mal

An LC/MS/MS method for analyzing the steroid metabolome with high accuracy and from small serum samples

Teng-Fei Yuan
Apr 1, 2020; 61:580-586
Methods




mal

Skin barrier lipid enzyme activity in Netherton patients is associated with protease activity and ceramide abnormalities

Jeroen van Smeden
Apr 7, 2020; 0:jlr.RA120000639v1-jlr.RA120000639
Research Articles




mal

A novel GPER antagonist protects against the formation of estrogen-induced cholesterol gallstones in female mice

Chelsea DeLeon
May 1, 2020; 61:767-777
Research Articles




mal

Characterization of the small molecule ARC39, a direct and specific inhibitor of acid sphingomyelinase in vitro

Eyad Naser
Mar 10, 2020; 0:jlr.RA120000682v1-jlr.RA120000682
Research Articles




mal

Episode 26 - The Internet of Small Hands Big Phones (IoSHBP) Galaxy Note7, GDS & Instagram stories

Matt Egan is back in the hosting chair to chat with producer Chris about the Samsung Galaxy Note 7 and how we feel about phablets. Techworld.com editor Charlotte Jee comes in to explain what is going on at the GDS (government digital service) and why we should care (13:00). Then online editor at Techworld.com Scott Carey chats Instagram stories, why it is a blatant rip off of Snapchat stories and how the social media giant can get away with being so brazen (22:00).  


See acast.com/privacy for privacy and opt-out information.




mal

Episode 76 - The Internet of Deals (IoD) Black Friday, Mac root bug, Pixel Buds and Animal Crossing

It's a bumper pod! David Price leads Ashleigh Macro and Henry Burrell down the topical rabbit hole to discuss why Black Friday largely sucks, but is an interesting venture for publishers as well as consumers. Who else bought a Switch?


We then tackle the Mac root issue that hit headlines worldwide before tearing the Pixel Buds a new one. And we all downloaded Animal Crossing: Pocket Camp to see what the fuss is about.

 

See acast.com/privacy for privacy and opt-out information.




mal

Characterization of the small molecule ARC39, a direct and specific inhibitor of acid sphingomyelinase in vitro [Research Articles]

Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM’s catalytic activity in cultured cells, a mechanism which differs from that of functional inhibitors of ASM (FIASMAs). We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASMpromoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo.




mal

Skin barrier lipid enzyme activity in Netherton patients is associated with protease activity and ceramide abnormalities [Research Articles]

Individuals with Netherton syndrome (NTS) have increased serine protease activity, which strongly impacts the barrier function of the skin epidermis and leads to skin inflammation. Here, we investigated how serine protease activity in NTS correlates with changes in the stratum corneum ceramides, which are crucial components of the skin barrier. We examined two key enzymes involved in epidermal ceramide biosynthesis, glucocerebrosidase (GBA) and acid-sphingomyelinase (ASM). We compared in situ expression levels and activities of GBA and ASM between NTS patients and controls and correlated the expression and activities with i) stratum corneum ceramide profiles, ii) in situ serine protease activity, and iii) clinical presentation of patients. Using activity-based probe labeling, we visualized and localized active, epidermal GBA, and a newly developed in situ zymography method enabled us to visualize and localize active ASM. Reduction in active GBA in NTS patients coincided with increased ASM activity, particularly in areas with increased serine protease activity. NTS patients with scaly erythroderma exhibited more pronounced anomalies in GBA and ASM activities than patients with ichthyosis linearis circumflexa. They also displayed a stronger increase in stratum corneum ceramides processed via ASM. We conclude that changes in the localization of active GBA and ASM correlate with i) altered stratum corneum ceramide composition in NTS patients, ii) local serine protease activity, and iii) the clinical manifestation of NTS. 




mal

A simple method for sphingolipid analysis of tissues embedded in optimal cutting temperature compound [Methods]

Mass spectrometry (MS) assisted lipidomic tissue analysis is a valuable tool to assess sphingolipid metabolism dysfunction in disease. These analyses can reveal potential pharmacological targets or direct mechanistic studies to better understand the molecular underpinnings and influence of sphingolipid metabolism alterations on disease etiology. But procuring sufficient human tissues for adequately powered studies can be challenging. Therefore, biorepositories, which hold large collections of cryopreserved human tissues, are an ideal retrospective source of specimens. However, this resource has been vastly underutilized by lipid biologists, as the components of optimal cutting temperature compound (OCT) used in cryopreservation are incompatible with MS analyses. Here, we report results indicating that OCT also interferes with protein quantification assays, and that the presence of OCT impacts the quantification of extracted sphingolipids by LC–ESI–MS/MS. We developed and validated a simple and inexpensive method that removes OCT from OCT-embedded tissues. Our results indicate that removal of OCT from cryopreserved tissues does not significantly affect the accuracy of sphingolipid measurements with LC–ESI–MS/MS. We used the validated method to analyze sphingolipid alterations in tumors compared with normal adjacent uninvolved lung tissues from individuals with lung cancer, and to determine the long-term stability of sphingolipids in OCT-cryopreserved normal lung tissues. We show that lung cancer tumors have significantly altered sphingolipid profiles and that sphingolipids are stable for up to 16 years in OCT-cryopreserved normal lung tissues. This validated sphingolipidomic OCT-removal protocol should be a valuable addition to the lipid biologist’s toolbox.




mal

Metabolic regulation of the lysosomal cofactor bis(monoacylglycero)phosphate in mice [Research Articles]

Bis(monoacylglycero)phosphate (BMP), also known as lysobisphosphatidic acid (LBPA), is a phospholipid that promotes lipid sorting in late endosomes/lysosomes by activating lipid hydrolases and lipid transfer proteins. Changes in the cellular BMP content therefore reflect an altered metabolic activity of the endo-lysosomal system. Surprisingly, little is known about the physiological regulation of BMP. In this study, we investigated the effects of nutritional and metabolic factors on BMP profiles of whole tissues and  parenchymal and non-parenchymal cells. Tissue samples were obtained from fed, fasted, two-hours refed, and insulin-treated mice, as well as from mice housed at  5°C, 22°C, or 30°C. These tissues exhibited distinct BMP profiles, which were regulated by the nutritional state in a tissue-specific manner. Insulin treatment was not sufficient to mimic refeeding-induced changes in tissue BMP levels indicating that BMP metabolism is regulated by other hormonal or nutritional factors. Tissue fractionation experiments revealed that fasting drastically elevates BMP levels in hepatocytes and pancreatic cells. Furthermore, we observed that the BMP content in brown adipose tissue strongly depends on housing temperatures. In conclusion, our observations suggest that BMP concentrations adapt to the metabolic state in a tissue-and cell type-specific manner in mice. Drastic changes observed in hepatocytes, pancreatic cells, and brown adipocytes suggest that BMP possesses a role in the functional adaption to nutrient starvation and ambient temperature.




mal

Proteaphagy in mammalian cells can function independent of ATG5/ATG7 [Research]

The degradation of intra- and extracellular proteins is essential in all cell types and mediated by two systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway. This study investigates the changes in autophagosomal and lysosomal proteomes upon inhibition of proteasomes by bortezomib (BTZ) or MG132. We find an increased abundance of more than 50 proteins in lysosomes of cells in which the proteasome is inhibited. Among those are dihydrofolate reductase (DHFR), ß-Catenin and 3-hydroxy-3-methylglutaryl-coenzym-A (HMGCoA)-reductase. Since these proteins are known to be degraded by the proteasome they seem to be compensatorily delivered to the autophagosomal pathway when the proteasome is inactivated. Surprisingly, most of the proteins which show increased amounts in the lysosomes of BTZ or MG132 treated cells are proteasomal subunits. Thus an inactivated, non-functional proteasome is delivered to the autophagic pathway. Native gel electrophoresis shows that the proteasome reaches the lysosome intact and not disassembled. Adaptor proteins, which target proteasomes to autophagy, have been described in Arabidopsis, Saccharomyces and upon starvation in mammalians. However, in cell lines deficient of these proteins or their mammalian orthologues, respectively, the transfer of proteasomes to the lysosome is not impaired. Obviously, these proteins do not play a role as autophagy adaptor proteins in mammalian cells. We can also show that chaperone-mediated autophagy (CMA) does not participate in the proteasome delivery to the lysosomes. In autophagy-related (ATG)-5 and ATG7 deficient cells the delivery of inactivated proteasomes to the autophagic pathway was only partially blocked, indicating the existence of at least two different pathways by which inactivated proteasomes can be delivered to the lysosome in mammalian cells.




mal

Lipid droplet-associated kinase STK25 regulates peroxisomal activity and metabolic stress response in steatotic liver [Research Articles]

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are emerging as leading causes of liver disease worldwide and have been recognized as one of the major unmet medical needs of the 21st century. Our recent translational studies in mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine kinase (STK)25 as a protein that coats intrahepatocellular lipid droplets (LDs) and critically regulates liver lipid homeostasis and progression of NAFLD/NASH. Here, we studied the mechanism-of-action of STK25 in steatotic liver by relative quantification of the hepatic LD-associated phosphoproteome from high-fat diet-fed Stk25 knockout mice compared with their wild-type littermates. We observed a total of 131 proteins and 60 phosphoproteins that were differentially represented in STK25-deficient livers. Most notably, a number of proteins involved in peroxisomal function, ubiquitination-mediated proteolysis, and antioxidant defense were coordinately regulated in Stk25–/– versus wild-type livers. We confirmed attenuated peroxisomal biogenesis and protection against oxidative and ER stress in STK25-deficient human liver cells, demonstrating the hepatocyte-autonomous manner of STK25’s action. In summary, our results suggest that regulation of peroxisomal function and metabolic stress response may be important molecular mechanisms by which STK25 controls the development and progression of NAFLD/NASH.




mal

Monitoring the itinerary of lysosomal cholesterol in Niemann-Pick Type C1-deficient cells after cyclodextrin treatment [Research Articles]

Niemann-Pick disease type C (NPC) disease is a lipid-storage disorder that is caused by mutations in the genes encoding NPC proteins and results in lysosomal cholesterol accumulation. 2-Hydroxypropyl-β-cyclodextrin (CD) has been shown to reduce lysosomal cholesterol levels and enhance sterol homeostatic responses, but CD’s mechanism of action remains unknown. Recent work provides evidence that CD stimulates lysosomal exocytosis, raising the possibility that lysosomal cholesterol is released in exosomes. However, therapeutic concentrations of CD do not alter total cellular cholesterol, and cholesterol homeostatic responses at the ER are most consistent with increased ER membrane cholesterol. To address these disparate findings, here we used stable isotope labeling to track the movement of lipoprotein cholesterol cargo in response to CD in NPC1-deficient U2OS cells. Although released cholesterol was detectable, it was not associated with extracellular vesicles. Rather, we demonstrate that lysosomal cholesterol trafficks to the plasma membrane (PM), where it exchanges with lipoprotein-bound cholesterol in a CD-dependent manner. We found that in the absence of suitable extracellular cholesterol acceptors, cholesterol exchange is abrogated, cholesterol accumulates in the PM, and reesterification at the ER is increased. These results support a model in which CD promotes intracellular redistribution of lysosomal cholesterol, but not cholesterol exocytosis or efflux, during the restoration of cholesterol homeostatic responses.




mal

Tissue-specific analysis of lipid species in Drosophila during overnutrition by UHPLC-MS/MS and MALDI-MSI [Research Articles]

Diets high in calories can be used to model metabolic diseases, including obesity and its associated comorbidities, in animals. Drosophila melanogaster fed high-sugar diets (HSDs) exhibit complications of human obesity including hyperglycemia, hyperlipidemia, insulin resistance, cardiomyopathy, increased susceptibility to infection, and reduced longevity. We hypothesize that lipid storage in the high-sugar-fed fly’s fat body (FB) reaches a maximum capacity, resulting in the accumulation of toxic lipids in other tissues or lipotoxicity. We took two approaches to characterize tissue-specific lipotoxicity. Ultra-HPLC-MS/MS and MALDI-MS imaging enabled spatial and temporal localization of lipid species in the FB, heart, and hemolymph. Substituent chain length was diet dependent, with fewer odd chain esterified FAs on HSDs in all sample types. By contrast, dietary effects on double bond content differed among organs, consistent with a model where some substituent pools are shared and others are spatially restricted. Both di- and triglycerides increased on HSDs in all sample types, similar to observations in obese humans. Interestingly, there were dramatic effects of sugar feeding on lipid ethers, which have not been previously associated with lipotoxicity. Taken together, we have identified candidate endocrine mechanisms and molecular targets that may be involved in metabolic disease and lipotoxicity.




mal

Erratum: Unequivocal evidence for endogenous geranylgeranoic acid biosynthesized from mevalonate in mammalian cells [Errata]




mal

An LC/MS/MS method for analyzing the steroid metabolome with high accuracy and from small serum samples [Methods]

Analyzing global steroid metabolism in humans can shed light on the etiologies of steroid-related diseases. However, existing methods require large amounts of serum and lack the evaluation of accuracy. Here, we developed an LC/MS/MS method for the simultaneous quantification of 12 steroid hormones: testosterone, pregnenolone, progesterone, androstenedione, corticosterone, 11-deoxycortisol, cortisol, 17-hydroxypregnenolone, 17-hydroxyprogesterone, dehydroepiandrosterone, estriol, and estradiol. Steroids and spiked internal standards in 100 μl serum were extracted by protein precipitation and liquid-liquid extraction. The organic phase was dried by evaporation, and isonicotinoyl chloride was added for steroid derivatization, followed by evaporation under nitrogen and redissolution in 50% methanol. Chromatographic separation was performed on a reverse-phase PFP column, and analytes were detected on a triple quadrupole mass spectrometer with ESI. The lower limits of quantification ranged from 0.005 ng/ml for estradiol to 1 ng/ml for cortisol. Apparent recoveries of steroids at high, medium, and low concentrations in quality control samples were between 86.4% and 115.0%. There were limited biases (–10.7% to 10.5%) between the measured values and the authentic values, indicating that the method has excellent reliability. An analysis of the steroid metabolome in pregnant women highlighted the applicability of the method in clinical serum samples. We conclude that the LC/MS/MS method reported here enables steroid metabolome analysis with high accuracy and reduced serum consumption, indicating that it may be a useful tool in both clinical and scientific laboratory research.




mal

Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells [Research Articles]

Geranylgeranoic acid (GGA) originally was identified in some animals and has been developed as an agent for preventing second primary hepatoma. We previously have also identified GGA as an acyclic diterpenoid in some medicinal herbs. Recently, we reported that in human hepatoma-derived HuH-7 cells, GGA is metabolically labeled from 13C-mevalonate. Several cell-free experiments have demonstrated that GGA is synthesized through geranylgeranial by oxygen-dependent oxidation of geranylgeraniol (GGOH), but the exact biochemical events giving rise to GGA in hepatoma cells remain unclear. Monoamine oxidase B (MOAB) has been suggested to be involved in GGOH oxidation. Here, using two human hepatoma cell lines, we investigated whether MAOB contributes to GGA biosynthesis. Using either HuH-7 cell lysates or recombinant human MAOB, we found that: 1) the MAO inhibitor tranylcypromine dose-dependently downregulates endogenous GGA levels in HuH-7 cells; and 2) siRNA-mediated MAOB silencing reduces intracellular GGA levels in HuH-7 and Hep3B cells. Unexpectedly, however, CRISPR/Cas9-generated MAOB-KO human hepatoma Hep3B cells had GGA levels similar to those in MAOB-WT cells. A sensitivity of GGA levels to siRNA-mediated MAOB downregulation was recovered when the MAOB-KO cells were transfected with a MAOB-expression plasmid, suggesting that MAOB is the enzyme primarily responsible for GGOH oxidation and that some other latent metabolic pathways may maintain endogenous GGA levels in the MAOB-KO hepatoma cells. Along with the previous findings, these results provide critical insights into the biological roles of human MAOB and provide evidence that hepatic MAOB is involved in endogenous GGA biosynthesis via GGOH oxidation.




mal

A novel GPER antagonist protects against the formation of estrogen-induced cholesterol gallstones in female mice [Research Articles]

Many clinical studies and epidemiological investigations have clearly demonstrated that women are twice as likely to develop cholesterol gallstones as men, and oral contraceptives and other estrogen therapies dramatically increase that risk. Further, animal studies have revealed that estrogen promotes cholesterol gallstone formation through the estrogen receptor (ER) α, but not ERβ, pathway. More importantly, some genetic and pathophysiological studies have found that G protein-coupled estrogen receptor (GPER) 1 is a new gallstone gene, Lith18, on chromosome 5 in mice and produces additional lithogenic actions, working independently of ERα, to markedly increase cholelithogenesis in female mice. Based on computational modeling of GPER, a novel series of GPER-selective antagonists were designed, synthesized, and subsequently assessed for their therapeutic effects via calcium mobilization, cAMP, and ERα and ERβ fluorescence polarization binding assays. From this series of compounds, one new compound, 2-cyclohexyl-4-isopropyl-N-(4-methoxybenzyl)aniline (CIMBA), exhibits superior antagonism and selectivity exclusively for GPER. Furthermore, CIMBA reduces the formation of 17β-estradiol-induced gallstones in a dose-dependent manner in ovariectomized mice fed a lithogenic diet for 8 weeks. At 32 μg/day/kg CIMBA, no gallstones are found, even in ovariectomized ERα (–/–) mice treated with 6 μg/day 17β-estradiol and fed the lithogenic diet for 8 weeks. In conclusion, CIMBA treatment protects against the formation of estrogen-induced cholesterol gallstones by inhibiting the GPER signaling pathway in female mice. CIMBA may thus be a new agent for effectively treating cholesterol gallstone disease in women.­




mal

Problem Notes for SAS®9 - 65574: Decimal values are rounded after they are inserted into a new Databricks table via SAS/ACCESS Interface to JDBC

A DATA step and PROC SQL can round numeric values while creating and loading data into a new Databricks table via JDBC.




mal

MtrP, a putative methyltransferase in Corynebacteria, is required for optimal membrane transport of trehalose mycolates [Lipids]

Pathogenic bacteria of the genera Mycobacterium and Corynebacterium cause severe human diseases such as tuberculosis (Mycobacterium tuberculosis) and diphtheria (Corynebacterium diphtheriae). The cells of these species are surrounded by protective cell walls rich in long-chain mycolic acids. These fatty acids are conjugated to the disaccharide trehalose on the cytoplasmic side of the bacterial cell membrane. They are then transported across the membrane to the periplasm where they act as donors for other reactions. We have previously shown that transient acetylation of the glycolipid trehalose monohydroxycorynomycolate (hTMCM) enables its efficient transport to the periplasm in Corynebacterium glutamicum and that acetylation is mediated by the membrane protein TmaT. Here, we show that a putative methyltransferase, encoded at the same genetic locus as TmaT, is also required for optimal hTMCM transport. Deletion of the C. glutamicum gene NCgl2764 (Rv0224c in M. tuberculosis) abolished acetyltrehalose monocorynomycolate (AcTMCM) synthesis, leading to accumulation of hTMCM in the inner membrane and delaying its conversion to trehalose dihydroxycorynomycolate (h2TDCM). Complementation with NCgl2764 normalized turnover of hTMCM to h2TDCM. In contrast, complementation with NCgl2764 derivatives mutated at residues essential for methyltransferase activity failed to rectify the defect, suggesting that NCgl2764/Rv0224c encodes a methyltransferase, designated here as MtrP. Comprehensive analyses of the individual mtrP and tmaT mutants and of a double mutant revealed strikingly similar changes across several lipid classes compared with WT bacteria. These findings indicate that both MtrP and TmaT have nonredundant roles in regulating AcTMCM synthesis, revealing additional complexity in the regulation of trehalose mycolate transport in the Corynebacterineae.




mal

Overexpression of GPR40 in Pancreatic {beta}-Cells Augments Glucose Stimulated Insulin Secretion and Improves Glucose Tolerance in Normal and Diabetic Mice

Objective:

GPR40 is a G protein-coupled receptor regulating free fatty acid-induced insulin secretion. We have generated transgenic mice overexpressing the human GPR40 gene (hGPR40-Tg) under control of the mouse insulin II promoter and have used them to examine the role of GPR40 in the regulation of insulin secretion and glucose homeostasis.

Research Design and Methods:

Normal (C57BL/6J) and diabetic (KK) mice overexpressing the human GPR40 gene under control of the insulin II promoter were generated, and their glucose metabolism and islet function were analyzed.

Results:

In comparison with nontransgenic littermates, hGPR40-Tg mice exhibited improved oral glucose tolerance with an increase in insulin secretion. Although islet morphological analysis showed no obvious differences between hGPR40-Tg and nontransgenic (NonTg) mice, isolated islets from hGPR40-Tg mice enhanced insulin secretion in response to high glucose (16 mM) than those from NonTg mice with unchanged low glucose (3 mM)-stimulated insulin secretion. In addition, hGPR40-Tg islets significantly increased insulin secretion against a naturally occurring agonist palmitate in the presence of 11 mM glucose. hGPR40-Tg mice were also found to be resistant to high fat diet-induced glucose intolerance, and hGPR40-Tg harboring KK mice showed augmented insulin secretion and improved oral glucose tolerance compared to nontransgenic littermates.

Conclusions:

Our results suggest that GPR40 may have a role in regulating glucose-stimulated insulin secretion and plasma glucose levels in vivo, and that pharmacological activation of GPR40 may provide a novel insulin secretagogue beneficial for the treatment of type 2 diabetes.




mal

Amylin/Calcitonin Receptor-Mediated Signaling in POMC Neurons Influences Energy Balance and Locomotor Activity in Chow-Fed Male Mice

Amylin, a pancreatic hormone and neuropeptide, acts principally in the hindbrain to decrease food intake and has been recently shown to act as a neurotrophic factor to control the development of AP->NTS and ARC->PVN axonal fiber outgrowth. Amylin is also able to activate ERK signaling specifically in POMC neurons independently of leptin. To investigate the physiological role of amylin signaling in POMC neurons, the core component of the amylin receptor, calcitonin receptor (CTR) was depleted from POMC neurons using an inducible mouse model. The loss of CTR in POMC neurons leads to increased body weight gain, increased adiposity, and glucose intolerance in male knockout mice, characterized by decreased energy expenditure (EE) and decreased expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT). Furthermore, a decreased spontaneous locomotor activity and absent thermogenic reaction to the application of the amylin receptor agonist were observed in male and female mice. Together, these results show a significant physiological impact of amylin/calcitonin signaling in CTR-POMC neurons on energy metabolism and demonstrate the need for sex-specific approaches in obesity research and potentially treatment.




mal

Hyperuricemia Predisposes to the Onset of Diabetes via Promoting Pancreatic {beta}-Cell Death in Uricase Deficiency Male Mice

Clinical studies have shown a link between hyperuricemia (HU) and diabetes, while the exact effect of soluble serum urate on glucose metabolism remains elusive. This study aims to characterize the glucose metabolic phenotypes and investigate the underlying molecular mechanisms using a novel spontaneous HU mouse model in which the Uricase (Uox) gene is absent. In an attempt to study the role of HU in glycometabolism, we implemented external stimulation on Uox-knockout (KO) and wild-type (WT) males with a high-fat diet (HFD) and/or injections of multiple low-dose streptozotocin (MLD-STZ) to provoke the potential role of urate. Notably, while Uox-KO mice developed glucose intolerance in the basal condition, no mice spontaneously developed diabetes, even with aging. HFD-fed Uox-KO mice manifested similar insulin sensitivity compared with WT controls. HU augmented the existing glycometabolism abnormality induced by MLD-STZ and eventually led to diabetes, as evidenced by the increased random glucose. Reduced β-cell masses and increased terminal deoxynucleotidyl TUNEL-positive β-cells suggested that HU-mediated diabetes was cell death dependent. However, urate-lowering treatment (ULT) cannot ameliorate the diabetes incidence or reverse β-cell apoptosis with significance. ULT displayed a significant therapeutic effect of HU-crystal– associated kidney injury and tubulointerstitial damage in diabetes. Moreover, we present transcriptomic analysis of isolated islets, using Uox-KO versus WT mice and streptozotocin-induced diabetic WT (STZ-WT) versus diabetic Uox-KO (STZ-KO) mice. Shared differentially expressed genes of HU primacy revealed Stk17β is a possible target gene in HU-related β-cell death. Together, this study suggests that HU accelerates but does not cause diabetes by inhibiting islet β-cell survival.




mal

Proline-rich 11 (PRR11) drives F-actin assembly by recruiting the actin-related protein 2/3 complex in human non-small cell lung carcinoma [DNA and Chromosomes]

The actin cytoskeleton is extremely dynamic and supports diverse cellular functions in many physiological and pathological processes, including tumorigenesis. However, the mechanisms that regulate the actin-related protein 2/3 (ARP2/3) complex and thereby promote actin polymerization and organization in cancer cells are not well-understood. We previously implicated the proline-rich 11 (PRR11) protein in lung cancer development. In this study, using immunofluorescence staining, actin polymerization assays, and siRNA-mediated gene silencing, we uncovered that cytoplasmic PRR11 is involved in F-actin polymerization and organization. We found that dysregulation of PRR11 expression results in F-actin rearrangement and nuclear instability in non-small cell lung cancer cells. Results from molecular mechanistic experiments indicated that PRR11 associates with and recruits the ARP2/3 complex, facilitates F-actin polymerization, and thereby disrupts the F-actin cytoskeleton, leading to abnormal nuclear lamina assembly and chromatin reorganization. Inhibition of the ARP2/3 complex activity abolished irregular F-actin polymerization, lamina assembly, and chromatin reorganization due to PRR11 overexpression. Notably, experiments with truncated PRR11 variants revealed that PRR11 regulates F-actin through different regions. We found that deletion of either the N or C terminus of PRR11 abrogates its effects on F-actin polymerization and nuclear instability and that deletion of amino acid residues 100–184 or 100–200 strongly induces an F-actin structure called the actin comet tail, not observed with WT PRR11. Our findings indicate that cytoplasmic PRR11 plays an essential role in regulating F-actin assembly and nuclear stability by recruiting the ARP2/3 complex in human non-small cell lung carcinoma cells.




mal

Prominins control ciliary length throughout the animal kingdom: New lessons from human prominin-1 and zebrafish prominin-3 [Cell Biology]

Prominins (proms) are transmembrane glycoproteins conserved throughout the animal kingdom. They are associated with plasma membrane protrusions, such as primary cilia, as well as extracellular vesicles derived thereof. Primary cilia host numerous signaling pathways affected in diseases known as ciliopathies. Human PROM1 (CD133) is detected in both somatic and cancer stem cells and is also expressed in terminally differentiated epithelial and photoreceptor cells. Genetic mutations in the PROM1 gene result in retinal degeneration by impairing the proper formation of the outer segment of photoreceptors, a modified cilium. Here, we investigated the impact of proms on two distinct examples of ciliogenesis. First, we demonstrate that the overexpression of a dominant-negative mutant variant of human PROM1 (i.e. mutation Y819F/Y828F) significantly decreases ciliary length in Madin–Darby canine kidney cells. These results contrast strongly to the previously observed enhancing effect of WT PROM1 on ciliary length. Mechanistically, the mutation impeded the interaction of PROM1 with ADP-ribosylation factor–like protein 13B, a key regulator of ciliary length. Second, we observed that in vivo knockdown of prom3 in zebrafish alters the number and length of monocilia in the Kupffer's vesicle, resulting in molecular and anatomical defects in the left-right asymmetry. These distinct loss-of-function approaches in two biological systems reveal that prom proteins are critical for the integrity and function of cilia. Our data provide new insights into ciliogenesis and might be of particular interest for investigations of the etiologies of ciliopathies.




mal

Structure of an ancestral mammalian family 1B1 cytochrome P450 with increased thermostability [Enzymology]

Mammalian cytochrome P450 enzymes often metabolize many pharmaceuticals and other xenobiotics, a feature that is valuable in a biotechnology setting. However, extant P450 enzymes are typically relatively unstable, with T50 values of ∼30–40 °C. Reconstructed ancestral cytochrome P450 enzymes tend to have variable substrate selectivity compared with related extant forms, but they also have higher thermostability and therefore may be excellent tools for commercial biosynthesis of important intermediates, final drug molecules, or drug metabolites. The mammalian ancestor of the cytochrome P450 1B subfamily was herein characterized structurally and functionally, revealing differences from the extant human CYP1B1 in ligand binding, metabolism, and potential molecular contributors to its thermostability. Whereas extant human CYP1B1 has one molecule of α-naphthoflavone in a closed active site, we observed that subtle amino acid substitutions outside the active site in the ancestor CYP1B enzyme yielded an open active site with four ligand copies. A structure of the ancestor with 17β-estradiol revealed only one molecule in the active site, which still had the same open conformation. Detailed comparisons between the extant and ancestor forms revealed increases in electrostatic and aromatic interactions between distinct secondary structure elements in the ancestral forms that may contribute to their thermostability. To the best of our knowledge, this represents the first structural evaluation of a reconstructed ancestral cytochrome P450, revealing key features that appear to contribute to its thermostability.




mal

MicroRNA Networks in Pancreatic Islet Cells: Normal Function and Type 2 Diabetes

Lena Eliasson
May 1, 2020; 69:804-812
Small Noncoding RNAs in Diabetes




mal

Correction: Histone demethylase KDM6B promotes epithelial-mesenchymal transition. [Additions and Corrections]

VOLUME 287 (2012) PAGES 44508–44517In Fig. 1A, the wrong image for the control group was presented. The authors inadvertently cropped the control images in Fig. 1, A and E, from the same raw image. Fig. 1A has now been corrected and does not affect the results or conclusions of the work. The authors sincerely apologize for their mistake during figure preparation and for any inconvenience this may have caused readers.jbc;295/19/6781/F1F1F1Figure 1A.




mal

Role of phospholipid synthesis in the development and differentiation of malaria parasites in the blood [Microbiology]

The life cycle of malaria parasites in both their mammalian host and mosquito vector consists of multiple developmental stages that ensure proper replication and progeny survival. The transition between these stages is fueled by nutrients scavenged from the host and fed into specialized metabolic pathways of the parasite. One such pathway is used by Plasmodium falciparum, which causes the most severe form of human malaria, to synthesize its major phospholipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Much is known about the enzymes involved in the synthesis of these phospholipids, and recent advances in genetic engineering, single-cell RNA-Seq analyses, and drug screening have provided new perspectives on the importance of some of these enzymes in parasite development and sexual differentiation and have identified targets for the development of new antimalarial drugs. This Minireview focuses on two phospholipid biosynthesis enzymes of P. falciparum that catalyze phosphoethanolamine transmethylation (PfPMT) and phosphatidylserine decarboxylation (PfPSD) during the blood stages of the parasite. We also discuss our current understanding of the biochemical, structural, and biological functions of these enzymes and highlight efforts to use them as antimalarial drug targets.




mal

US$10,000 gofundme launched to support animals at Hope Zoo

A gofundme account has been launched with the hope of keeping animals feed and to preserve endangered wildlife at the Hope Zoo in St Andrew. Curator, Joey Brown, organiser of the fundraiser, indicated that as a non-profit organisation,...




mal

Subscription models and small venues the future

AS ARTISTES and musicians try to manage the situation brought on by COVID-19’s stranglehold on the world and its economy, in the interim, many have resorted to hosting live-stream events. But that only succeeds to a point. Performers retain their...




mal

JaRIA considers threats, opportunities in the ‘new normal’

Industries across the world face uncertainty, as no one entity can absolutely declare when or if economies will revert to normal in the wake of COVID-19. The local entertainment industry suffers the same uncertainty – and to address it, the Jamaica...




mal

'My Boy Lollipop' singer Millie Small will be sorely missed

There has been an outpouring of grief following the death of legendary Jamaican singer Millicent Dolly May Small, popularly known as Millie Small. She died in the United Kingdom today at the age of 73 after suffering a stroke. The voice...




mal

Singer Owen Gray remembers ‘Sugar Plum’ Millie Small

BEFORE MILLIE Small became the ‘lollipop girl’, she was a ‘sugar plum’. Not only is it a term of endearment, it is also the title of her first song – a duet as it was called back in 1960 – with singer Owen Gray. This collab was born out of the time...




mal

Female athletes need more recognition – Clayton

National 400m hurdles champion Rushell Clayton is concerned about what she says are inequalities between men and women in track and field. Clayton was speaking at a Women in Sports Conference in Kingston recently and discussed issues of inequality...




mal

Rabies in animals

Rabies is the archytypical zoonotic disease, and only by vaccination in animals will we prevent infections in people. In two podcasts linked to our latest clinical review "The prevention and management of rabies"​ we'll be discussing how we can get there. In this podcast Sarah Cleaveland, professor of comparative epidemiology at the University of...




mal

A maladaptive pathway to drug approval

The European Medicines Agency (EMA) has embraced a new model of drug testing and marketing called “adaptive pathways”, allowing new drugs for “unmet medical needs” to be launched on the market faster, on the basis of fewer data. While industry claims this is necessary, an analysis on thebmj.com looks at the assumptions underlying the new pathway,...




mal

The Effect of Thiazolidinediones on Plasma Adiponectin Levels in Normal, Obese, and Type 2 Diabetic Subjects

Joseph G. Yu
Oct 1, 2002; 51:2968-2974
Obesity Studies




mal

Are the {beta}-Cell Signaling Molecules Malonyl-CoA and Cystolic Long-Chain Acyl-CoA Implicated in Multiple Tissue Defects of Obesity and NIDDM?

Marc Prentki
Mar 1, 1996; 45:273-283
Original Article




mal

2020 hurricane season will be more active than normal - CSU forecasters

BRIDGETOWN, Barbados, CMC – A few weeks before the official start of the 2020 Atlantic Hurricane Season, forecasters at the US-based Colorado State University are warning that the six-month period will be more active than normal. The CSU...




mal

Rotating night shift work and adherence to unhealthy lifestyle in predicting risk of type 2 diabetes: results from two large US cohorts of female nurses




mal

Acyl-ghrelin Is Permissive for the Normal Counterregulatory Response to Insulin-Induced Hypoglycemia

Insulin-induced hypoglycemia leads to far-ranging negative consequences in patients with diabetes. Components of the counterregulatory response (CRR) system that help minimize and reverse hypoglycemia and coordination between those components are well studied but not yet fully characterized. Here, we tested the hypothesis that acyl-ghrelin, a hormone that defends against hypoglycemia in a preclinical starvation model, is permissive for the normal CRR to insulin-induced hypoglycemia. Ghrelin knockout (KO) mice and wild-type (WT) littermates underwent an insulin bolus-induced hypoglycemia test and a low-dose hyperinsulinemic-hypoglycemic clamp procedure. Clamps also were performed in ghrelin-KO mice and C57BL/6N mice administered the growth hormone secretagogue receptor agonist HM01 or vehicle. Results show that hypoglycemia, as induced by an insulin bolus, was more pronounced and prolonged in ghrelin-KO mice, supporting previous studies suggesting increased insulin sensitivity upon ghrelin deletion. Furthermore, during hyperinsulinemic-hypoglycemic clamps, ghrelin-KO mice required a 10-fold higher glucose infusion rate (GIR) and exhibited less robust corticosterone and growth hormone responses. Conversely, HM01 administration, which reduced the GIR required by ghrelin-KO mice during the clamps, increased plasma corticosterone and growth hormone. Thus, our data suggest that endogenously produced acyl-ghrelin not only influences insulin sensitivity but also is permissive for the normal CRR to insulin-induced hypoglycemia.




mal

Illegal Logging and Related Trade: The Response in Malaysia

21 January 2015

This paper finds high levels of deforestation and widespread problems in Malaysia, particularly in the state of Sarawak.

Alison Hoare

Senior Research Fellow, Energy, Environment and Resources Programme

20150120LoggingMalaysia.jpg

A truck hauls fresh timber from mountainous terrain in the Limbang area of Sarawak, Borneo. Photo by Getty Images.

This paper is part of a broader Chatham House study which assesses the global response to illegal logging and the related trade. 

There has been limited progress in tackling illegal logging and related trade in Malaysia since 2010. Widespread problems remain, particularly in the state of Sarawak. There are high levels of deforestation throughout the country: expansion of timber, pulp and agricultural plantations (including oil palm and rubber) is the main driver of forest loss.

Forest policy-making in Malaysia involves both the federal and state governments, but the states have prerogative rights to develop their own policies on land and forests. This poses challenges, not least since governance of the forest sector varies quite significantly from one region of the country to another.

The government has been negotiating a Voluntary Partnership Agreement (VPA) with the EU since 2007. Negotiations stalled for a number of years but resumed in 2012 without the participation of Sarawak. Concerns remain among stakeholders about the limited recognition of indigenous peoples’ rights by the government, as well as about corruption and the lack of transparency.

Awareness of illegal logging and related trade is increasing in the private sector, although the area of natural forest concessions certified as being under sustainable production remained virtually unchanged during the period 2008–12.

Asia is the major export market destination for Malaysia’s timber products. However, both the US and the EU import significant volumes of wood-based products from Malaysia too.

The Malaysian Anti-Corruption Commission (MACC) has recently stepped up investigating corruption in the forest sector. In Sarawak, an intensified focus on combatting illegal logging could signal a turning point for the state’s forest sector.

In order to build on its response to illegal logging and related trade to date, the Malaysian government should fully engage with the voluntary partnership agreement process and improve multi-stakeholder participation. Transparency in decisions about forest allocation needs to be significantly improved and greater recognition accorded to the rights of indigenous peoples.

More concerted efforts are required to tackle high-level corruption – for example, through strengthening the MACC. At the same time, the government should consider options for an independent monitor for the forest sector as a means of improving forest governance.




mal

Navigating the New Normal: China and Global Resource Governance

28 January 2016

How China responds to the challenges of resource security and sustainability, working with others, will help define its reputation as a responsible actor on the world stage in the next decade, according to a new paper.

Felix Preston

Former Senior Research Fellow and Deputy Research Director, Energy, Environment and Resources

Rob Bailey

Former Research Director, Energy, Environment and Resources

Siân Bradley

Research Fellow, Energy, Environment and Resources Programme

Dr Wei Jigang, Senior Research Fellow, Department of Industrial Economy, Development Research Center of the State Council (DRC)
Dr Zhao Changwen, Director, Department of Industrial Economy, Development Research Center of the State Council (DRC)

2016-01-27-china-resource-governance-2.jpg

Qingdao, China. Photo: Getty Images.
  • It is time to upgrade global resource governance
  • Meaningful progress cannot be achieved without China
  • China will need to be both innovative and pragmatic in its approach
  • New modes of cooperation are needed
  • Changes in China’s economy present opportunities and risks

Executive summary

China’s new role in the global governance of natural resources is coming to the fore against a backdrop of profound uncertainty, driven by the convergence of three interlinked trends. At home, China’s leaders are navigating the structural shift to slower but higher-quality growth, a phase of development referred to as the ‘new normal’, while facing considerable environmental and resource security challenges. Globally, the slowdown in China’s economy has sent reverberations through commodity markets, pulling the plug on the decade-long commodities ‘super cycle’. Meanwhile, China is taking on a growing role in global governance, from the G20 and multilateral development banks, to its regional partnerships in Latin America and Africa.

During the resources boom of the last decade, policy-makers and businesses in consumer countries were focused on high and volatile resource prices. The risks posed by resource nationalism in producer countries were seen in the proliferation of export restrictions and the increase in investment disputes. Today, the tables have turned, leaving producer countries facing economic pressure from falling revenues and investments. Many organizations have called on governments to phase out subsidies for fossil fuels and other natural resources while prices are low. The international policy debate is shifting to the immediate challenges presented by a massive oversupply of many energy and mineral commodities, and the longer-term risk of ‘stranded assets’.

These new resource realities will provide the context for China’s growing global role, as well as setting the tenor of its relations with producer countries. Over the past decade, narratives around China often focused on its real or perceived impacts from resource production overseas and consumption at home. In the next, China’s approach to resource security and sustainability will help define its reputation, and whether it is perceived as a responsible actor on the world stage and as a development partner. The collection of international narratives, norms, rules and organizations that currently guides resource production, trade and consumption – what we call ‘global resource governance' in this report – will provide the framework.

Much political leadership will be required to overcome the barriers to China assuming a more active role in global resource governance. On the one hand, there has been slow progress in expanding China’s role in organizations from the World Bank to the International Energy Agency (IEA). On the other, new instruments or processes initiated by China can be seen as a challenge to the existing rules-based order, as the US reaction to the establishment of the Asian Infrastructure Investment Bank (AIIB) demonstrated. Yet developments such as the US–China Joint Presidential Statement on Climate Change in September 2015, ahead of the Paris Climate Conference, show that it is possible to forge cooperation and boost the prospects for progress on public goods at the multilateral level, even in politically fraught areas.

China’s international role on natural resources is also closely tied to ongoing reforms at home. The introduction of ‘ecological civilization’ as a guiding principle for China’s development at the Communist Party’s 17th Congress in 2007 marked a recognition of the need not only to address China’s domestic challenges such as air quality and water scarcity but also shift to an environmentally sustainable model of economic development. In 2015 China’s leaders set out the key incentives, accountability and mechanisms to deliver the ecological civilization in China’s 13th Five-Year Plan. Central elements of this vision, such as building sustainable cities, pursuing environmentally-friendly economic growth and developing the circular economy will have major impacts on China’s future resource consumption and import needs.

Globally, the speed and scale of the economic realignments have taken most experts and policy-makers by surprise – in many respects, China’s new normal is the world’s new normal. The greatest challenge that China’s government faces is managing a shift to slower but higher-quality growth. It is clear that the ramifications of this reach far beyond the confines of the Chinese economy or global commodity markets; yet the situation remains fluid and the nature of a new equilibrium is difficult to predict. This only makes it more urgent to consider the strategic and practical options available to policy-makers, both in China and around the world.

This report is the result of two years of joint research between Chatham House and the Development Research Center of the State Council (DRC), including six expert workshops in China and conversations with international organizations. It discusses key policy areas in global resource governance as they relate to China – in light of recent falls in commodity prices, China’s shifting economic situation, and its growing global role in the ‘new normal’. The scope of the research is limited to non-renewable energy, metals and mineral resources; throughout this report, the term ‘resources’ refers to these commodities. Other traded commodities such as agricultural goods are not included, and land, water and air are discussed only in the context of their important linkages with energy and metals. 

The report considers the costs and benefits of a more active role for China in global resources governance. It recognizes that different commodities face different challenges and require different governance frameworks, and that different regions require context-specific responses. The report also considers the risks of more limited engagement of China and other new actors, which could mean declining relevance for existing processes and institutions that govern resource production, trade and consumption, and a diminished capacity to tackle longer-term challenges like climate change.




mal

First-in-Humans Imaging with 89Zr-Df-IAB22M2C Anti-CD8 Minibody in Patients with Solid Malignancies: Preliminary Pharmacokinetics, Biodistribution, and Lesion Targeting

Immunotherapy is becoming the mainstay for treatment of a variety of malignancies, but only a subset of patients responds to treatment. Tumor-infiltrating CD8-positive (CD8+) T lymphocytes play a central role in antitumor immune responses. Noninvasive imaging of CD8+ T cells may provide new insights into the mechanisms of immunotherapy and potentially predict treatment response. We are studying the safety and utility of 89Zr-IAB22M2C, a radiolabeled minibody against CD8+ T cells, for targeted imaging of CD8+ T cells in patients with cancer. Methods: The initial dose escalation phase of this first-in-humans prospective study included 6 patients (melanoma, 1; lung, 4; hepatocellular carcinoma, 1). Patients received approximately 111 MBq (3 mCi) of 89Zr-IAB22M2C (at minibody mass doses of 0.2, 0.5, 1.0, 1.5, 5, or 10 mg) as a single dose, followed by PET/CT scans at approximately 1–2, 6–8, 24, 48, and 96–144 h after injection. Biodistribution in normal organs, lymph nodes, and lesions was evaluated. In addition, serum samples were obtained at approximately 5, 30, and 60 min and later at the times of imaging. Patients were monitored for safety during infusion and up to the last imaging time point. Results: 89Zr-IAB22M2C infusion was well tolerated, with no immediate or delayed side effects observed after injection. Serum clearance was typically biexponential and dependent on the mass of minibody administered. Areas under the serum time–activity curve, normalized to administered activity, ranged from 1.3 h/L for 0.2 mg to 8.9 h/L for 10 mg. Biodistribution was dependent on the minibody mass administered. The highest uptake was always in spleen, followed by bone marrow. Liver uptake was more pronounced with higher minibody masses. Kidney uptake was typically low. Prominent uptake was seen in multiple normal lymph nodes as early as 2 h after injection, peaking by 24–48 h after injection. Uptake in tumor lesions was seen on imaging as early as 2 h after injection, with most 89Zr-IAB22M2C–positive lesions detectable by 24 h. Lesions were visualized early in patients receiving treatment, with SUV ranging from 5.85 to 22.8 in 6 target lesions. Conclusion: 89Zr-IAB22M2C imaging is safe and has favorable kinetics for early imaging. Biodistribution suggests successful targeting of CD8+ T-cell–rich tissues. The observed targeting of tumor lesions suggests this may be informative for CD8+ T-cell accumulation within tumors. Further evaluation is under way.




mal

A musical about malignancy




mal

Proline-rich 11 (PRR11) drives F-actin assembly by recruiting the actin-related protein 2/3 complex in human non-small cell lung carcinoma [DNA and Chromosomes]

The actin cytoskeleton is extremely dynamic and supports diverse cellular functions in many physiological and pathological processes, including tumorigenesis. However, the mechanisms that regulate the actin-related protein 2/3 (ARP2/3) complex and thereby promote actin polymerization and organization in cancer cells are not well-understood. We previously implicated the proline-rich 11 (PRR11) protein in lung cancer development. In this study, using immunofluorescence staining, actin polymerization assays, and siRNA-mediated gene silencing, we uncovered that cytoplasmic PRR11 is involved in F-actin polymerization and organization. We found that dysregulation of PRR11 expression results in F-actin rearrangement and nuclear instability in non-small cell lung cancer cells. Results from molecular mechanistic experiments indicated that PRR11 associates with and recruits the ARP2/3 complex, facilitates F-actin polymerization, and thereby disrupts the F-actin cytoskeleton, leading to abnormal nuclear lamina assembly and chromatin reorganization. Inhibition of the ARP2/3 complex activity abolished irregular F-actin polymerization, lamina assembly, and chromatin reorganization due to PRR11 overexpression. Notably, experiments with truncated PRR11 variants revealed that PRR11 regulates F-actin through different regions. We found that deletion of either the N or C terminus of PRR11 abrogates its effects on F-actin polymerization and nuclear instability and that deletion of amino acid residues 100–184 or 100–200 strongly induces an F-actin structure called the actin comet tail, not observed with WT PRR11. Our findings indicate that cytoplasmic PRR11 plays an essential role in regulating F-actin assembly and nuclear stability by recruiting the ARP2/3 complex in human non-small cell lung carcinoma cells.




mal

French Philosopher Latour Urges No Return to Pre-Lockdown Normal

Source:

What if rather than hurrying back to a pre-lockdown "business as usual" to revive economies hammered by the coronavirus pandemic, countries built a new normal where the fight against climate change was paramount?






mal

Randomized Study to Evaluate the Impact of Telemedicine Care in Patients With Type 1 Diabetes With Multiple Doses of Insulin and Suboptimal HbA1c in Andalusia (Spain): PLATEDIAN Study

OBJECTIVE

To assess the impact of a telemedicine visit using the platform Diabetic compared with a face-to-face visit on clinical outcomes, patients’ health-related quality of life (HRQoL), and physicians’ satisfaction in patients with type 1 diabetes.

RESEARCH DESIGN AND METHODS

PLATEDIAN (Telemedicine on Metabolic Control in Type 1 Diabetes Mellitus Andalusian Patients) (NCT03332472) was a multicenter, randomized, 6-month follow-up, open-label, parallel-group controlled study performed in patients with type 1 diabetes with suboptimal metabolic control (HbA1c <8% [<64 mmol/mol]), treated with multiple daily injections. A total of 388 patients were assessed for eligibility; 379 of them were randomized 1:1 to three face-to-face visits (control cohort [CC]) (n = 167) or the replacement of an intermediate face-to-face visit by a telemedicine visit using Diabetic (intervention cohort [IC]) (n = 163). The primary efficacy end point was the mean change of HbA1c levels from baseline to month 6. Other efficacy and safety end points were mean blood glucose, glucose variability, episodes of hypoglycemia and hyperglycemia, patient-reported outcomes, and physicians’ satisfaction.

RESULTS

At month 6, the mean change in HbA1c levels was –0.04 ± 0.5% (–0.5 ± 5.8 mmol/mol) in the CC and 0.01 ± 0.6% (0.1 ± 6.0 mmol/mol) in the IC (P = 0.4941). The number of patients who achieved HbA1c <7% (<53 mmol/mol) was 73 and 78 in the CC and IC, respectively. Significant differences were not found regarding safety end points at 6 months. Changes in HRQoL between the first visit and final visit did not differ between cohorts, and, regarding fear of hypoglycemia (FH-15 score ≥28), statistically significant differences observed at baseline remained unchanged at 6 months (P < 0.05).

CONCLUSIONS

The use of telemedicine in patients with type 1 diabetes with HbA1c <8% (<64 mmol/mol) provides similar efficacy and safety outcomes as face-to-face visits.




mal

Plasma Lipidome and Prediction of Type 2 Diabetes in the Population-Based Malmo&#x0308; Diet and Cancer Cohort

OBJECTIVE

Type 2 diabetes mellitus (T2DM) is associated with dyslipidemia, but the detailed alterations in lipid species preceding the disease are largely unknown. We aimed to identify plasma lipids associated with development of T2DM and investigate their associations with lifestyle.

RESEARCH DESIGN AND METHODS

At baseline, 178 lipids were measured by mass spectrometry in 3,668 participants without diabetes from the Malmö Diet and Cancer Study. The population was randomly split into discovery (n = 1,868, including 257 incident cases) and replication (n = 1,800, including 249 incident cases) sets. We used orthogonal projections to latent structures discriminant analyses, extracted a predictive component for T2DM incidence (lipid-PCDM), and assessed its association with T2DM incidence using Cox regression and lifestyle factors using general linear models.

RESULTS

A T2DM-predictive lipid-PCDM derived from the discovery set was independently associated with T2DM incidence in the replication set, with hazard ratio (HR) among subjects in the fifth versus first quintile of lipid-PCDM of 3.7 (95% CI 2.2–6.5). In comparison, the HR of T2DM among obese versus normal weight subjects was 1.8 (95% CI 1.2–2.6). Clinical lipids did not improve T2DM risk prediction, but adding the lipid-PCDM to all conventional T2DM risk factors increased the area under the receiver operating characteristics curve by 3%. The lipid-PCDM was also associated with a dietary risk score for T2DM incidence and lower level of physical activity.

CONCLUSIONS

A lifestyle-related lipidomic profile strongly predicts T2DM development beyond current risk factors. Further studies are warranted to test if lifestyle interventions modifying this lipidomic profile can prevent T2DM.