteobacteria, these findings may define a general mechanism coordinating cell division with chromosome organization. IMPORTANCE Growing bacteria require careful tuning of cell division processes with dynamic organization of replicating chromosomes. In enteric bacteria, ZapA associates with the cytoskeletal Z-ring and establishes a physical linkage to the chromosomal replication terminus through its interaction with ZapB-MatP-DNA complexes. However, because ZapB and MatP are found only in enteric bacteria, it remains unclear how the Z-ring and the terminus are coordinated in the vast majority of bacteria. Here, we provide evidence that a novel conserved protein, termed ZapT, mediates colocalization of the Z-ring with the terminus in Caulobacter crescentus, a model organism that is phylogenetically distant from enteric bacteria. Given that ZapT facilitates cell division processes in C. crescentus, this study highlights the universal importance of the physical linkage between the Z-ring and the terminus in maintaining cell integrity. Full Article
tia Advances in Understanding the Human Urinary Microbiome and Its Potential Role in Urinary Tract Infection By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Recent advances in the analysis of microbial communities colonizing the human body have identified a resident microbial community in the human urinary tract (UT). Compared to many other microbial niches, the human UT harbors a relatively low biomass. Studies have identified many genera and species that may constitute a core urinary microbiome. However, the contribution of the UT microbiome to urinary tract infection (UTI) and recurrent UTI (rUTI) pathobiology is not yet clearly understood. Evidence suggests that commensal species within the UT and urogenital tract (UGT) microbiomes, such as Lactobacillus crispatus, may act to protect against colonization with uropathogens. However, the mechanisms and fundamental biology of the urinary microbiome-host relationship are not understood. The ability to measure and characterize the urinary microbiome has been enabled through the development of next-generation sequencing and bioinformatic platforms that allow for the unbiased detection of resident microbial DNA. Translating technological advances into clinical insight will require further study of the microbial and genomic ecology of the urinary microbiome in both health and disease. Future diagnostic, prognostic, and therapeutic options for the management of UTI may soon incorporate efforts to measure, restore, and/or preserve the native, healthy ecology of the urinary microbiomes. Full Article
tia A new cheiracanthid acanthodian from the Middle Devonian (Givetian) Orcadian Basin of Scotland and its biostratigraphic and biogeographical significance By sjg.lyellcollection.org Published On :: 2019-11-29T02:21:48-08:00 A number of partial articulated specimens of Cheiracanthus peachi nov. sp. have been collected from the Mey Flagstone Formation and Rousay Flagstone Formation within the Orcadian Basin of northern Scotland. The new, robust-bodied species is mainly distinguished by the scale ornament of radiating grooves rather than ridges. Compared to other Cheiracanthus species in the Orcadian Basin, C. peachi nov. sp. has quite a short range making it a useful zone fossil. As well as describing the general morphology of the specimens, we have also described and figured SEM images of scales and histological sections of all elements, enabling identification of other, isolated remains. Of particular biological interest is the identification of relatively robust, tooth-like gill rakers. Finally, the species has also been identified from isolated scales in Belarus, where it appears earlier and has a longer stratigraphical range, implying the species evolved in the marine deposits of the east and migrated west into the Orcadian Basin via the river systems. Full Article
tia Arabidopsis DNA Replication Initiates in Intergenic, AT-Rich Open Chromatin By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 The selection and firing of DNA replication origins play key roles in ensuring that eukaryotes accurately replicate their genomes. This process is not well documented in plants due in large measure to difficulties in working with plant systems. We developed a new functional assay to label and map very early replicating loci that must, by definition, include at least a subset of replication origins. Arabidopsis (Arabidopsis thaliana) cells were briefly labeled with 5-ethynyl-2'-deoxy-uridine, and nuclei were subjected to two-parameter flow sorting. We identified more than 5500 loci as initiation regions (IRs), the first regions to replicate in very early S phase. These were classified as strong or weak IRs based on the strength of their replication signals. Strong initiation regions were evenly spaced along chromosomal arms and depleted in centromeres, while weak initiation regions were enriched in centromeric regions. IRs are AT-rich sequences flanked by more GC-rich regions and located predominantly in intergenic regions. Nuclease sensitivity assays indicated that IRs are associated with accessible chromatin. Based on these observations, initiation of plant DNA replication shows some similarity to, but is also distinct from, initiation in other well-studied eukaryotic systems. Full Article
tia Levodopa-induced dyskinesia in dementia with Lewy bodies and Parkinson disease with dementia By cp.neurology.org Published On :: 2020-04-06T12:45:20-07:00 Objective To investigate the frequency of levodopa-induced dyskinesia in dementia with Lewy bodies (DLBs) and Parkinson disease with dementia (PDD) and compare these frequencies with patients with incident Parkinson disease (PD) through a population-based cohort study. Methods We identified all patients with DLB, PDD, and PD without dementia in a 1991–2010 population-based parkinsonism-incident cohort, in Olmsted County, Minnesota. We abstracted information about levodopa-induced dyskinesia. We compared patients with DLB and PDD with dyskinesia with patients with PD from the same cohort. Results Levodopa use and dyskinesia data were available for 141/143 (98.6%) patients with a diagnosis of either DLB or PDD; 87 (61.7%), treated with levodopa. Dyskinesia was documented in 12.6% (8 DLB and 3 PDD) of levodopa-treated patients. Among these patients, median parkinsonism diagnosis age was 74 years (range: 64–80 years); 63.6%, male. The median interval from levodopa initiation to dyskinesia onset was 2 years (range: 3 months–4 years); the median daily levodopa dosage was 600 mg (range: 50–1,600 mg). Dyskinesia severity led to levodopa adjustments in 5 patients, and all improved. Patients with dyskinesia were diagnosed with parkinsonism at a significantly younger age compared with patients without dyskinesia (p < 0.001). Levodopa dosage was unrelated to increased risk of dyskinesias among DLB and PDD. In contrast, 30.1% of levodopa-treated patients with PD developed dyskinesia. In age-, sex-, and levodopa dosage–adjusted models, Patients with DLB and PDD each had lower odds of developing dyskinesia than patients with PD (odds ratio = 0.42, 95% CI 0.21–0.88; p = 0.02). Conclusions The dyskinesia risk for levodopa-treated patients with DLB or PDD was substantially less than for levodopa-treated patients with PD. Full Article
tia Initial Resuscitation Algorithm for Children By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Full Article
tia Enhancing CPR During Transition From Prehospital to Emergency Department: A QI Initiative By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 BACKGROUND AND OBJECTIVES: High-quality cardiopulmonary resuscitation (CPR) increases the likelihood of survival of pediatric out-of-hospital cardiac arrest (OHCA). Maintenance of high-quality CPR during transition of care between prehospital and pediatric emergency department (PED) providers is challenging. Our objective for this initiative was to minimize pauses in compressions, in alignment with American Heart Association recommendations, for patients with OHCA during the handoffs from prehospital to PED providers. We aimed to decrease interruptions in compressions during the first 2 minutes of PED care from 17 seconds (baseline data) to 10 seconds over 12 months. Our secondary aims were to decrease the length of the longest pause in compressions to <10 seconds and eliminate encounters in which time to defibrillator pad placement was >120 seconds. METHODS: Our multidisciplinary team outlined our theory for improvement and designed interventions aimed at key drivers. Interventions included specific roles and responsibilities, CPR handoff choreography, and empowerment of frontline providers. Data were abstracted from video recordings of patients with OHCA receiving manual CPR on arrival. RESULTS: We analyzed 33 encounters between March 2018 and July 2019. We decreased total interruptions from 17 to 12 seconds during the first 2 minutes and decreased the time of the longest single pause from 14 to 7 seconds. We saw a decrease in variability of time to defibrillator pad placement. CONCLUSIONS: Implementation of a quality improvement initiative involving CPR transition choreography resulted in decreased interruptions in compressions and decreased variability of time to defibrillator pad placement. Full Article
tia Space is the Place: Effects of Continuous Spatial Structure on Analysis of Population Genetic Data [Population and Evolutionary Genetics] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Real geography is continuous, but standard models in population genetics are based on discrete, well-mixed populations. As a result, many methods of analyzing genetic data assume that samples are a random draw from a well-mixed population, but are applied to clustered samples from populations that are structured clinally over space. Here, we use simulations of populations living in continuous geography to study the impacts of dispersal and sampling strategy on population genetic summary statistics, demographic inference, and genome-wide association studies (GWAS). We find that most common summary statistics have distributions that differ substantially from those seen in well-mixed populations, especially when Wright’s neighborhood size is < 100 and sampling is spatially clustered. "Stepping-stone" models reproduce some of these effects, but discretizing the landscape introduces artifacts that in some cases are exacerbated at higher resolutions. The combination of low dispersal and clustered sampling causes demographic inference from the site frequency spectrum to infer more turbulent demographic histories, but averaged results across multiple simulations revealed surprisingly little systematic bias. We also show that the combination of spatially autocorrelated environments and limited dispersal causes GWAS to identify spurious signals of genetic association with purely environmentally determined phenotypes, and that this bias is only partially corrected by regressing out principal components of ancestry. Last, we discuss the relevance of our simulation results for inference from genetic variation in real organisms. Full Article
tia Alcohol Causes Lasting Differential Transcription in Drosophila Mushroom Body Neurons [Developmental and Behavioral Genetics] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Repeated alcohol experiences can produce long-lasting memories for sensory cues associated with intoxication. These memories can problematically trigger relapse in individuals recovering from alcohol use disorder (AUD). The molecular mechanisms by which ethanol changes memories to become long-lasting and inflexible remain unclear. New methods to analyze gene expression within precise neuronal cell types can provide further insight toward AUD prevention and treatment. Here, we used genetic tools in Drosophila melanogaster to investigate the lasting consequences of ethanol on transcription in memory-encoding neurons. Drosophila rely on mushroom body (MB) neurons to make associative memories, including memories of ethanol-associated sensory cues. Differential expression analyses revealed that distinct transcripts, but not genes, in the MB were associated with experiencing ethanol alone compared to forming a memory of an odor cue associated with ethanol. Adult MB-specific knockdown of spliceosome-associated proteins demonstrated the necessity of RNA-processing in ethanol memory formation. These findings highlight the dynamic, context-specific regulation of transcription in cue-encoding neurons, and the lasting effect of ethanol on transcript usage during memory formation. Full Article
tia Differential Response of the Chicken Trachea to Chronic Infection with Virulent Mycoplasma gallisepticum Strain Ap3AS and Vaxsafe MG (Strain ts-304): a Transcriptional Profile [Host Response and Inflammation] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Mycoplasma gallisepticum is the primary etiological agent of chronic respiratory disease in chickens. Live attenuated vaccines are most commonly used in the field to control the disease, but current vaccines have some limitations. Vaxsafe MG (strain ts-304) is a new vaccine candidate that is efficacious at a lower dose than the current commercial vaccine strain ts-11, from which it is derived. In this study, the transcriptional profiles of the trachea of unvaccinated chickens and chickens vaccinated with strain ts-304 were compared 2 weeks after challenge with M. gallisepticum strain Ap3AS during the chronic stage of infection. After challenge, genes, gene ontologies, pathways, and protein classes involved in inflammation, cytokine production and signaling, and cell proliferation were upregulated, while those involved in formation and motor movement of cilia, formation of intercellular junctional complexes, and formation of the cytoskeleton were downregulated in the unvaccinated birds compared to the vaccinated birds, reflecting immune dysregulation and the pathological changes induced in the trachea by infection with M. gallisepticum. Vaccination appears to protect the structural and functional integrity of the tracheal mucosa 2 weeks after infection with M. gallisepticum. Full Article
tia Differential Outcomes following Optimization of Simian-Human Immunodeficiency Viruses from Clades AE, B, and C [Pathogenesis and Immunity] By jvi.asm.org Published On :: 2020-05-04T08:00:47-07:00 Simian-human immunodeficiency virus (SHIV) infection of rhesus monkeys is an important preclinical model for human immunodeficiency virus type 1 (HIV-1) vaccines, therapeutics, and cure strategies. SHIVs have been optimized by incorporating HIV-1 Env residue 375 mutations that mimic the bulky or hydrophobic residues typically found in simian immunodeficiency virus (SIV) Env to improve rhesus CD4 binding. We applied this strategy to three SHIV challenge stocks (SHIV-SF162p3, SHIV-AE16, and SHIV-325c) and observed three distinct outcomes. We constructed six Env375 variants (M, H, W, Y, F, and S) for each SHIV, and we performed a pool competition study in rhesus monkeys to define the optimal variant for each SHIV prior to generating large-scale challenge stocks. We identified SHIV-SF162p3S/wild type, SHIV-AE16W, and SHIV-325cH as the optimal variants. SHIV-SF162p3S could not be improved, as it already contained the optimal Env375 residue. SHIV-AE16W exhibited a similar replicative capacity to the parental SHIV-AE16 stock. In contrast, SHIV-325cH demonstrated a 2.6-log higher peak and 1.6-log higher setpoint viral loads than the parental SHIV-325c stock. These data demonstrate the diversity of potential outcomes following Env375 modification in SHIVs. Moreover, the clade C SHIV-325cH challenge stock may prove useful for evaluating prophylactic or therapeutic interventions against clade C HIV-1. IMPORTANCE We sought to enhance the infectivity of three SHIV stocks by optimization of a key residue in human immunodeficiency virus type 1 (HIV-1) Env (Env375). We developed the following three new simian-human immunodeficiency virus (SHIV) stocks: SHIV-SF162p3S/wild type, SHIV-AE16W, and SHIV-325cH. SHIV-SF162p3S could not be optimized, SHIV-AE16W proved comparable to the parental virus, and SHIV-325cH demonstrated markedly enhanced replicative capacity compared with the parental virus. Full Article
tia Long Noncoding RNA NRAV Promotes Respiratory Syncytial Virus Replication by Targeting the MicroRNA miR-509-3p/Rab5c Axis To Regulate Vesicle Transportation [Virus-Cell Interactions] By jvi.asm.org Published On :: 2020-05-04T08:00:46-07:00 Respiratory syncytial virus (RSV) is an enveloped RNA virus which is responsible for approximately 80% of lower respiratory tract infections in children. Current lines of evidence have supported the functional involvement of long noncoding RNA (lncRNA) in many viral infectious diseases. However, the overall biological effect and clinical role of lncRNAs in RSV infection remain unclear. In this study, lncRNAs related to respiratory virus infection were obtained from the lncRNA database, and we collected 144 clinical sputum specimens to identify lncRNAs related to RSV infection. Quantitative PCR (qPCR) detection indicated that the expression of lncRNA negative regulator of antiviral response (NRAV) in RSV-positive patients was significantly lower than that in uninfected patients, but lncRNA psoriasis-associated non-protein coding RNA induced by stress (PRINS), nuclear paraspeckle assembly transcript 1 (NEAT1), and Nettoie Salmonella pas Theiler’s (NeST) showed no difference in vivo and in vitro. Meanwhile, overexpression of NRAV promoted RSV proliferation in A549 and BEAS-2B cells, and vice versa, indicating that the downregulation of NRAV was part of the host antiviral defense. RNA fluorescent in situ hybridization (FISH) confirmed that NRAV was mainly located in the cytoplasm. Through RNA sequencing, we found that Rab5c, which is a vesicle transporting protein, showed the same change trend as NRAV. Subsequent investigation revealed that NRAV was able to favor RSV production indirectly by sponging microRNA miR-509-3p so as to release Rab5c and facilitate vesicle transportation. The study provides a new insight into virus-host interaction through noncoding RNA, which may contribute to exploring potential antivirus targets for respiratory virus. IMPORTANCE The mechanism of interaction between RSV and host noncoding RNAs is not fully understood. In this study, we found that the expression of long noncoding RNA (lncRNA) negative regulator of antiviral response (NRAV) was reduced in RSV-infected patients, and overexpression of NRAV facilitated RSV production in vitro, suggesting that the reduction of NRAV in RSV infection was part of the host antiviral response. We also found that NRAV competed with vesicle protein Rab5c for microRNA miR509-3p in cytoplasm to promote RSV vesicle transport and accelerate RSV proliferation, thereby improving our understanding of the pathogenic mechanism of RSV infection. Full Article
tia Reversal of hyperactive subthalamic circuits differentially mitigates pain hypersensitivity phenotypes in parkinsonian mice [Neuroscience] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Although pain is a prevalent nonmotor symptom in Parkinson’s disease (PD), it is undertreated, in part because of our limited understanding of the underlying mechanisms. Considering that the basal ganglia are implicated in pain sensation, and that their synaptic outputs are controlled by the subthalamic nucleus (STN), we hypothesized that... Full Article
tia Cannabinoid exposure in rat adolescence reprograms the initial behavioral, molecular, and epigenetic response to cocaine [Neuroscience] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 The initial response to an addictive substance can facilitate repeated use: That is, individuals experiencing more positive effects are more likely to use that drug again. Increasing evidence suggests that psychoactive cannabinoid use in adolescence enhances the behavioral effects of cocaine. However, despite the behavioral data, there is no neurobiological... Full Article
tia Improved surrogates in inertial confinement fusion with manifold and cycle consistencies [Computer Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Neural networks have become the method of choice in surrogate modeling because of their ability to characterize arbitrary, high-dimensional functions in a data-driven fashion. This paper advocates for the training of surrogates that are 1) consistent with the physical manifold, resulting in physically meaningful predictions, and 2) cyclically consistent with... Full Article
tia PCARE and WASF3 regulate ciliary F-actin assembly that is required for the initiation of photoreceptor outer segment disk formation [Genetics] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 The outer segments (OS) of rod and cone photoreceptor cells are specialized sensory cilia that contain hundreds of opsin-loaded stacked membrane disks that enable phototransduction. The biogenesis of these disks is initiated at the OS base, but the driving force has been debated. Here, we studied the function of the... Full Article
tia Spatial orientation based on multiple visual cues in non-migratory monarch butterflies [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-27T01:37:02-07:00 Myriam Franzke, Christian Kraus, David Dreyer, Keram Pfeiffer, M. Jerome Beetz, Anna L. Stöckl, James J. Foster, Eric J. Warrant, and Basil el JundiMonarch butterflies (Danaus plexippus) are prominent for their annual long-distance migration from North America to their overwintering area in Central Mexico. To find their way on this long journey, they use a sun compass as their main orientation reference but will also adjust their migratory direction with respect to mountain ranges. This indicates that the migratory butterflies also attend to the panorama to guide their travels. While the compass has been studied in detail in migrating butterflies, little is known about the orientation abilities of non-migrating butterflies. Here we studied if non-migrating butterflies - that stay in a more restricted area to feed and breed - also use a similar compass system to guide their flights. Performing behavioral experiments on tethered flying butterflies in an indoor LED flight simulator, we found that the monarchs fly along straight tracks with respect to a simulated sun. When a panoramic skyline was presented as the only orientation cue, the butterflies maintained their flight direction only during short sequences suggesting that they potentially use it for flight stabilization. We further found that when we presented the two cues together, the butterflies incorporate both cues in their compass. Taken together, we here show that non-migrating monarch butterflies can combine multiple visual cues for robust orientation, an ability that may also aid them during their migration. Full Article
tia Oxygen supply capacity in animals evolves to meet maximum demand at the current oxygen partial pressure regardless of size or temperature [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-06T07:21:49-07:00 Brad A. Seibel and Curtis DeutschThe capacity to extract oxygen from the environment and transport it to respiring tissues in support of metabolic demand reportedly has implications for species’ thermal tolerance, body-size, diversity and biogeography. Here we derive a quantifiable linkage between maximum and basal metabolic rate and their oxygen, temperature and size dependencies. We show that, regardless of size or temperature, the physiological capacity for oxygen supply precisely matches the maximum evolved demand at the highest persistently available oxygen pressure and this is the critical PO2 for the maximum metabolic rate. For most terrestrial and shallow-living marine species, this "Pcrit-max" is the current atmospheric pressure, 21 kPa. Any reduction in oxygen partial pressure from current values will result in a calculable decrement in maximum metabolic performance. However, oxygen supply capacity has evolved to match demand across temperatures and body sizes and so does not constrain thermal tolerance or cause the well-known reduction in mass-specific metabolic rate with increasing body mass. The critical oxygen pressure for resting metabolic rate, typically viewed as an indicator of hypoxia tolerance, is, instead, simply a rate-specific reflection of the oxygen supply capacity. A compensatory reduction in maintenance metabolic costs in warm-adapted species constrains factorial aerobic scope and the critical PO2 to a similar range, between ~2 and 6, across each species’ natural temperature range. The simple new relationship described here redefines many important physiological concepts and alters their ecological interpretation. Full Article
tia Exocyst Genes Are Essential for Recycling Membrane Proteins and Maintaining Slit Diaphragm in Drosophila Nephrocytes By jasn.asnjournals.org Published On :: 2020-04-30T10:00:30-07:00 Background Studies have linked mutations in genes encoding the eight-protein exocyst protein complex to kidney disease, but the underlying mechanism is unclear. Because Drosophila nephrocytes share molecular and structural features with mammalian podocytes, they provide an efficient model for studying this issue. Methods We silenced genes encoding exocyst complex proteins specifically in Drosophila nephrocytes and studied the effects on protein reabsorption by lacuna channels and filtration by the slit diaphragm. We performed nephrocyte functional assays, carried out super-resolution confocal microscopy of slit diaphragm proteins, and used transmission electron microscopy to analyze ultrastructural changes. We also examined the colocalization of slit diaphragm proteins with exocyst protein Sec15 and with endocytosis and recycling regulators Rab5, Rab7, and Rab11. Results Silencing exocyst genes in nephrocytes led to profound changes in structure and function. Abolition of cellular accumulation of hemolymph proteins with dramatically reduced lacuna channel membrane invaginations offered a strong indication of reabsorption defects. Moreover, the slit diaphragm’s highly organized surface structure—essential for filtration—was disrupted, and key proteins were mislocalized. Ultrastructural analysis revealed that exocyst gene silencing led to the striking appearance of novel electron-dense structures that we named "exocyst rods," which likely represent accumulated membrane proteins following defective exocytosis or recycling. The slit diaphragm proteins partially colocalized with Sec15, Rab5, and Rab11. Conclusions Our findings suggest that the slit diaphragm of Drosophila nephrocytes requires balanced endocytosis and recycling to maintain its structural integrity and that impairment of the exocyst complex leads to disruption of the slit diaphragm and nephrocyte malfunction. This model may help identify therapeutic targets for treating kidney diseases featuring molecular defects in vesicle endocytosis, exocytosis, and recycling. Full Article
tia Axon microdissection and transcriptome profiling reveals the in vivo RNA content of fully differentiated myelinated motor axons [ARTICLE] By rnajournal.cshlp.org Published On :: 2020-04-16T06:30:22-07:00 Axonal protein synthesis has been shown to play a role in developmental and regenerative growth, as well as in the maintenance of the axoplasm in a steady state. Recent studies have begun to identify the mRNAs localized in axons, which could be translated locally under different conditions. Despite that by now hundreds or thousands of mRNAs have been shown to be localized into the axonal compartment of cultured neurons in vitro, knowledge of which mRNAs are localized in mature myelinated axons is quite limited. With the purpose of characterizing the transcriptome of mature myelinated motor axons of peripheral nervous systems, we modified the axon microdissection method devised by Koenig, enabling the isolation of the axoplasm RNA to perform RNA-seq analysis. The transcriptome analysis indicates that the number of RNAs detected in mature axons is lower in comparison with in vitro data, depleted of glial markers, and enriched in neuronal markers. The mature myelinated axons are enriched for mRNAs related to cytoskeleton, translation, and oxidative phosphorylation. Moreover, it was possible to define core genes present in axons when comparing our data with transcriptomic data of axons grown in different conditions. This work provides evidence that axon microdissection is a valuable method to obtain genome-wide data from mature and myelinated axons of the peripheral nervous system, and could be especially useful for the study of axonal involvement in neurodegenerative pathologies of motor neurons such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophies (SMA). Full Article
tia Theophylline Acetaldehyde as the Initial Product in Doxophylline Metabolism in Human Liver [Articles] By dmd.aspetjournals.org Published On :: 2020-04-09T08:02:00-07:00 Doxophylline (DOXO) and theophylline are widely used as bronchodilators for treating asthma and chronic obstructive pulmonary disease, and DOXO has a better safety profile than theophylline. How DOXO’s metabolism and disposition affect its antiasthmatic efficacy and safety remains to be explored. In this study, the metabolites of DOXO were characterized. A total of nine metabolites of DOXO were identified in vitro using liver microsomes from human and four other animal species. Among them, six metabolites were reported for the first time. The top three metabolites were theophylline acetaldehyde (M1), theophylline-7-acetic acid (M2), and etophylline (M4). A comparative analysis of DOXO metabolism in human using liver microsomes, S9 fraction, and plasma samples demonstrated the following: 1) The metabolism of DOXO began with a cytochrome P450 (P450)–mediated, rate-limiting step at the C ring and produced M1, the most abundant metabolite in human liver microsomes. However, in human plasma, the M1 production was rather low. 2) M1 was further converted to M2 and M4, the end products of DOXO metabolism in vivo, by non-P450 dismutase in the cytosol. This dismutation process also relied on the ratio of NADP+/NADPH in the cell. These findings for the first time elucidated the metabolic sites and routes of DOXO metabolism in human. SIGNIFICANCE STATEMENT We systematically characterized doxophylline metabolism using in vitro and in vivo assays. Our findings evolved the understandings of metabolic sites and pathways for methylxanthine derivatives with the aldehyde functional group. Full Article
tia The tethering function of mitofusin2 controls osteoclast differentiation by modulating the Ca2+-NFATc1 axis [A2;A22] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Dynamic regulation of the mitochondrial network by mitofusins (MFNs) modulates energy production, cell survival, and many intracellular signaling events, including calcium handling. However, the relative importance of specific mitochondrial functions and their dependence on MFNs vary greatly among cell types. Osteoclasts have many mitochondria, and increased mitochondrial biogenesis and oxidative phosphorylation enhance bone resorption, but little is known about the mitochondrial network or MFNs in osteoclasts. Because expression of each MFN isoform increases with osteoclastogenesis, we conditionally deleted MFN1 and MFN2 (double conditional KO (dcKO)) in murine osteoclast precursors, finding that this increased bone mass in young female mice and abolished osteoclast precursor differentiation into mature osteoclasts in vitro. Defective osteoclastogenesis was reversed by overexpression of MFN2 but not MFN1; therefore, we generated mice lacking only MFN2 in osteoclasts. MFN2-deficient female mice had increased bone mass at 1 year and resistance to Receptor Activator of NF-κB Ligand (RANKL)-induced osteolysis at 8 weeks. To explore whether MFN-mediated tethering or mitophagy is important for osteoclastogenesis, we overexpressed MFN2 variants defective in either function in dcKO precursors and found that, although mitophagy was dispensable for differentiation, tethering was required. Because the master osteoclastogenic transcriptional regulator nuclear factor of activated T cells 1 (NFATc1) is calcium-regulated, we assessed calcium release from the endoplasmic reticulum and store-operated calcium entry and found that the latter was blunted in dcKO cells. Restored osteoclast differentiation by expression of intact MFN2 or the mitophagy-defective variant was associated with normalization of store-operated calcium entry and NFATc1 levels, indicating that MFN2 controls mitochondrion–endoplasmic reticulum tethering in osteoclasts. Full Article
tia Non-photopic and photopic visual cycles differentially regulate immediate, early, and late phases of cone photoreceptor-mediated vision [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Cone photoreceptors in the retina enable vision over a wide range of light intensities. However, the processes enabling cone vision in bright light (i.e. photopic vision) are not adequately understood. Chromophore regeneration of cone photopigments may require the retinal pigment epithelium (RPE) and/or retinal Müller glia. In the RPE, isomerization of all-trans-retinyl esters to 11-cis-retinol is mediated by the retinoid isomerohydrolase Rpe65. A putative alternative retinoid isomerase, dihydroceramide desaturase-1 (DES1), is expressed in RPE and Müller cells. The retinol-isomerase activities of Rpe65 and Des1 are inhibited by emixustat and fenretinide, respectively. Here, we tested the effects of these visual cycle inhibitors on immediate, early, and late phases of cone photopic vision. In zebrafish larvae raised under cyclic light conditions, fenretinide impaired late cone photopic vision, while the emixustat-treated zebrafish unexpectedly had normal vision. In contrast, emixustat-treated larvae raised under extensive dark-adaptation displayed significantly attenuated immediate photopic vision concomitant with significantly reduced 11-cis-retinaldehyde (11cRAL). Following 30 min of light, early photopic vision was recovered, despite 11cRAL levels remaining significantly reduced. Defects in immediate cone photopic vision were rescued in emixustat- or fenretinide-treated larvae following exogenous 9-cis-retinaldehyde supplementation. Genetic knockout of Des1 (degs1) or retinaldehyde-binding protein 1b (rlbp1b) did not eliminate photopic vision in zebrafish. Our findings define molecular and temporal requirements of the nonphotopic or photopic visual cycles for mediating vision in bright light. Full Article
tia Inhibition of glycosphingolipid biosynthesis reverts multidrug resistance by differentially modulating ABC transporters in chronic myeloid leukemias [Cell Biology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Multidrug resistance (MDR) in cancer arises from cross-resistance to structurally- and functionally-divergent chemotherapeutic drugs. In particular, MDR is characterized by increased expression and activity of ATP-binding cassette (ABC) superfamily transporters. Sphingolipids are substrates of ABC proteins in cell signaling, membrane biosynthesis, and inflammation, for example, and their products can favor cancer progression. Glucosylceramide (GlcCer) is a ubiquitous glycosphingolipid (GSL) generated by glucosylceramide synthase, a key regulatory enzyme encoded by the UDP-glucose ceramide glucosyltransferase (UGCG) gene. Stressed cells increase de novo biosynthesis of ceramides, which return to sub-toxic levels after UGCG mediates incorporation into GlcCer. Given that cancer cells seem to mobilize UGCG and have increased GSL content for ceramide clearance, which ultimately contributes to chemotherapy failure, here we investigated how inhibition of GSL biosynthesis affects the MDR phenotype of chronic myeloid leukemias. We found that MDR is associated with higher UGCG expression and with a complex GSL profile. UGCG inhibition with the ceramide analog d-threo-1-(3,4,-ethylenedioxy)phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (EtDO-P4) greatly reduced GSL and monosialotetrahexosylganglioside levels, and co-treatment with standard chemotherapeutics sensitized cells to mitochondrial membrane potential loss and apoptosis. ABC subfamily B member 1 (ABCB1) expression was reduced, and ABCC-mediated efflux activity was modulated by competition with nonglycosylated ceramides. Consistently, inhibition of ABCC-mediated transport reduced the efflux of exogenous C6-ceramide. Overall, UGCG inhibition impaired the malignant glycophenotype of MDR leukemias, which typically overcomes drug resistance through distinct mechanisms. This work sheds light on the involvement of GSL in chemotherapy failure, and its findings suggest that targeted GSL modulation could help manage MDR leukemias. Full Article
tia RNA helicase-regulated processing of the Synechocystis rimO-crhR operon results in differential cistron expression and accumulation of two sRNAs [Gene Regulation] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 The arrangement of functionally-related genes in operons is a fundamental element of how genetic information is organized in prokaryotes. This organization ensures coordinated gene expression by co-transcription. Often, however, alternative genetic responses to specific stress conditions demand the discoordination of operon expression. During cold temperature stress, accumulation of the gene encoding the sole Asp–Glu–Ala–Asp (DEAD)-box RNA helicase in Synechocystis sp. PCC 6803, crhR (slr0083), increases 15-fold. Here, we show that crhR is expressed from a dicistronic operon with the methylthiotransferase rimO/miaB (slr0082) gene, followed by rapid processing of the operon transcript into two monocistronic mRNAs. This cleavage event is required for and results in destabilization of the rimO transcript. Results from secondary structure modeling and analysis of RNase E cleavage of the rimO–crhR transcript in vitro suggested that CrhR plays a role in enhancing the rate of the processing in an auto-regulatory manner. Moreover, two putative small RNAs are generated from additional processing, degradation, or both of the rimO transcript. These results suggest a role for the bacterial RNA helicase CrhR in RNase E-dependent mRNA processing in Synechocystis and expand the known range of organisms possessing small RNAs derived from processing of mRNA transcripts. Full Article
tia Brain manganese and the balance between essential roles and neurotoxicity [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Manganese (Mn) is an essential micronutrient required for the normal development of many organs, including the brain. Although its roles as a cofactor in several enzymes and in maintaining optimal physiology are well-known, the overall biological functions of Mn are rather poorly understood. Alterations in body Mn status are associated with altered neuronal physiology and cognition in humans, and either overexposure or (more rarely) insufficiency can cause neurological dysfunction. The resultant balancing act can be viewed as a hormetic U-shaped relationship for biological Mn status and optimal brain health, with changes in the brain leading to physiological effects throughout the body and vice versa. This review discusses Mn homeostasis, biomarkers, molecular mechanisms of cellular transport, and neuropathological changes associated with disruptions of Mn homeostasis, especially in its excess, and identifies gaps in our understanding of the molecular and biochemical mechanisms underlying Mn homeostasis and neurotoxicity. Full Article
tia The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis [Cell Biology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Sperm head shaping is a key event in spermiogenesis and is tightly controlled via the acrosome–manchette network. Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of Sad1 and UNC84 domain–containing (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain proteins and form conserved nuclear envelope bridges implicated in transducing mechanical forces from the manchette to sculpt sperm nuclei into a hook-like shape. However, the role of LINC complexes in sperm head shaping is still poorly understood. Here we assessed the role of SUN3, a testis-specific LINC component harboring a conserved SUN domain, in spermiogenesis. We show that CRISPR/Cas9-generated Sun3 knockout male mice are infertile, displaying drastically reduced sperm counts and a globozoospermia-like phenotype, including a missing, mislocalized, or fragmented acrosome, as well as multiple defects in sperm flagella. Further examination revealed that the sperm head abnormalities are apparent at step 9 and that the sperm nuclei fail to elongate because of the absence of manchette microtubules and perinuclear rings. These observations indicate that Sun3 deletion likely impairs the ability of the LINC complex to transduce the cytoskeletal force to the nuclear envelope, required for sperm head elongation. We also found that SUN3 interacts with SUN4 in mouse testes and that the level of SUN4 proteins is drastically reduced in Sun3-null mice. Altogether, our results indicate that SUN3 is essential for sperm head shaping and male fertility, providing molecular clues regarding the underlying pathology of the globozoospermia-like phenotype. Full Article
tia A single amino acid substitution uncouples catalysis and allostery in an essential biosynthetic enzyme in Mycobacterium tuberculosis [Enzymology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Allostery exploits the conformational dynamics of enzymes by triggering a shift in population ensembles toward functionally distinct conformational or dynamic states. Allostery extensively regulates the activities of key enzymes within biosynthetic pathways to meet metabolic demand for their end products. Here, we have examined a critical enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS), at the gateway to aromatic amino acid biosynthesis in Mycobacterium tuberculosis, which shows extremely complex dynamic allostery: three distinct aromatic amino acids jointly communicate occupancy to the active site via subtle changes in dynamics, enabling exquisite fine-tuning of delivery of these essential metabolites. Furthermore, this allosteric mechanism is co-opted by pathway branchpoint enzyme chorismate mutase upon complex formation. In this study, using statistical coupling analysis, site-directed mutagenesis, isothermal calorimetry, small-angle X-ray scattering, and X-ray crystallography analyses, we have pinpointed a critical node within the complex dynamic communication network responsible for this sophisticated allosteric machinery. Through a facile Gly to Pro substitution, we have altered backbone dynamics, completely severing the allosteric signal yet remarkably, generating a nonallosteric enzyme that retains full catalytic activity. We also identified a second residue of prime importance to the inter-enzyme communication with chorismate mutase. Our results reveal that highly complex dynamic allostery is surprisingly vulnerable and provide further insights into the intimate link between catalysis and allostery. Full Article
tia The progressive development of microfabrics from initial deposition to slump deformation: an example from a modern sedimenary melange on the Nankai Prism By jgs.lyellcollection.org Published On :: 2020-05-04T02:10:48-07:00 The progressive development of microfabrics from initial deposition to slump deformation and then a submarine slide was investigated in an active subduction zone using cores recovered during the Integrated Ocean Drilling Program Expedition 333. A Pleistocene–Holocene sequence was recovered at Site C0018A, which was located on a slope basin on the footwall of the megasplay fault in the Nankai Trough, SW Japan. Six mass-transport deposit units intercalated with coherent intervals were recovered from the upper 190 m of the drilled succession. The initial microfabrics in the undeformed hemipelagic sediments were characterized by random and porous fabrics composed predominantly of clay aggregations and connectors. The initial fabrics were cardhouse fabrics, which consist of clay flakes with edge-to-edge (E–E) and/or edge-to-face (E–F) contacts. These initial microfabrics developed into compacted microfabrics, which are random and consolidated fabrics (bookhouse fabrics) that consist of clay flakes with E–F and/or face-to-face (F–F) contacts and develop during burial as a pure shear deformation. During slumping, these fabrics were then deformed under simple shear to become predominantly F–F contacts and form clay chains. Thus, the microfabrics in these submarine slides are a sedimentary mélange that developed locally into a preferred clay orientation with F–F contacts. Supplementary material: A schematic illustration showing sedimentation processes and fabrics is available at https://doi.org/10.6084/m9.figshare.c.4483385 Thematic collection: This article is part of the Polygenetic mélanges collection available at: https://www.lyellcollection.org/cc/polygenetic-melanges Full Article
tia High-Definition Mapping of Four Spatially Distinct Neutralizing Epitope Clusters on RiVax, a Candidate Ricin Toxin Subunit Vaccine [Vaccines] By cvi.asm.org Published On :: 2017-12-05T08:00:29-08:00 RiVax is a promising recombinant ricin toxin A subunit (RTA) vaccine antigen that has been shown to be safe and immunogenic in humans and effective at protecting rhesus macaques against lethal-dose aerosolized toxin exposure. We previously used a panel of RTA-specific monoclonal antibodies (MAbs) to demonstrate, by competition enzyme-linked immunosorbent assay (ELISA), that RiVax elicits similar serum antibody profiles in humans and macaques. However, the MAb binding sites on RiVax have yet to be defined. In this study, we employed hydrogen exchange-mass spectrometry (HX-MS) to localize the epitopes on RiVax recognized by nine toxin-neutralizing MAbs and one nonneutralizing MAb. Based on strong protection from hydrogen exchange, the nine MAbs grouped into four spatially distinct epitope clusters (namely, clusters I to IV). Cluster I MAbs protected RiVax's α-helix B (residues 94 to 107), a protruding immunodominant secondary structure element known to be a target of potent toxin-neutralizing antibodies. Cluster II consisted of two subclusters located on the "back side" (relative to the active site pocket) of RiVax. One subcluster involved α-helix A (residues 14 to 24) and α-helices F-G (residues 184 to 207); the other encompassed β-strand d (residues 62 to 69) and parts of α-helices D-E (154 to 164) and the intervening loop. Cluster III involved α-helices C and G on the front side of RiVax, while cluster IV formed a sash from the front to back of RiVax, spanning strands b, c, and d (residues 35 to 59). Having a high-resolution B cell epitope map of RiVax will enable the development and optimization of competitive serum profiling assays to examine vaccine-induced antibody responses across species. Full Article
tia Development of a High-Throughput Respiratory Syncytial Virus Fluorescent Focus-Based Microneutralization Assay [Diagnostic Laboratory Immunology] By cvi.asm.org Published On :: 2017-12-05T08:00:29-08:00 Neutralizing antibodies specific for respiratory syncytial virus (RSV) represent a major protective mechanism against RSV infection, as demonstrated by the efficacy of the immune-prophylactic monoclonal antibody palivizumab in preventing RSV-associated lower respiratory tract infections in premature infants. Accordingly, the RSV neutralization assay has become a key functional method to assess the neutralizing activity of serum antibodies in preclinical animal models, epidemiology studies, and clinical trials. In this study, we qualified a 24-h, fluorescent focus-based microneutralization (RSVA FFA-MN) method that requires no medium exchange or pre- or postinfection processing to detect green fluorescent protein-expressing RSV strain A2 (RSVA-GFP)-infected cells, using a high-content imaging system for automated image acquisition and focus enumeration. The RSVA FFA-MN method was shown to be sensitive, with a limit of detection (LOD) and limit of quantitation (LOQ) of 1:10, or 3.32 log2; linear over a range of 4.27 to 9.65 log2 50% inhibitory concentration (IC50); and precise, with intra- and interassay coefficients of variation of <21%. This precision allowed the choice of a statistically justified 3-fold-rise seroresponse cutoff criterion. The repeatability and robustness of this method were demonstrated by including a pooled human serum sample in every assay as a positive control (PC). Over 3 years of testing between two laboratories, this PC generated data falling within 2.5 standard deviations of the mean 98.7% of the time (n = 1,720). This high-throughput and reliable RSV microneutralization assay has proven useful for testing sera from preclinical vaccine candidate evaluation studies, epidemiology studies, and both pediatric and adult vaccine clinical trials. Full Article
tia Ocrelizumab initiation in patients with MS: A multicenter observational study By nn.neurology.org Published On :: 2020-04-09T14:01:03-07:00 Objective To provide first real-world experience on patients with MS treated with the B cell–depleting antibody ocrelizumab. Methods We retrospectively collected data of patients who had received at least 1 treatment cycle (2 infusions) of ocrelizumab at 3 large neurology centers. Patients' characteristics including premedication, clinical disease course, and documented side effects were analyzed. Results We could identify 210 patients (125 women, mean age ± SD, 42.1 ± 11.4 years) who had received ocrelizumab with a mean disease duration of 7.3 years and a median Expanded Disability Status Scale score of 3.75 (interquartile range 2.5–5.5; range 0–8). Twenty-six percent of these patients had a primary progressive MS (PPMS), whereas 74% had a relapsing-remitting (RRMS) or active secondary progressive (aSPMS) disease course. Twenty-four percent of all patients were treatment naive, whereas 76% had received immune therapies before. After ocrelizumab initiation (median follow-up was 200 days, range 30–1,674 days), 13% of patients with RRMS/aSPMS experienced a relapse (accounting for an annualized relapse rate of 0.17, 95% CI 0.10–0.24), and 5% of all patients with MS experienced a 12-week confirmed disability progression. Treatment was generally well tolerated, albeit only short-term side effects were recorded, including direct infusion-related reactions and mild infections. Conclusions We provide class IV evidence that treatment with ocrelizumab can stabilize naive and pretreated patients, indicating that ocrelizumab is an option following potent MS drugs such as natalizumab and fingolimod. Further studies are warranted to confirm these findings and to reveal safety concerns in the longer-term follow-up. Classification of evidence This study provides Class IV evidence that for patients with MS, ocrelizumab can stabilize both treatment-naive and previously treated patients. Full Article
tia Geospatial assessment methods for geotechnical asset management of legacy railway embankments By qjegh.lyellcollection.org Published On :: 2020-05-01T00:46:18-07:00 Most British railway embankments were constructed between 120 and 180 years ago without the benefit of modern design and construction methods. This can result in undesirable load-deformation characteristics and consequent disruption to present-day railway operations, for which there is unprecedented demand. Annual rail passenger kilometres have approximately doubled in the last 20 years and freight has increased by 60% over the same period. Whereas elements such as rails or bridges can be refurbished or replaced to meet increasing demand, the same is not usually feasible for embankments. Development of techniques to assess embankment performance risks posed by operational capacity enhancements is therefore of increasing significance to railway geotechnical asset management. The two case studies presented in this paper demonstrate how geospatial analysis and data management techniques may be applied to this challenge at both strategic (regional or national) and tactical (site-specific) scales for embankments incorporating plastic clay fill. The case studies also demonstrate, in a world of ever more abundant data, the growing need for engineering geologists and geotechnical engineers to augment their traditional knowledge with comprehensive data management and geospatial analysis skills, these being essential for modern infrastructure asset management. Thematic collection: This article is part of the ‘Ground-related risk to transportation infrastructure’ collection available at: https://www.lyellcollection.org/cc/Ground-related-risk-to-transportation-infrastructure Full Article
tia Differentiation of Community-Associated and Livestock-Associated Methicillin-Resistant Staphylococcus aureus Isolates and Identification of spa Types by Use of PCR and High-Resolution Melt Curve Analysis [Clinical Veterinary Microbiology] By jcm.asm.org Published On :: 2020-04-23T08:00:29-07:00 Infections due to methicillin-resistant Staphylococcus aureus (MRSA) are present worldwide and represent a major public health concern. The capability of PCR followed by high-resolution melt (HRM) curve analysis for the detection of community-associated and livestock-associated MRSA strains and the identification of staphylococcal protein A (spa) locus was evaluated in 74 MRSA samples which were isolated from the environment, humans, and pigs on a single piggery. PCR-HRM curve analysis identified four spa types among MRSA samples and differentiated MRSA strains accordingly. A nonsubjective differentiation model was developed according to genetic confidence percentage values produced by tested samples, which did not require visual interpretation of HRM curve results. The test was carried out at different settings, and result data were reanalyzed and confirmed with DNA sequencing. PCR-HRM curve analysis proved to be a robust and reliable test for spa typing and can be used as a tool in epidemiological studies. Full Article
tia A Noncanonical Role of Fructose-1, 6-Bisphosphatase 1 Is Essential for Inhibition of Notch1 in Breast Cancer By mcr.aacrjournals.org Published On :: 2020-05-04T05:40:21-07:00 Breast cancer is a leading cause of death in women worldwide, but the underlying mechanisms of breast tumorigenesis remain unclear. Fructose-1, 6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis, was recently shown to be a tumor suppressor in breast cancer. However, the mechanisms of FBP1 as a tumor suppressor in breast cancer remain to be explored. Here we showed that FBP1 bound to Notch1 in breast cancer cells. Moreover, FBP1 enhanced ubiquitination of Notch1, further leading to proteasomal degradation via FBXW7 pathway. In addition, we found that FBP1 significantly repressed the transactivation of Notch1 in breast cancer cells. Functionally, Notch1 was involved in FBP1-mediated tumorigenesis of breast cancer cells in vivo and in vitro. Totally, these findings indicate that FBP1 inhibits breast tumorigenesis by regulating Notch1 pathway, highlighting FBP1 as a potential therapeutic target for breast cancer. Implications: We demonstrate FBP1 as a novel regulator for Notch1 in breast cancer. Full Article
tia KPR-5714, a Novel Transient Receptor Potential Melastatin 8 Antagonist, Improves Overactive Bladder via Inhibition of Bladder Afferent Hyperactivity in Rats [Gastrointestinal, Hepatic, Pulmonary, and Renal] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 Transient receptor potential (TRP) melastatin 8 (TRPM8) is a temperature-sensing ion channel mainly expressed in primary sensory neurons (A-fibers and C-fibers in the dorsal root ganglion). In this report, we characterized KPR-5714 (N-[(R)-3,3-difluoro-4-hydroxy-1-(2H-1,2,3-triazol-2-yl)butan-2-yl]-3-fluoro-2-[5-(4-fluorophenyl)-1H-pyrazol-3-yl]benzamide), a novel and selective TRPM8 antagonist, to assess its therapeutic potential against frequent urination in rat models with overactive bladder (OAB). In calcium influx assays with HEK293T cells transiently expressing various TRP channels, KPR-5714 showed a potent TRPM8 antagonistic effect and high selectivity against other TRP channels. Intravenously administered KPR-5714 inhibited the hyperactivity of mechanosensitive C-fibers of bladder afferents and dose-dependently increased the intercontraction interval shortened by intravesical instillation of acetic acid in anesthetized rats. Furthermore, we examined the effects of KPR-5714 on voiding behavior in conscious rats with cerebral infarction and in those exposed to cold in metabolic cage experiments. Cerebral infarction and cold exposure induced a significant decrease in the mean voided volume and increase in voiding frequency in rats. Orally administered KPR-5714 dose-dependently increased the mean voided volume and decreased voiding frequency without affecting total voided volume in these models. This study demonstrates that KPR-5714 improves OAB in three different models by inhibiting exaggerated activity of mechanosensitive bladder C-fibers and suggests that KPR-5714 may provide a new and useful approach to the treatment of OAB. SIGNIFICANCE STATEMENT TRPM8 is involved in bladder sensory transduction and plays a role in the abnormal activation in hypersensitive bladder disorders. KPR-5714, as a novel and selective TRPM8 antagonist, may provide a useful treatment for the disorders related to the hyperactivity of bladder afferent nerves, particularly in overactive bladder. Full Article
tia COMT-Catalyzed Palmitic Acid Methyl Ester Biosynthesis in Perivascular Adipose Tissue and its Potential Role Against Hypertension [Cardiovascular] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 Decreased release of palmitic acid methyl ester (PAME), a vasodilator, from perivascular adipose tissue (PVAT) might contribute to hypertension pathogenesis. However, the PAME biosynthetic pathway remains unclear. In this study, we hypothesized that PAME is biosynthesized from palmitic acid (PA) via human catechol-O-methyltransferase (COMT) catalysis and that decreased PAME biosynthesis plays a role in hypertension pathogenesis. We compared PAME biosynthesis between age-matched normotensive Wistar Kyoto (WKY) rats and hypertensive spontaneously hypertensive rats (SHRs) and investigated the effects of losartan treatment on PAME biosynthesis. Computational molecular modeling indicated that PA binds well at the active site of COMT. Furthermore, in in vitro enzymatic assays in the presence of COMT and S-5'-adenosyl-L-methionine (AdoMet), the stable isotope [13C16]-PA was methylated to form [13C16]-PAME in incubation medium or the Krebs–Henseleit solution containing 3T3-L1 adipocytes or rat PVAT. The adipocytes and PVATs expressed membrane-bound (MB)-COMT and soluble (S)-COMT proteins. [13C16]-PA methylation to form [13C16]-PAME in 3T3-L1 adipocytes and rat PVAT was blocked by various COMT inhibitors, such as S-(5'-adenosyl)-L-homocysteine, adenosine-2',3'-dialdehyde, and tolcapone. MB- and S-COMT levels in PVATs of established SHRs were significantly lower than those in PVATs of age-matched normotensive WKY rats, with decreased [13C16]-PA methylation to form [13C16]-PAME. This decrease was reversed by losartan, an angiotensin II (Ang II) type 1 receptor antagonist. Therefore, PAME biosynthesis in rat PVAT is dependent on AdoMet, catalyzed by COMT, and decreased in SHRs, further supporting the role of PVAT/PAME in hypertension pathogenesis. Moreover, the antihypertensive effect of losartan might be due partly to its increased PAME biosynthesis. SIGNIFICANCE STATEMENT PAME is a key PVAT-derived relaxing factor. We for the first time demonstrate that PAME is synthesized through PA methylation via the S-5'-adenosyl-L-methionine–dependent COMT catalyzation pathway. Moreover, we confirmed PVAT dysfunction in the hypertensive state. COMT-dependent PAME biosynthesis is involved in Ang II receptor type 1–mediated blood pressure regulation, as evidenced by the reversal of decreased PAME biosynthesis in PVAT by losartan in hypertensive rats. This finding might help in developing novel therapeutic or preventive strategies against hypertension. Full Article
tia Checking responses of goal- and sign-trackers are differentially affected by threat in a rodent analog of obsessive-compulsive disorder [RESEARCH] By learnmem.cshlp.org Published On :: 2020-04-15T06:30:12-07:00 In obsessive–compulsive disorder (OCD), functional behaviors such as checking that a door is locked become dysfunctional, maladaptive, and debilitating. However, it is currently unknown how aversive and appetitive motivations interact to produce functional and dysfunctional behavior in OCD. Here we show a double dissociation in the effects of anxiogenic cues and sensitivity to rewarding stimuli on the propensity to develop functional and dysfunctional checking behavior in a rodent analog of OCD, the observing response task (ORT). While anxiogenic manipulations of perceived threat (presentation of threat-associated contextual cues) and actual threat (punishment of incorrect responding on the ORT) enhanced functional checking, dysfunctional checking was unaffected. In contrast, rats that had previously been identified as "sign-trackers" on an autoshaping task—and therefore were highly sensitive to the incentive salience of appetitive environmental cues—selectively showed elevated levels of dysfunctional checking under a range of conditions, but particularly so under conditions of uncertainty. These data indicate that functional and dysfunctional checking are dissociable and supported by aversive and appetitive motivational processes, respectively. While functional checking is modulated by perceived and actual threat, dysfunctional checking recruits appetitive motivational processes, possibly akin to the "incentive habits" that contribute to drug-seeking in addiction. Full Article
tia STIM1 interacts with termini of Orai channels in a sequential manner [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-29T03:28:24-07:00 Liling Niu, Fuyun Wu, Kaili Li, Jing Li, Shenyuan L. Zhang, Junjie Hu, and Qian Wang Store-operated Ca2+ entry (SOCE) is critical for numerous Ca2+-related processes. The activation of SOCE requires engagement between stromal interaction molecule 1 (STIM1) molecules on the endoplasmic reticulum and Ca2+ release-activated channel (CRAC) Orai on the plasma membrane. However, the molecular details of their interactions remain elusive. Here, we analyzed STIM1-Orai interactions using synthetic peptides derived from the N- and C-termini of Orai channels (Orai-NT and Orai-CT, respectively) and purified fragments of STIM1. The binding of STIM1 to Orai-NT is hydrophilic based, whereas binding to the Orai-CT is mostly hydrophobic. STIM1 decreases its affinity for Orai-CT when Orai-NT is present, supporting a stepwise interaction. Orai3-CT exhibits stronger binding to STIM1 than Orai1-CT, largely due to the shortness of one helical turn. The role of newly identified residues was confirmed by co-immunoprecipitation and Ca2+ imaging using full-length molecules. Our results provide important insight into CRAC gating by STIM1. Full Article
tia Back-Table Fluorescence-Guided Imaging for Circumferential Resection Margin Evaluation Using Bevacizumab-800CW in Patients with Locally Advanced Rectal Cancer By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 Negative circumferential resection margins (CRM) are the cornerstone for the curative treatment of locally advanced rectal cancer (LARC). However, in up to 18.6% of patients, tumor-positive resection margins are detected on histopathology. In this proof-of-concept study, we investigated the feasibility of optical molecular imaging as a tool for evaluating the CRM directly after surgical resection to improve tumor-negative CRM rates. Methods: LARC patients treated with neoadjuvant chemoradiotherapy received an intravenous bolus injection of 4.5 mg of bevacizumab-800CW, a fluorescent tracer targeting vascular endothelial growth factor A, 2–3 d before surgery (ClinicalTrials.gov identifier: NCT01972373). First, for evaluation of the CRM status, back-table fluorescence-guided imaging (FGI) of the fresh surgical resection specimens (n = 8) was performed. These results were correlated with histopathology results. Second, for determination of the sensitivity and specificity of bevacizumab-800CW for tumor detection, a mean fluorescence intensity cutoff value was determined from the formalin-fixed tissue slices (n = 42; 17 patients). Local bevacizumab-800CW accumulation was evaluated by fluorescence microscopy. Results: Back-table FGI correctly identified a tumor-positive CRM by high fluorescence intensities in 1 of 2 patients (50%) with a tumor-positive CRM. For the other patient, low fluorescence intensities were shown, although (sub)millimeter tumor deposits were present less than 1 mm from the CRM. FGI correctly identified 5 of 6 tumor-negative CRM (83%). The 1 patient with false-positive findings had a marginal negative CRM of only 1.4 mm. Receiver operating characteristic curve analysis of the fluorescence intensities of formalin-fixed tissue slices yielded an optimal mean fluorescence intensity cutoff value for tumor detection of 5,775 (sensitivity of 96.19% and specificity of 80.39%). Bevacizumab-800CW enabled a clear differentiation between tumor and normal tissue up to a microscopic level, with a tumor-to-background ratio of 4.7 ± 2.5 (mean ± SD). Conclusion: In this proof-of-concept study, we showed the potential of back-table FGI for evaluating the CRM status in LARC patients. Optimization of this technique with adaptation of standard operating procedures could change perioperative decision making with regard to extending resections or applying intraoperative radiation therapy in the case of positive CRM. Full Article
tia Getting started: altering promoter choice as a mechanism for cell type differentiation [Outlook] By genesdev.cshlp.org Published On :: 2020-05-01T06:30:22-07:00 In this issue of Genes & Development, Lu and colleagues (pp. 663–677) have discovered a key new mechanism of alternative promoter choice that is involved in differentiation of spermatocytes. Promoter choice has strong potential as mechanism for differentiation of many different cell types. Full Article
tia Therapeutic Inertia: Still a Long Way to Go That Cannot Be Postponed By spectrum.diabetesjournals.org Published On :: 2020-02-14T06:59:49-08:00 In the context of type 2 diabetes, the definition of therapeutic inertia should include the failure not only to intensify therapy, but also to deintensify treatment when appropriate and should be distinguished from appropriate inaction in cases justified by particular circumstances. Therapy should be intensified when glycemic control deteriorates to prevent long periods of hyperglycemia, which increase the risk of complications. Strategic plans to overcome therapeutic inertia must include actions focused on patients, prescribers, health systems, and payers. Therapeutic inertia affects the management of glycemia, hypertension, and lipid disorders, all of which increase the risk for cardiovascular diseases. Thus, multifactorial interventions that act on additional therapeutic goals beyond glycemia are needed. Full Article
tia Therapeutic Inertia in People With Type 2 Diabetes in Primary Care: A Challenge That Just Wont Go Away By spectrum.diabetesjournals.org Published On :: 2020-02-14T06:59:49-08:00 Therapeutic inertia is a prevalent problem in people with type 2 diabetes in primary care and affects clinical outcomes. It arises from a complex interplay of patient-, clinician-, and health system–related factors. Ultimately, clinical practice guidelines have not made an impact on improving glycemic targets over the past decade. A more proactive approach, including focusing on optimal combination agents for early glycemic durability, may reduce therapeutic inertia and improve clinical outcomes. Full Article
tia A Behavioral Perspective of Therapeutic Inertia: A Look at the Transition to Insulin Therapy By spectrum.diabetesjournals.org Published On :: 2020-02-14T06:59:49-08:00 From a behavioral perspective, therapeutic inertia can happen when obstacles to changing a diabetes treatment plan outweigh perceived benefits. There is a complex interaction of important treatment-related obstacles for people with diabetes (PWD), their treating health care professional (HCP), and the clinical setting in which they interact. Tipping the scales toward more effective action involve strategies that increase perceptions of the benefits of treatment intensification while addressing important obstacles so that treatment changes are seen by both PWD and HCPs as worthwhile and achievable. Full Article
tia Diabetes, Therapeutic Inertia, and Patients Medication Experience By spectrum.diabetesjournals.org Published On :: 2020-02-14T06:59:49-08:00 Factors contributing to therapeutic inertia related to patients’ medication experiences include concerns about side effects and out-of-pocket costs, stigmatization for having diabetes, confusion about frequent changes in evidence-based guidelines, low health literacy, and social determinants of health. A variety of solutions to this multifactorial problem may be necessary, including integrating pharmacists into interprofessional care teams, using medication refill synchronization programs, maximizing time with patients to discuss fears and concerns, being cognizant of language used to discuss diabetes-related topics, and avoiding stigmatizing patients. Managing diabetes successfully is a team effort, and the full commitment of all team members (including patients) is required to achieve desired outcomes through an individualized approach. Full Article
tia Therapeutic Inertia in Pediatric Diabetes: Challenges to and Strategies for Overcoming Acceptance of the Status Quo By spectrum.diabetesjournals.org Published On :: 2020-02-14T06:59:49-08:00 Despite significant advances in therapies for pediatric type 1 diabetes, achievement of glycemic targets remains elusive, and management remains burdensome for patients and their families. This article identifies common challenges in diabetes management at the patient-provider and health care system levels and proposes practical approaches to overcoming therapeutic inertia to enhance health outcomes for youth with type 1 diabetes. Full Article