sig 12-LOX catalyzes the oxidation of 2-arachidonoyl-lysolipids in platelets generating eicosanoid-lysolipids that are attenuated by iPLA2{gamma} knockout [Signal Transduction] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 The canonical pathway of eicosanoid production in most mammalian cells is initiated by phospholipase A2-mediated release of arachidonic acid, followed by its enzymatic oxidation resulting in a vast array of eicosanoid products. However, recent work has demonstrated that the major phospholipase in mitochondria, iPLA2γ (patatin-like phospholipase domain containing 8 (PNPLA8)), possesses sn-1 specificity, with polyunsaturated fatty acids at the sn-2 position generating polyunsaturated sn-2-acyl lysophospholipids. Through strategic chemical derivatization, chiral chromatographic separation, and multistage tandem MS, here we first demonstrate that human platelet-type 12-lipoxygenase (12-LOX) can directly catalyze the regioselective and stereospecific oxidation of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) and 2-arachidonoyl-lysophosphatidylethanolamine (2-AA-LPE). Next, we identified these two eicosanoid-lysophospholipids in murine myocardium and in isolated platelets. Moreover, we observed robust increases in 2-AA-LPC, 2-AA-LPE, and their downstream 12-LOX oxidation products, 12(S)-HETE-LPC and 12(S)-HETE-LPE, in calcium ionophore (A23187)-stimulated murine platelets. Mechanistically, genetic ablation of iPLA2γ markedly decreased the calcium-stimulated production of 2-AA-LPC, 2-AA-LPE, and 12-HETE-lysophospholipids in mouse platelets. Importantly, a potent and selective 12-LOX inhibitor, ML355, significantly inhibited the production of 12-HETE-LPC and 12-HETE-LPE in activated platelets. Furthermore, we found that aging is accompanied by significant changes in 12-HETE-LPC in murine serum that were also markedly attenuated by iPLA2γ genetic ablation. Collectively, these results identify previously unknown iPLA2γ-initiated signaling pathways mediated by direct 12-LOX oxidation of 2-AA-LPC and 2-AA-LPE. This oxidation generates previously unrecognized eicosanoid-lysophospholipids that may serve as biomarkers for age-related diseases and could potentially be used as targets in therapeutic interventions. Full Article
sig Certain ortho-hydroxylated brominated ethers are promiscuous kinase inhibitors that impair neuronal signaling and neurodevelopmental processes [Cell Biology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 The developing nervous system is remarkably sensitive to environmental signals, including disruptive toxins, such as polybrominated diphenyl ethers (PBDEs). PBDEs are an environmentally pervasive class of brominated flame retardants whose neurodevelopmental toxicity mechanisms remain largely unclear. Using dissociated cortical neurons from embryonic Rattus norvegicus, we found here that chronic exposure to 6-OH–BDE-47, one of the most prevalent hydroxylated PBDE metabolites, suppresses both spontaneous and evoked neuronal electrical activity. On the basis of our previous work on mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) (MEK) biology and our observation that 6-OH–BDE-47 is structurally similar to kinase inhibitors, we hypothesized that certain hydroxylated PBDEs mediate neurotoxicity, at least in part, by impairing the MEK–ERK axis of MAPK signal transduction. We tested this hypothesis on three experimental platforms: 1) in silico, where modeling ligand–protein docking suggested that 6-OH–BDE-47 is a promiscuous ATP-competitive kinase inhibitor; 2) in vitro in dissociated neurons, where 6-OH–BDE-47 and another specific hydroxylated BDE metabolite similarly impaired phosphorylation of MEK/ERK1/2 and activity-induced transcription of a neuronal immediate early gene; and 3) in vivo in Drosophila melanogaster, where developmental exposures to 6-OH–BDE-47 and a MAPK inhibitor resulted in offspring displaying similarly increased frequency of mushroom-body β–lobe midline crossing, a metric of axonal guidance. Taken together, our results support that certain ortho-hydroxylated PBDE metabolites are promiscuous kinase inhibitors and can cause disruptions of critical neurodevelopmental processes, including neuronal electrical activity, pre-synaptic functions, MEK–ERK signaling, and axonal guidance. Full Article
sig The DNA sensor cGAS is decorated by acetylation and phosphorylation modifications in the context of immune signaling By feedproxy.google.com Published On :: 2020-04-28 Bokai SongApr 28, 2020; 0:RA120.001981v1-mcp.RA120.001981Research Full Article
sig Characterization of signaling pathways associated with pancreatic {beta}-cell adaptive flexibility in compensation of obesity-linked diabetes in db/db mice By feedproxy.google.com Published On :: 2020-04-07 Taewook KangApr 7, 2020; 0:RA119.001882v1-mcp.RA119.001882Research Full Article
sig Proteome and phosphoproteome analysis of brown adipocytes reveals that RICTOR loss dampens global insulin/AKT signaling By feedproxy.google.com Published On :: 2020-04-06 Samuel W EntwisleApr 6, 2020; 0:RA120.001946v2-mcp.RA120.001946Research Full Article
sig Profiling Cell Signaling Networks at Single-cell Resolution By feedproxy.google.com Published On :: 2020-05-01 Xiao-Kang LunMay 1, 2020; 19:744-756Review Full Article
sig An Improved Boosting to Amplify Signal with Isobaric Labeling (iBASIL) Strategy for Precise Quantitative Single-cell Proteomics By feedproxy.google.com Published On :: 2020-05-01 Chia-Feng TsaiMay 1, 2020; 19:828-838Research Full Article
sig Cybersecurity by Design in Civil Nuclear Power Plants By feedproxy.google.com Published On :: Tue, 23 Jul 2019 17:34:51 +0000 24 July 2019 Cyberattacks are increasingly challenging critical national infrastructure. This paper considers the security by design approach for civil nuclear power plants and analyses areas of risk and opportunities for the nuclear industry. Read online Download PDF Dr Beyza Unal Senior Research Fellow, International Security Programme @beyzaunal Google Scholar Roger Brunt Managing Director, Grosmont Howe Ltd 2019-07-24-NuclearPlant.jpg An employee climbs into the cooling tower of the third and fourth unit at Mochovce nuclear power plant in Slovakia on 2 July 2019. Photo: Getty Images SummaryThe application of ‘security by design’ in nuclear new builds could provide operators with the opportunity to establish a robust and resilient security architecture at the beginning of a nuclear power plant’s life cycle. This will enhance the protection of the plant and reduce the need for costly security improvements during its operating life.Security by design cannot fully protect a nuclear power plant from rapidly evolving cyberattacks, which expose previously unsuspected or unknown vulnerabilities.Careful design of security systems and architecture can – and should – achieve levels of protection that exceed current norms and expectations. However, the sourcing of components from a global supply chain means that the integrity of even the most skilfully designed security regime cannot be guaranteed without exhaustive checks of its components.Security by design may well include a requirement for a technical support organization to conduct quality assurance of cyber defences and practices, and this regime should be endorsed by a facility’s executive board and continued at regular intervals after the new build facility has been commissioned.Given the years it takes to design, plan and build a new nuclear power plant, it is important to recognize that from the point of ‘design freeze’ onwards, the operator will be building in vulnerabilities, as technology continues to evolve rapidly while construction fails to keep pace with it. Security by design cannot be a panacea, but it is an important factor in the establishment of a robust nuclear security – and cybersecurity – culture. Department/project International Security Programme, Cyber and Nuclear Security Full Article
sig Legal Provision for Crisis Preparedness: Foresight not Hindsight By feedproxy.google.com Published On :: Tue, 21 Apr 2020 17:03:31 +0000 21 April 2020 Dr Patricia Lewis Research Director, Conflict, Science & Transformation; Director, International Security Programme @PatriciaMary COVID-19 is proving to be a grave threat to humanity. But this is not a one-off, there will be future crises, and we can be better prepared to mitigate them. 2020-04-21-Nurse-COVID-Test Examining a patient while testing for COVID-19 at the Velocity Urgent Care in Woodbridge, Virginia. Photo by Chip Somodevilla/Getty Images. A controversial debate during COVID-19 is the state of readiness within governments and health systems for a pandemic, with lines of the debate drawn on the issues of testing provision, personal protective equipment (PPE), and the speed of decision-making.President Macron in a speech to the nation admitted French medical workers did not have enough PPE and that mistakes had been made: ‘Were we prepared for this crisis? We have to say that no, we weren’t, but we have to admit our errors … and we will learn from this’.In reality few governments were fully prepared. In years to come, all will ask: ‘how could we have been better prepared, what did we do wrong, and what can we learn?’. But after every crisis, governments ask these same questions.Most countries have put in place national risk assessments and established processes and systems to monitor and stress-test crisis-preparedness. So why have some countries been seemingly better prepared?Comparing different approachesSome have had more time and been able to watch the spread of the disease and learn from those countries that had it first. Others have taken their own routes, and there will be much to learn from comparing these different approaches in the longer run.Governments in Asia have been strongly influenced by the experience of the SARS epidemic in 2002-3 and - South Korea in particular - the MERS-CoV outbreak in 2015 which was the largest outside the Middle East. Several carried out preparatory work in terms of risk assessment, preparedness measures and resilience planning for a wide range of threats.Case Study of Preparedness: South KoreaBy 2007, South Korea had established the Division of Public Health Crisis Response in Korea Centers for Disease Control and Prevention (KCDC) and, in 2016, the KCDC Center for Public Health Emergency Preparedness and Response had established a round-the-clock Emergency Operations Center with rapid response teams.KCDC is responsible for the distribution of antiviral stockpiles to 16 cities and provinces that are required by law to hold and manage antiviral stockpiles.And, at the international level, there are frameworks for preparedness for pandemics. The International Health Regulations (IHR) - adopted at the 2005 World Health Assembly and binding on member states - require countries to report certain disease outbreaks and public health events to the World Health Organization (WHO) and ‘prevent, protect against, control and provide a public health response to the international spread of disease in ways that are commensurate with and restricted to public health risks, and which avoid unnecessary interference with international traffic and trade’.Under IHR, governments committed to a programme of building core capacities including coordination, surveillance, response and preparedness. The UN Sendai Framework for Disaster Risk highlights disaster preparedness for effective response as one of its main purposes and has already incorporated these measures into the Sustainable Development Goals (SDGs) and other Agenda 2030 initiatives. UN Secretary-General António Guterres has said COVID-19 ‘poses a significant threat to the maintenance of international peace and security’ and that ‘a signal of unity and resolve from the Council would count for a lot at this anxious time’.Case Study of Preparedness: United StatesThe National Institutes of Health (NIH) and the Center for Disease Control (CDC) established PERRC – the Preparedness for Emergency Response Research Centers - as a requirement of the 2006 Pandemic and All-Hazards Preparedness Act, which required research to ‘improve federal, state, local, and tribal public health preparedness and response systems’.The 2006 Act has since been supplanted by the 2019 Pandemic and All-Hazards Preparedness and Advancing Innovation Act. This created the post of Assistant Secretary for Preparedness and Response (ASPR) in the Department for Health and Human Services (HHS) and authorised the development and acquisitions of medical countermeasures and a quadrennial National Health Security Strategy.The 2019 Act also set in place a number of measures including the requirement for the US government to re-evaluate several important metrics of the Public Health Emergency Preparedness cooperative agreement and the Hospital Preparedness Program, and a requirement for a report on the states of preparedness and response in US healthcare facilities.This pandemic looks set to continue to be a grave threat to humanity. But there will also be future pandemics – whether another type of coronavirus or a new influenza virus – and our species will be threatened again, we just don’t know when.Other disasters too will befall us – we already see the impacts of climate change arriving on our doorsteps characterised by increased numbers and intensity of floods, hurricanes, fires, crop failure and other manifestations of a warming, increasingly turbulent atmosphere and we will continue to suffer major volcanic eruptions, earthquakes and tsunamis. All high impact, unknown probability events.Preparedness for an unknown future is expensive and requires a great deal of effort for events that may not happen within the preparers’ lifetimes. It is hard to imagine now, but people will forget this crisis, and revert to their imagined projections of the future where crises don’t occur, and progress follows progress. But history shows us otherwise.Preparations for future crises always fall prey to financial cuts and austerity measures in lean times unless there is a mechanism to prevent that. Cost-benefit analyses will understandably tend to prioritise the urgent over the long-term. So governments should put in place legislation – or strengthen existing legislation – now to ensure their countries are as prepared as possible for whatever crisis is coming.Such a legal requirement would require governments to report back to parliament every year on the state of their national preparations detailing such measures as:The exact levels of stocks of essential materials (including medical equipment)The ability of hospitals to cope with large influx of patientsHow many drills, exercises and simulations had been organised – and their findingsWhat was being done to implement lessons learned & improve preparednessIn addition, further actions should be taken:Parliamentary committees such as the UK Joint Committee on the National Security Strategy should scrutinise the government’s readiness for the potential threats outlined in the National Risk register for Civil Emergencies in-depth on an annual basis.Parliamentarians, including ministers, with responsibility for national security and resilience should participate in drills, table-top exercises and simulations to see for themselves the problems inherent with dealing with crises.All governments should have a minister (or equivalent) with the sole responsibility for national crisis preparedness and resilience. The Minister would be empowered to liaise internationally and coordinate local responses such as local resilience groups.There should be ring-fenced budget lines in annual budgets specifically for preparedness and resilience measures, annually reported on and assessed by parliaments as part of the due diligence process.And at the international level:The UN Security Council should establish a Crisis Preparedness Committee to bolster the ability of United Nations Member States to respond to international crisis such as pandemics, within their borders and across regions. The Committee would function in a similar fashion as the Counter Terrorism Committee that was established following the 9/11 terrorist attacks in the United States.States should present reports on their level of preparedness to the UN Security Council. The Crisis Preparedness Committee could establish a group of experts who would conduct expert assessments of each member state’s risks and preparedness and facilitate technical assistance as required.Regional bodies such as the OSCE, ASEAN and ARF, the AU, the OAS, the PIF etc could also request national reports on crisis preparedness for discussion and cooperation at the regional level.COVID-19 has been referred to as the 9/11 of crisis preparedness and response. Just as that shocking terrorist attack shifted the world and created a series of measures to address terrorism, we now recognise our security frameworks need far more emphasis on being prepared and being resilient. Whatever has been done in the past, it is clear that was nowhere near enough and that has to change.Case Study of Preparedness: The UKThe National Risk Register was first published in 2008 as part of the undertakings laid out in the National Security Strategy (the UK also published the Biological Security Strategy in July 2018). Now entitled the National Risk Register for Civil Emergencies it has been updated regularly to analyse the risks of major emergencies that could affect the UK in the next five years and provide resilience advice and guidance.The latest edition - produced in 2017 when the UK had a Minister for Government Resilience and Efficiency - placed the risk of a pandemic influenza in the ‘highly likely and most severe’ category. It stood out from all the other identified risks, whereas an emerging disease (such as COVID-19) was identified as ‘highly likely but with moderate impact’.However, much preparatory work for an influenza pandemic is the same as for COVID-19, particularly in prepositioning large stocks of PPE, readiness within large hospitals, and the creation of new hospitals and facilities.One key issue is that the 2017 NHS Operating Framework for Managing the Response to Pandemic Influenza was dependent on pre-positioned ’just in case’ stockpiles of PPE. But as it became clear the PPE stocks were not adequate for the pandemic, it was reported that recommendations about the stockpile by NERVTAG (the New and Emerging Respiratory Virus Threats Advisory Group which advises the government on the threat posed by new and emerging respiratory viruses) had been subjected to an ‘economic assessment’ and decisions reversed on, for example, eye protection.The UK chief medical officer Dame Sally Davies, when speaking at the World Health Organization about Operation Cygnus – a 2016 three-day exercise on a flu pandemic in the UK – reportedly said the UK was not ready for a severe flu attack and ‘a lot of things need improving’.Aware of the significance of the situation, the UK Parliamentary Joint Committee on the National Security Strategy launched an inquiry in 2019 on ‘Biosecurity and human health: preparing for emerging infectious diseases and bioweapons’ which intended to coordinate a cross-government approach to biosecurity threats. But the inquiry had to postpone its oral hearings scheduled for late October 2019 and, because of the general election in December 2019, the committee was obliged to close the inquiry. Full Article
sig Differential expression of glucose transporters and hexokinases in prostate cancer with a neuroendocrine gene signature: a mechanistic perspective for FDG imaging of PSMA-suppressed tumors By jnm.snmjournals.org Published On :: 2019-12-05T10:37:41-08:00 Purpose: Although the incidence of de novo neuroendocrine prostate cancer (NEPC) is rare, recent data suggests that low expression of prostate-specific membrane antigen (PSMA) is associated with a spectrum of neuroendocrine (NE) hallmarks and androgen receptor (AR)-suppression in prostate cancer (PC). Previous clinical reports indicate that PCs with a phenotype similar to NE tumors can be more amenable to imaging by 18F-Fluorodeoxyglucose (FDG) rather than PSMA-targeting radioligands. In this study, we evaluated the association between NE gene signature and FDG uptake-associated genes including glucose transporters (GLUTs) and hexokinases, with the goal of providing a genomic signature to explain the reported FDG-avidity of PSMA-suppressed tumors. Methods: Data mining approaches, cell lines and patient-derived xenograft (PDX) models were used to study the levels of 14 members of the SLC2A family (encoding GLUT proteins), 4 members of the hexokinase family (genes: HK1 to 3 and GCK) and PSMA (FOLH1 gene) following AR-inhibition and in correlation with NE hallmarks. Also, we characterize a NE-like PC (NELPC) subset among a cohort of primary and metastatic PC samples with no NE histopathology. We measured glucose uptake in a NE-induced in vitro model and a zebrafish model by non-radioactive imaging of glucose uptake using fluorescent glucose bioprobe, GB2-Cy3. Results: This work demonstrates that a NE gene signature associates with differential expression of genes encoding GLUT and hexokinase proteins. In NELPC, elevated expression of GCK (encoding glucokinase protein) and decreased expression of SLC2A12 correlated with earlier biochemical recurrence. In tumors treated with AR-inhibitors, high expression of GCK and low expression of SLC2A12 correlated with NE histopathology and PSMA gene suppression. GLUT12-suppression and amplification of glucokinase was observed in NE-induced PC cell lines and PDX models. A higher glucose uptake was confirmed in low-PSMA tumors using a GB2-Cy3 probe in a zebrafish model. Conclusion: NE gene signature in NEPC and NELPC associates with a distinct transcriptional profile of GLUTs and HKs. PSMA-suppression correlates with GLUT12-suppression and glucokinase-amplification. Alteration of FDG uptake-associated genes correlated positively with higher glucose uptake in AR and PSMA-suppressed tumors. Zebrafish xenograft tumor models are an accurate and efficient pre-clinical method for monitoring non-radioactive glucose uptake. Full Article
sig Early Detection in a Mouse Model of Pancreatic Cancer by Imaging DNA Damage Response Signalling By jnm.snmjournals.org Published On :: 2019-12-20T13:25:42-08:00 Rationale: Despite its widespread use in oncology, the PET radiotracer 18F-FDG is ineffective for improving early detection of pancreatic ductal adenocarcinoma (PDAC). An alternative strategy for early detection of pancreatic cancer involves visualisation of high-grade pancreatic intraepithelial neoplasias (PanIN-3), generally regarded as the non-invasive precursors of PDAC. The DNA damage response is known to be hyper-activated in late-stage PanINs. Therefore, we investigated whether the SPECT imaging agent, 111In-anti-H2AX-TAT, allows visualisation of the DNA damage repair marker H2AX in PanIN-3s in an engineered mouse model of PDAC, to facilitate early detection of PDAC. Methods: Genetically engineered KPC mice (KRasLSL.G12D/+; p53LSL.R172H/+; PdxCre) were imaged with 18F-FDG and 111In-anti-H2AX-TAT. PanIN/PDAC presence visualised by histology was compared with autoradiography and immunofluorescence. Separately, the survival of KPC mice imaged with 111In-anti-H2AX-TAT was evaluated. Results: In KPC mouse pancreata, H2AX expression was increased in high-grade PanINs, but not in PDAC, corroborating earlier results obtained from human pancreas sections. Uptake of 111In-anti-H2AX-TAT, but not 111In-IgG-TAT or 18F-FDG, within the pancreas was positively correlated with the age of KPC mice, which was correlated with the number of high-grade PanINs. 111In-anti-H2AX-TAT localises preferentially in high-grade PanIN lesions, but not in established PDAC. Younger, non-tumour-bearing KPC mice that show uptake of 111In-anti-H2AX-TAT in the pancreas survive significantly shorter than mice with physiological 111In-anti-H2AX-TAT uptake. Conclusion: 111In-anti-H2AX-TAT imaging allows non-invasive detection of DNA damage repair signalling upregulation in pre-invasive PanIN lesions and is a promising new tool to aid in the early detection and staging of pancreatic cancer. Full Article
sig PSMA PET/CT and standard plus PET/CT-Ultrasound fusion targeted prostate biopsy can diagnose clinically significant prostate cancer in men with previous negative biopsies By jnm.snmjournals.org Published On :: 2020-02-07T14:31:42-08:00 The purpose of this study was to investigate the feasibility and diagnostic efficacy of 68Ga-PSMA positron emission tomography/computed tomography (PET/CT) combined with PET-ultrasound image-guided biopsy in the diagnosis of prostate cancer. Methods: A total of 31 patients with previously negative prostate biopsy, but persistent elevated serum prostate specific antigen (PSA), were imaged with a 68Ga-labeled prostate-specific membrane antigen (PSMA) PET/CT ligand prior to undergoing repeat prostate biopsy. Based on the proposed PROMISE criteria, PSMA PET/CT results were interpreted as negative (miPSMA-ES 0-1) or positive (miPSMA-ES 2-3). All patients underwent standard template systematic biopsy with up to four additional PSMA PET-ultrasound fusion image-guided biopsy cores. The sensitivity, specificity, positive and negative predictive values, and accuracy of PSMA PET/CT were determined. In addition, the correlation between miPSMA-ES and detection rate of prostate cancer was also analyzed. Univariate logistic regression models were established using PSMA PET/CT semi-quantitative analysis parameters to predict the outcome of repeat prostate biopsy. Results: The median age of patients was 65 years (range 53-81), and the median PSA level was 18.0 ng/ml (range 5.48-49.77 ng/ml). Prostate cancer was detected in 15/31 patients (48.4%) and 12/31 patients (38.7%) had clinically significant disease. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 68Ga-PSMA PET/CT in the diagnosis of clinically significant prostate cancer were 100.0%, 68.4%, 66.7%, 100.0% and 80.6%, respectively. The detection rate of prostate cancer increased with the increase of miPSMA-ES score. The detection rate of clinically significant prostate cancer in miPSMA-ES 0-1, 2 and 3 groups were 0%, 54.5% and 85.7% respectively. Semi-quantitative analysis of 68Ga-PSMA PET/CT images showed that predictive models based on maximum standardized uptake value (SUVmax), tumor-to-background normal prostate SUV (SUVT/BGp) and tumor-to-background normal liver SUV (SUVratio) could effectively predict clinically significant prostate cancer; area under the curves were 0.930, 0.877, and 0.956, respectively. Conclusion: This study preliminarily confirmed that 68Ga-PSMA PET/CT imaging combined with PET-ultrasound fusion image-guided prostate biopsy can effectively detect clinically significant prostate cancer. Prebiopsy 68Ga-PSMA PET/CT has predictive value for clinically significant cancer in the studied patient population. Full Article
sig Design and development of 99mTc labeled FAPI-tracers for SPECT-imaging and 188Re therapy. By jnm.snmjournals.org Published On :: 2020-03-13T14:12:30-07:00 The majority of epithelial tumors recruits fibroblasts and other non-malignant cells and activates them into cancer-associated fibroblasts. This often leads to overexpression of the membrane serine protease fibroblast-activating protein (FAP). It has already been shown that DOTA-bearing FAP inhibitors (FAPIs) generate high contrast images with PET/CT scans. Since SPECT is a lower cost and more widely available alternative to PET, 99mTc-labeled FAPIs represent attractive tracers for imaging applicable in a larger number of patients. Furthermore, the chemically homologous nuclide 188Re is available from generators, which allows FAP-targeted endoradiotherapy. Methods: For the preparation of 99mTc tricarbonyl complexes, a chelator was selected whose carboxylic acids can easily be converted into various derivatives in the finished product. This enabled a platform strategy based on the original tracer. The obtained 99mTc complexes were investigated in vitro by binding and competition experiments on FAP-transfected HT-1080 (HT-1080-FAP) and/or on mouse FAP expressing (HEK-muFAP) and CD26-expressing (HEKCD26) HEK cells and characterized by planar scintigraphy and organ distribution studies in tumor-bearing mice. Furthermore, a first-in-man application was done in two patients with ovarian and pancreatic cancer, respectively. Results: 99mTc-FAPI-19 showed specific binding to recombinant FAP-expressing cells with high affinity. Unfortunately, liver accumulation, biliary excretion and no tumor uptake were observed in the planar scintigraphy of a HT-1080-FAP xenotranplanted mouse. To improve the pharmacokinetic properties hydrophilic amino acids were attached to the chelator moiety of the compound. The resulting 99mTc-labeled FAPI tracers revealed excellent binding properties (up to 45 % binding; above 95 % internalization), high affinity (IC50 = 6.4 nM to 12.7 nM), and significant tumor uptake (up to 5.4 %ID/g) in biodistribution studies. The lead candidate 99mTc-FAPI-34 was applied for diagnostic scintigraphy and SPECT of patients with metastasized ovarian and pancreatic cancer for follow-up to therapy with 90Y-FAPI-46. 99mTc-FAPI-34 accumulated in the tumor lesions also shown in PET/CT imaging using 68Ga-FAPI-46. Conclusion: 99mTc-FAPI-34 represents a powerful tracer for diagnostic scintigraphy, especially in cases where PET imaging is not available. Additionally, the chelator used in this compound allows labeling with the therapeutic nuclide 188Re which is planned for the near future. Full Article
sig Forging Inclusive Economic Growth in Zimbabwe: Insights from the Zimbabwe Futures 2030 Roundtable Series By feedproxy.google.com Published On :: Wed, 09 Oct 2019 13:11:37 +0000 10 October 2019 This briefing note is the result of a collaborative research process with the Zimbabwean private sector, government representatives, industry organizations and experts, drawing on best practice and senior-level insights to identify policy options for long-term economic revival and expansion in Zimbabwe, and pathways for inclusive development. Read online Download PDF Dr Knox Chitiyo Associate Fellow, Africa Programme LinkedIn Christopher Vandome Research Fellow, Africa Programme LinkedIn Caleb Dengu Development Banking and Finance Specialist David Mbae Konrad-Adenauer-Stiftung Resident Representative for Zimbabwe 2019-10-10-Zim.jpg Central to the research process was the Zimbabwe Futures 2030 roundtable series, complemented by additional interviews and research. Participants at the three roundtables, held in Harare and Bulawayo in the first half of 2019, discussed the necessary policies and business strategies to enable and support the effective implementation of the Mnangagwa administration’s Transitional Stabilisation Programme, Vision 2030, and other longer-term national development plans.This process was conducted by the Chatham House Africa Programme, the Zimbabwe Business Club and the Konrad-Adenauer-Stiftung (KAS); and in partnership with the Confederation of Zimbabwe Industries for a roundtable in Bulawayo. The project was supported by KAS and the Dulverton Trust. Department/project Africa Programme, Southern Africa, Inclusive Economic Growth, Governance and Technology Full Article
sig POSTPONED: UN Peacekeeping in Africa: Insights from Successes and Failures of the Past By feedproxy.google.com Published On :: Thu, 20 Feb 2020 14:30:01 +0000 Research Event 10 March 2020 - 3:00pm to 4:00pm Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Alan Doss, President, Kofi Annan Foundation With Africa hosting half of the UN peacekeeping missions currently in operation and more than 80 per cent of the UN’s peacekeepers, it is clear that crisis management and conflict resolution on the continent remain key priorities. However, traditional international supporters, notably Canada and the United States, have reduced their financial support for peacekeeping in recent years. Together with frequent reports on peacekeeping abuse, declining support is proving disruptive for the maintenance and predictability of UN missions.At this event, which will launch the book A Peacekeeper in Africa: Learning from UN Interventions in Other People’s Wars, Alan Doss will reflect on past UN peacekeeping missions in Africa and will consider how lessons learned might help to improve future UN peace operations.PLEASE NOTE THIS EVENT IS POSTPONED UNTIL FURTHER NOTICE. Department/project Africa Programme, African Peace and Security, Foreign Relations and Africa’s Agency in the International System Sahar Eljack Programme Administrator, Africa Programme + 44 (0) 20 7314 3660 Email Full Article
sig Phosphoproteomic characterization of the signaling network resulting from activation of the chemokine receptor CCR2 [Genomics and Proteomics] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Leukocyte recruitment is a universal feature of tissue inflammation and regulated by the interactions of chemokines with their G protein–coupled receptors. Activation of CC chemokine receptor 2 (CCR2) by its cognate chemokine ligands, including CC chemokine ligand 2 (CCL2), plays a central role in recruitment of monocytes in several inflammatory diseases. In this study, we used phosphoproteomics to conduct an unbiased characterization of the signaling network resulting from CCL2 activation of CCR2. Using data-independent acquisition MS analysis, we quantified both the proteome and phosphoproteome in FlpIn-HEK293T cells stably expressing CCR2 at six time points after activation with CCL2. Differential expression analysis identified 699 significantly regulated phosphorylation sites on 441 proteins. As expected, many of these proteins are known to participate in canonical signal transduction pathways and in the regulation of actin cytoskeleton dynamics, including numerous guanine nucleotide exchange factors and GTPase-activating proteins. Moreover, we identified regulated phosphorylation sites in numerous proteins that function in the nucleus, including several constituents of the nuclear pore complex. The results of this study provide an unprecedented level of detail of CCR2 signaling and identify potential targets for regulation of CCR2 function. Full Article
sig Profiling the Surfaceome Identifies Therapeutic Targets for Cells with Hyperactive mTORC1 Signaling [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 Aberrantly high mTORC1 signaling is a known driver of many cancers and human disorders, yet pharmacological inhibition of mTORC1 rarely confers durable clinical responses. To explore alternative therapeutic strategies, herein we conducted a proteomics survey to identify cell surface proteins upregulated by mTORC1. A comparison of the surfaceome from Tsc1–/– versus Tsc1+/+ mouse embryonic fibroblasts revealed 59 proteins predicted to be significantly overexpressed in Tsc1–/– cells. Further validation of the data in multiple mouse and human cell lines showed that mTORC1 signaling most dramatically induced the expression of the proteases neprilysin (NEP/CD10) and aminopeptidase N (APN/CD13). Functional studies showed that constitutive mTORC1 signaling sensitized cells to genetic ablation of NEP and APN, as well as the biochemical inhibition of APN. In summary, these data show that mTORC1 signaling plays a significant role in the constitution of the surfaceome, which in turn may present novel therapeutic strategies. Full Article
sig An Improved Boosting to Amplify Signal with Isobaric Labeling (iBASIL) Strategy for Precise Quantitative Single-cell Proteomics [Research] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 Mass spectrometry (MS)-based proteomics has great potential for overcoming the limitations of antibody-based immunoassays for antibody-independent, comprehensive, and quantitative proteomic analysis of single cells. Indeed, recent advances in nanoscale sample preparation have enabled effective processing of single cells. In particular, the concept of using boosting/carrier channels in isobaric labeling to increase the sensitivity in MS detection has also been increasingly used for quantitative proteomic analysis of small-sized samples including single cells. However, the full potential of such boosting/carrier approaches has not been significantly explored, nor has the resulting quantitation quality been carefully evaluated. Herein, we have further evaluated and optimized our recent boosting to amplify signal with isobaric labeling (BASIL) approach, originally developed for quantifying phosphorylation in small number of cells, for highly effective analysis of proteins in single cells. This improved BASIL (iBASIL) approach enables reliable quantitative single-cell proteomics analysis with greater proteome coverage by carefully controlling the boosting-to-sample ratio (e.g. in general <100x) and optimizing MS automatic gain control (AGC) and ion injection time settings in MS/MS analysis (e.g. 5E5 and 300 ms, respectively, which is significantly higher than that used in typical bulk analysis). By coupling with a nanodroplet-based single cell preparation (nanoPOTS) platform, iBASIL enabled identification of ~2500 proteins and precise quantification of ~1500 proteins in the analysis of 104 FACS-isolated single cells, with the resulting protein profiles robustly clustering the cells from three different acute myeloid leukemia cell lines. This study highlights the importance of carefully evaluating and optimizing the boosting ratios and MS data acquisition conditions for achieving robust, comprehensive proteomic analysis of single cells. Full Article
sig Profiling Cell Signaling Networks at Single-cell Resolution [Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 Signaling networks process intra- and extracellular information to modulate the functions of a cell. Deregulation of signaling networks results in abnormal cellular physiological states and often drives diseases. Network responses to a stimulus or a drug treatment can be highly heterogeneous across cells in a tissue because of many sources of cellular genetic and non-genetic variance. Signaling network heterogeneity is the key to many biological processes, such as cell differentiation and drug resistance. Only recently, the emergence of multiplexed single-cell measurement technologies has made it possible to evaluate this heterogeneity. In this review, we categorize currently established single-cell signaling network profiling approaches by their methodology, coverage, and application, and we discuss the advantages and limitations of each type of technology. We also describe the available computational tools for network characterization using single-cell data and discuss potential confounding factors that need to be considered in single-cell signaling network analyses. Full Article
sig The mRNA levels of heat shock factor 1 are regulated by thermogenic signals via the cAMP-dependent transcription factor ATF3 [Metabolism] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Heat shock factor 1 (HSF1) regulates cellular adaptation to challenges such as heat shock and oxidative and proteotoxic stresses. We have recently reported a previously unappreciated role for HSF1 in the regulation of energy metabolism in fat tissues; however, whether HSF1 is differentially expressed in adipose depots and how its levels are regulated in fat tissues remain unclear. Here, we show that HSF1 levels are higher in brown and subcutaneous fat tissues than in those in the visceral depot and that HSF1 is more abundant in differentiated, thermogenic adipocytes. Gene expression experiments indicated that HSF1 is transcriptionally regulated in fat by agents that modulate cAMP levels, by cold exposure, and by pharmacological stimulation of β-adrenergic signaling. An in silico promoter analysis helped identify a putative response element for activating transcription factor 3 (ATF3) at −258 to −250 base pairs from the HSF1 transcriptional start site, and electrophoretic mobility shift and ChIP assays confirmed ATF3 binding to this sequence. Furthermore, functional assays disclosed that ATF3 is necessary and sufficient for HSF1 regulation. Detailed gene expression analysis revealed that ATF3 is one of the most highly induced ATFs in thermogenic tissues of mice exposed to cold temperatures or treated with the β-adrenergic receptor agonist CL316,243 and that its expression is induced by modulators of cAMP levels in isolated adipocytes. To the best of our knowledge, our results show for the first time that HSF1 is transcriptionally controlled by ATF3 in response to classic stimuli that promote heat generation in thermogenic tissues. Full Article
sig Digital Transformation Agency boss Paul Shetler resigns By www.smh.com.au Published On :: Sun, 02 Jul 2017 22:05:05 GMT Agile government takes a stumble as digital pioneer logs off after just six weeks. Full Article
sig The Syrian Pound Signals Economic Deterioration By feedproxy.google.com Published On :: Thu, 26 Sep 2019 11:30:45 +0000 26 September 2019 Zaki Mehchy Senior Consulting Fellow, Middle East and North Africa Programme @mehchy LinkedIn The Syrian pound’s volatile exchange rate over the past month is not a short-term monetary crisis. It reflects the destruction of the economic foundations in Syria. 2019-09-26-SyriaBank.jpg The Syrian Central Bank building in 2008. Photo: Getty Images. The Syrian currency depreciated by 11% between mid-August and the first week of September, to reach an unprecedented level of SYP692 to the US dollar. According to the government, the main reasons behind this collapse are the international sanctions imposed on Syria and currency speculation.Accordingly, the government has forced speculators and local foreign exchange companies to sell the US dollar instead of holding it. Moreover, Syrian security agencies have pressured profiteers with close links to the regime to effectively participate in campaigns that support the local currency. Indeed, the Syrian pound appreciated in value in only a few days to reach an average of SYP615 for $1 in the second week of September.This high volatility in currency prices results in monetary uncertainty among traders, and thus, increases the possibility of other depreciations in the near future.Currency speculation could be the reason behind the high fluctuations. However, the fall in the exchange rate has been a continuous and steady trend ever since the beginning of the conflict. The Syrian currency is about 13 times less valuable than before conflict, and fell by 20% between January and September 2019. It is therefore more likely that the devaluation reflects a structural deterioration of the Syrian economy.There are a number of interlinked reasons behind this trend: Economic collapseThe conflict in Syria has led to a drastic decline in economic activity. By 2018, the total accumulated economic loss was estimated at about $428 billion, which equaled 6 times Syria’s GDP in 2010. The country’s GDP lost about 65% of its value compared to its level before the war. The conflict has also caused a reallocation of resources to destructive and war-related activities. This drop in economic productivity weighs on the Syrian pound’s stability. Dramatic export declineThe total value of Syrian exports contracted from $12.2 billion in 2010 to less than $700 million in 2018, whereas imports declined from $19.7 billion to $4.4 billion during the same period. Thus, the coverage ratio of exports to imports dropped from 62% to 16% in this period, indicating that the government has become very dependent on external trade partners. Almost all import payments are made in foreign currencies, which increases the devaluation pressure on the Syrian pound.Iran has provided the Syrian regime with credit lines estimated at about $6 billion to import oil and consumer goods from the Islamic Republic. These credit lines do not include all the Iranian financial support to the regime. Iranian oil exports to Syria are estimated at about 2 million barrels a month (a total of around $16 billion during the eight years of conflict). The increasing external debt to Iran, also due to military support, may contribute in stabilizing the Syrian pound for short period, yet it is bound to sustain the devaluation pressure in the long run. Damaging monetary policiesSince the beginning of the conflict, the Central Bank of Syria has issued a series of decisions that have contributed to the weakening of the Syrian pound. For instance, until 2015, the bank adopted a policy of selling hard currencies to local foreign exchange companies. This policy depleted their foreign currency reserves by about $1.2 billion, without halting the deterioration of the pound. The bank has also increased the money supply; there is three times the amount of currency in the local market as today compared to before the conflict, causing a surge in inflation and currency devaluation.The absence of foreign direct investmentBetween 2005 and 2010, Syria received an annual average of $1.5 billion as foreign direct investment (FDI); this amount has dropped almost to zero during the years of conflict. Russia and Iran have continued to invest in Syria, mainly in the mining sector, but the conditions of these investments have limited the inflows of foreign currency to Syria. FDI inflows were a major source of hard currency; their absence is an additional driver of currency depreciation.International sanctionsMany countries have imposed sanctions on various sectors in Syria, including energy and financial transactions. During the last two years, the US has tightened its sanctions by introducing the Caesar law, which aims to isolate the Syrian regime. These sanctions have increased the cost of the Syrian imports and therefore raised demand for foreign currencies. Remittances, estimated at $4.5 million per day as well as foreign investments and exports were also negatively affected, and this has reduced the supply side of hard currencies inside Syria.Currency speculationThe Syrian regime usually intervenes to manage currency speculation through government agencies and friendly business entities. But such speculations are very difficult to control in Syria given the poor economic conditions, the high level of business uncertainty and the lack of trust in institutions. This has driven the Syrian households, those who did not already lose their savings, to buy gold or hard currencies as safe investments.The Syrian pound’s depreciation and its high fluctuations reflect the fragile political and economic situation in the country. The government’s improvised decisions have failed to stabilize it, causing a rise in the prices of basic goods. This has left more than 90% of Syria’s population under the poverty line. Long-term stability in exchange rates requires an inclusive and sustainable development strategy, one that would need to be based on an accountable and transparent political landscape. That seems a long way off. Full Article
sig Episode 46 - The Internet of Christmas (IoC) Design trends, gift ideas & Rogue One By play.acast.com Published On :: Fri, 23 Dec 2016 08:00:00 GMT This week David Price is in the presenter chair for the jolliest tech podcast of the year. David is joined by Miriam Harris, staff writer at Digital Arts, to talk about the design trends set to shape 2017. Then online editor at Techworld Scott Carey runs through the hottest tech gifts this Christmas, including games consoles, VR, Amazon gadgets and Star Wars merch (14:30). Finally, staff writer at PC Advisor Dom Preston makes his UKTW debut to chat about the latest Star Wars movie, Rogue One, which includes spoilers (29:00). This is the last UK Tech Weekly podcast of the year. Thank you for listening and we will be back in 2017 to chat about the hottest tech topics all over again. See acast.com/privacy for privacy and opt-out information. Full Article
sig Episode 75 - The Internet of Driverless Pods (IoDP) Hands on with the iPhone X, FairPhone and Driverless Car design By play.acast.com Published On :: Fri, 17 Nov 2017 15:14:51 GMT After a lengthy hiatus we are back to FINALLY talk about the iPhone X. Computerworld UK editor Scott Carey is in the hosting chair to chat with Chris Martin, reviews editor at Tech Advisor and Macworld UK, now that we have got our hands on one. Chris talks us through what he likes and dislikes so far about the pricey smartphone.Then Miriam Harris, staff writer at Digital Arts jumps in to discuss the design principles behind driverless cars and what we can expect in the future (17:00).Finally, pod debutante Caroline Vanier, senior staff writer at Tech Advisor France talks about the FairPhone and if it is a new model for the smart phone industry (28:00). See acast.com/privacy for privacy and opt-out information. Full Article
sig Legal Provision for Crisis Preparedness: Foresight not Hindsight By feedproxy.google.com Published On :: Tue, 21 Apr 2020 17:03:31 +0000 21 April 2020 Dr Patricia Lewis Research Director, Conflict, Science & Transformation; Director, International Security Programme @PatriciaMary COVID-19 is proving to be a grave threat to humanity. But this is not a one-off, there will be future crises, and we can be better prepared to mitigate them. 2020-04-21-Nurse-COVID-Test Examining a patient while testing for COVID-19 at the Velocity Urgent Care in Woodbridge, Virginia. Photo by Chip Somodevilla/Getty Images. A controversial debate during COVID-19 is the state of readiness within governments and health systems for a pandemic, with lines of the debate drawn on the issues of testing provision, personal protective equipment (PPE), and the speed of decision-making.President Macron in a speech to the nation admitted French medical workers did not have enough PPE and that mistakes had been made: ‘Were we prepared for this crisis? We have to say that no, we weren’t, but we have to admit our errors … and we will learn from this’.In reality few governments were fully prepared. In years to come, all will ask: ‘how could we have been better prepared, what did we do wrong, and what can we learn?’. But after every crisis, governments ask these same questions.Most countries have put in place national risk assessments and established processes and systems to monitor and stress-test crisis-preparedness. So why have some countries been seemingly better prepared?Comparing different approachesSome have had more time and been able to watch the spread of the disease and learn from those countries that had it first. Others have taken their own routes, and there will be much to learn from comparing these different approaches in the longer run.Governments in Asia have been strongly influenced by the experience of the SARS epidemic in 2002-3 and - South Korea in particular - the MERS-CoV outbreak in 2015 which was the largest outside the Middle East. Several carried out preparatory work in terms of risk assessment, preparedness measures and resilience planning for a wide range of threats.Case Study of Preparedness: South KoreaBy 2007, South Korea had established the Division of Public Health Crisis Response in Korea Centers for Disease Control and Prevention (KCDC) and, in 2016, the KCDC Center for Public Health Emergency Preparedness and Response had established a round-the-clock Emergency Operations Center with rapid response teams.KCDC is responsible for the distribution of antiviral stockpiles to 16 cities and provinces that are required by law to hold and manage antiviral stockpiles.And, at the international level, there are frameworks for preparedness for pandemics. The International Health Regulations (IHR) - adopted at the 2005 World Health Assembly and binding on member states - require countries to report certain disease outbreaks and public health events to the World Health Organization (WHO) and ‘prevent, protect against, control and provide a public health response to the international spread of disease in ways that are commensurate with and restricted to public health risks, and which avoid unnecessary interference with international traffic and trade’.Under IHR, governments committed to a programme of building core capacities including coordination, surveillance, response and preparedness. The UN Sendai Framework for Disaster Risk highlights disaster preparedness for effective response as one of its main purposes and has already incorporated these measures into the Sustainable Development Goals (SDGs) and other Agenda 2030 initiatives. UN Secretary-General António Guterres has said COVID-19 ‘poses a significant threat to the maintenance of international peace and security’ and that ‘a signal of unity and resolve from the Council would count for a lot at this anxious time’.Case Study of Preparedness: United StatesThe National Institutes of Health (NIH) and the Center for Disease Control (CDC) established PERRC – the Preparedness for Emergency Response Research Centers - as a requirement of the 2006 Pandemic and All-Hazards Preparedness Act, which required research to ‘improve federal, state, local, and tribal public health preparedness and response systems’.The 2006 Act has since been supplanted by the 2019 Pandemic and All-Hazards Preparedness and Advancing Innovation Act. This created the post of Assistant Secretary for Preparedness and Response (ASPR) in the Department for Health and Human Services (HHS) and authorised the development and acquisitions of medical countermeasures and a quadrennial National Health Security Strategy.The 2019 Act also set in place a number of measures including the requirement for the US government to re-evaluate several important metrics of the Public Health Emergency Preparedness cooperative agreement and the Hospital Preparedness Program, and a requirement for a report on the states of preparedness and response in US healthcare facilities.This pandemic looks set to continue to be a grave threat to humanity. But there will also be future pandemics – whether another type of coronavirus or a new influenza virus – and our species will be threatened again, we just don’t know when.Other disasters too will befall us – we already see the impacts of climate change arriving on our doorsteps characterised by increased numbers and intensity of floods, hurricanes, fires, crop failure and other manifestations of a warming, increasingly turbulent atmosphere and we will continue to suffer major volcanic eruptions, earthquakes and tsunamis. All high impact, unknown probability events.Preparedness for an unknown future is expensive and requires a great deal of effort for events that may not happen within the preparers’ lifetimes. It is hard to imagine now, but people will forget this crisis, and revert to their imagined projections of the future where crises don’t occur, and progress follows progress. But history shows us otherwise.Preparations for future crises always fall prey to financial cuts and austerity measures in lean times unless there is a mechanism to prevent that. Cost-benefit analyses will understandably tend to prioritise the urgent over the long-term. So governments should put in place legislation – or strengthen existing legislation – now to ensure their countries are as prepared as possible for whatever crisis is coming.Such a legal requirement would require governments to report back to parliament every year on the state of their national preparations detailing such measures as:The exact levels of stocks of essential materials (including medical equipment)The ability of hospitals to cope with large influx of patientsHow many drills, exercises and simulations had been organised – and their findingsWhat was being done to implement lessons learned & improve preparednessIn addition, further actions should be taken:Parliamentary committees such as the UK Joint Committee on the National Security Strategy should scrutinise the government’s readiness for the potential threats outlined in the National Risk register for Civil Emergencies in-depth on an annual basis.Parliamentarians, including ministers, with responsibility for national security and resilience should participate in drills, table-top exercises and simulations to see for themselves the problems inherent with dealing with crises.All governments should have a minister (or equivalent) with the sole responsibility for national crisis preparedness and resilience. The Minister would be empowered to liaise internationally and coordinate local responses such as local resilience groups.There should be ring-fenced budget lines in annual budgets specifically for preparedness and resilience measures, annually reported on and assessed by parliaments as part of the due diligence process.And at the international level:The UN Security Council should establish a Crisis Preparedness Committee to bolster the ability of United Nations Member States to respond to international crisis such as pandemics, within their borders and across regions. The Committee would function in a similar fashion as the Counter Terrorism Committee that was established following the 9/11 terrorist attacks in the United States.States should present reports on their level of preparedness to the UN Security Council. The Crisis Preparedness Committee could establish a group of experts who would conduct expert assessments of each member state’s risks and preparedness and facilitate technical assistance as required.Regional bodies such as the OSCE, ASEAN and ARF, the AU, the OAS, the PIF etc could also request national reports on crisis preparedness for discussion and cooperation at the regional level.COVID-19 has been referred to as the 9/11 of crisis preparedness and response. Just as that shocking terrorist attack shifted the world and created a series of measures to address terrorism, we now recognise our security frameworks need far more emphasis on being prepared and being resilient. Whatever has been done in the past, it is clear that was nowhere near enough and that has to change.Case Study of Preparedness: The UKThe National Risk Register was first published in 2008 as part of the undertakings laid out in the National Security Strategy (the UK also published the Biological Security Strategy in July 2018). Now entitled the National Risk Register for Civil Emergencies it has been updated regularly to analyse the risks of major emergencies that could affect the UK in the next five years and provide resilience advice and guidance.The latest edition - produced in 2017 when the UK had a Minister for Government Resilience and Efficiency - placed the risk of a pandemic influenza in the ‘highly likely and most severe’ category. It stood out from all the other identified risks, whereas an emerging disease (such as COVID-19) was identified as ‘highly likely but with moderate impact’.However, much preparatory work for an influenza pandemic is the same as for COVID-19, particularly in prepositioning large stocks of PPE, readiness within large hospitals, and the creation of new hospitals and facilities.One key issue is that the 2017 NHS Operating Framework for Managing the Response to Pandemic Influenza was dependent on pre-positioned ’just in case’ stockpiles of PPE. But as it became clear the PPE stocks were not adequate for the pandemic, it was reported that recommendations about the stockpile by NERVTAG (the New and Emerging Respiratory Virus Threats Advisory Group which advises the government on the threat posed by new and emerging respiratory viruses) had been subjected to an ‘economic assessment’ and decisions reversed on, for example, eye protection.The UK chief medical officer Dame Sally Davies, when speaking at the World Health Organization about Operation Cygnus – a 2016 three-day exercise on a flu pandemic in the UK – reportedly said the UK was not ready for a severe flu attack and ‘a lot of things need improving’.Aware of the significance of the situation, the UK Parliamentary Joint Committee on the National Security Strategy launched an inquiry in 2019 on ‘Biosecurity and human health: preparing for emerging infectious diseases and bioweapons’ which intended to coordinate a cross-government approach to biosecurity threats. But the inquiry had to postpone its oral hearings scheduled for late October 2019 and, because of the general election in December 2019, the committee was obliged to close the inquiry. Full Article
sig Metabolic profiling in colorectal cancer reveals signature metabolic shifts during tumorigenesis [13. Other] By feedproxy.google.com Published On :: 2010-02-10T02:51:33-08:00 Colorectal cancer (CRC) arises as the consequence of progressive changes from normal epithelial cells through polyp to tumor, and thus is an useful model for studying metabolic shift. In the present study, we studied the metabolomic profiles using high analyte specific gas chromatography/mass spectrometry (GC/MS) and liquid chromatography tandem mass spectrometry (LC/MS/MS) to attain a systems-level view of the shift in metabolism in cells progressing along the path to CRC. Colonic tissues including tumor, polyps and adjacent matched normal mucosa from 26 patients with sporadic CRC from freshly isolated resections were used for this study. The metabolic profiles were obtained using GC/MS and LC/MS/MS. Our data suggest there was a distinct profile change of a wide range of metabolites from mucosa to tumor tissues. Various amino acids and lipids in the polyps and tumors were elevated, suggesting higher energy needs for increased cellular proliferation. In contrast, significant depletion of glucose and inositol in polyps revealed that glycolysis may be critical in early tumorigenesis. In addition, the accumulation of hypoxanthine and xanthine, and the decrease of uric acid concentration, suggest that the purine biosynthesis pathway could have been substituted by the salvage pathway in CRC. Further, there was a step-wise reduction of deoxycholic acid concentration from mucosa to tumors. It appears that to gain a growth advantage, cancer cells may adopt alternate metabolic pathways in tumorigenesis and this flexibility allows them to adapt and thrive in harsh environment. Full Article
sig Proteome and phosphoproteome analysis of brown adipocytes reveals that RICTOR loss dampens global insulin/AKT signaling [Research] By feedproxy.google.com Published On :: 2020-04-06T05:35:14-07:00 Stimulating brown adipose tissue (BAT) activity represents a promising therapy for overcoming metabolic diseases. mTORC2 is important for regulating BAT metabolism, but its downstream targets have not been fully characterized. In this study, we apply proteomics and phosphoproteomics to investigate the downstream effectors of mTORC2 in brown adipocytes. We compare wild-type controls to isogenic cells with an induced knockout of the mTORC2 subunit RICTOR (Rictor-iKO) by stimulating each with insulin for a 30-minute time course. In Rictor-iKO cells, we identify decreases to the abundance of glycolytic and de novo lipogenesis enzymes, and increases to mitochondrial proteins as well as a set of proteins known to increase upon interferon stimulation. We also observe significant differences to basal phosphorylation due to chronic RICTOR loss including decreased phosphorylation of the lipid droplet protein perilipin-1 in Rictor-iKO cells, suggesting that RICTOR could be involved with regulating basal lipolysis or droplet dynamics. Finally, we observe mild dampening of acute insulin signaling response in Rictor-iKO cells, and a subset of AKT substrates exhibiting statistically significant dependence on RICTOR. Full Article
sig Characterization of signaling pathways associated with pancreatic {beta}-cell adaptive flexibility in compensation of obesity-linked diabetes in db/db mice [Research] By feedproxy.google.com Published On :: 2020-04-07T14:34:38-07:00 The onset of obesity-linked type 2 diabetes (T2D) is marked by an eventual failure in pancreatic β-cell function and mass that is no longer able to compensate for the inherent insulin resistance and increased metabolic load intrinsic to obesity. However, in a commonly used model of T2D, the db/db mouse, β-cells have an inbuilt adaptive flexibility enabling them to effectively adjust insulin production rates relative to the metabolic demand. Pancreatic β-cells from these animals have markedly reduced intracellular insulin stores, yet high rates of (pro)insulin secretion, together with a substantial increase in proinsulin biosynthesis highlighted by expanded rough endoplasmic reticulum and Golgi apparatus. However, when the metabolic overload and/or hyperglycemia is normalized, β-cells from db/db mice quickly restore their insulin stores and normalize secretory function. This demonstrates the β-cell’s adaptive flexibility and indicates that therapeutic approaches applied to encourage β-cell rest are capable of restoring endogenous β-cell function. However, mechanisms that regulate β-cell adaptive flexibility are essentially unknown. To gain deeper mechanistic insight into the molecular events underlying β-cell adaptive flexibility in db/db β-cells, we conducted a combined proteomic and post-translational modification specific proteomic (PTMomics) approach on islets from db/db mice and wild-type controls (WT) with or without prior exposure to normal glucose levels. We identified differential modifications of proteins involved in redox homeostasis, protein refolding, K48-linked deubiquitination, mRNA/protein export, focal adhesion, ERK1/2 signaling, and renin-angiotensin-aldosterone signaling, as well as sialyltransferase activity, associated with β-cell adaptive flexibility. These proteins are all related to proinsulin biosynthesis and processing, maturation of insulin secretory granules, and vesicular trafficking—core pathways involved in the adaptation of insulin production to meet metabolic demand. Collectively, this study outlines a novel and comprehensive global PTMome signaling map that highlights important molecular mechanisms related to the adaptive flexibility of β-cell function, providing improved insight into disease pathogenesis of T2D. Full Article
sig The DNA sensor cGAS is decorated by acetylation and phosphorylation modifications in the context of immune signaling [Research] By feedproxy.google.com Published On :: 2020-04-28T18:38:31-07:00 The cyclic GMP-AMP synthase (cGAS) protein is a pattern-recognition receptor of the mammalian innate immune system that is recognized as a main cytosolic sensor of pathogenic or damaged DNA. cGAS DNA binding initiates catalytic production of the second messenger, cyclic GMP-AMP, which activates the STING-TBK1-IRF3 signaling axis to induce cytokine expression. Post-translational modification (PTM) has started to be recognized as a critical component of cGAS regulation, yet the extent of these modifications remains unclear. Here, we report the identification and functional analysis of cGAS phosphorylations and acetylations in several cell types under basal and immune-stimulated conditions. cGAS was enriched by immunoaffinity purification from human primary fibroblasts prior to and after infection with herpes simplex virus type 1 (HSV-1), as well as from immune-stimulated STING-HEK293T cells. Six phosphorylations and eight acetylations were detected, of which eight PTMs were not previously documented. PTMs were validated by parallel reaction monitoring (PRM) mass spectrometry in fibroblasts, HEK293T cells, and THP-1 macrophage-like cells. Primary sequence and structural analysis of cGAS highlighted a subset of PTM sites with elevated surface accessibility and high evolutionary sequence conservation. To assess the functional relevance of each PTM, we generated a series of single-point cGAS mutations. Stable cell lines were constructed to express cGAS with amino acid substitutions that prevented phosphorylation (Ser-to-Ala) and acetylation (Lys-to-Arg) or that mimicked the modification state (Ser-to-Asp and Lys-to-Gln). cGAS-dependent apoptotic and immune signaling activities were then assessed for each mutation. Our results show that acetyl-mimic mutations at Lys384 and Lys414 inhibit the ability of cGAS to induce apoptosis. In contrast, the Lys198 acetyl-mimic mutation increased cGAS-dependent interferon signaling when compared to the unmodified charge-mimic. Moreover, targeted PRM quantification showed that Lys198 acetylation is decreased upon infections with two herpesviruses—HSV-1 and human cytomegalovirus (HCMV), highlighting this residue as a regulatory point during virus infection. Full Article
sig Perlecan knockdown significantly alters extracellular matrix composition and organization during cartilage development [Research] By feedproxy.google.com Published On :: 2020-05-07T06:36:04-07:00 Perlecan is a critical proteoglycan found in the extracellular matrix (ECM) of cartilage. In healthy cartilage, perlecan regulates cartilage biomechanics and we previously demonstrated perlecan deficiency leads to reduced cellular and ECM stiffness in vivo. This change in mechanics may lead to the early onset osteoarthritis seen in disorders resulting from perlecan knockdown such as Schwartz-Jampel syndrome (SJS). To identify how perlecan knockdown affects the material properties of developing cartilage, we used imaging and liquid chromatography–tandem mass spectrometry (LC-MS/MS) to study the ECM in a murine model of SJS, Hspg2C1532Y-Neo. Perlecan knockdown led to defective pericellular matrix formation, whereas the abundance of bulk ECM proteins, including many collagens, increased. Post-translational modifications and ultrastructure of collagens were not significantly different; however, LC-MS/MS analysis showed more protein was secreted by Hspg2C1532Y-Neo cartilage in vitro, suggesting that the incorporation of newly synthesized ECM was impaired. In addition, glycosaminoglycan deposition was atypical, which may explain the previously observed decrease in mechanics. Overall, these findings provide insight into the influence of perlecan on functional cartilage assembly and the progression of osteoarthritis in SJS. Full Article
sig Macrophage polarization is linked to Ca2+-independent phospholipase A2{beta}-derived lipids and cross-cell signaling in mice [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 Phospholipases A2 (PLA2s) catalyze hydrolysis of the sn-2 substituent from glycerophospholipids to yield a free fatty acid (i.e., arachidonic acid), which can be metabolized to pro- or anti-inflammatory eicosanoids. Macrophages modulate inflammatory responses and are affected by Ca2+-independent phospholipase A2 (PLA2)β (iPLA2β). Here, we assessed the link between iPLA2β-derived lipids (iDLs) and macrophage polarization. Macrophages from WT and KO (iPLA2β–/–) mice were classically M1 pro-inflammatory phenotype activated or alternatively M2 anti-inflammatory phenotype activated, and eicosanoid production was determined by ultra-performance LC ESI-MS/MS. As a genotypic control, we performed similar analyses on macrophages from RIP.iPLA2β.Tg mice with selective iPLA2β overexpression in β-cells. Compared with WT, generation of select pro-inflammatory prostaglandins (PGs) was lower in iPLA2β–/–, and that of a specialized pro-resolving lipid mediator (SPM), resolvin D2, was higher; both changes are consistent with the M2 phenotype. Conversely, macrophages from RIP.iPLA2β.Tg mice exhibited an opposite landscape, one associated with the M1 phenotype: namely, increased production of pro-inflammatory eicosanoids (6-keto PGF1α, PGE2, leukotriene B4) and decreased ability to generate resolvin D2. These changes were not linked with secretory PLA2 or cytosolic PLA2α or with leakage of the transgene. Thus, we report previously unidentified links between select iPLA2β-derived eicosanoids, an SPM, and macrophage polarization. Importantly, our findings reveal for the first time that β-cell iPLA2β-derived signaling can predispose macrophage responses. These findings suggest that iDLs play critical roles in macrophage polarization, and we posit that they could be targeted therapeutically to counter inflammation-based disorders. Full Article
sig Hepatic PLIN5 signals via SIRT1 to promote autophagy and prevent inflammation during fasting [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Lipid droplets (LDs) are energy-storage organelles that are coated with hundreds of proteins, including members of the perilipin (PLIN) family. PLIN5 is highly expressed in oxidative tissues, including the liver, and is thought to play a key role in uncoupling LD accumulation from lipotoxicity; however, the mechanisms behind this action are incompletely defined. We investigated the role of hepatic PLIN5 in inflammation and lipotoxicity in a murine model under both fasting and refeeding conditions and in hepatocyte cultures. PLIN5 ablation with antisense oligonucleotides triggered a pro-inflammatory response in livers from mice only under fasting conditions. Similarly, PLIN5 mitigated lipopolysaccharide- or palmitic acid-induced inflammatory responses in hepatocytes. During fasting, PLIN5 was also required for the induction of autophagy, which contributed to its anti-inflammatory effects. The ability of PLIN5 to promote autophagy and prevent inflammation were dependent upon signaling through sirtuin 1 (SIRT1), which is known to be activated in response to nuclear PLIN5 under fasting conditions. Taken together, these data show that PLIN5 signals via SIRT1 to promote autophagy and prevent FA-induced inflammation as a means to maintain hepatocyte homeostasis during periods of fasting and FA mobilization. Full Article
sig Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy. Full Article
sig Problem Notes for SAS®9 - 65929: A grid-enabled sign-on to SAS 9.4M6 (TS1M6) fails with errors, including "Remote signon canceled" By feedproxy.google.com Published On :: Wed, 6 May 2020 13:02:23 EST A sign-on to a grid-enabled environment fails while it is trying to communicate with the client host. The following errors then appear in the SAS log: < Full Article GRIDMGR+SAS+Grid+Manager
sig Problem Notes for SAS®9 - 65909: SAS Visual Analytics Designer 7.5 responds slowly when you edit large or complex reports By feedproxy.google.com Published On :: Thu, 30 Apr 2020 13:26:35 EST If your SAS Visual Analytics report contains many sections and objects, you might encounter performance problems when you are editing the report. A hot fix is planned for this issue. Full Article VISANLYTBNDL+SAS+Visual+Analytics
sig Problem Notes for SAS®9 - 65893: Custom sorts are sorted incorrectly when they are used in a hierarchy in SAS Visual Analytics Designer By feedproxy.google.com Published On :: Wed, 29 Apr 2020 12:29:05 EST A custom sort might be sorted incorrectly when the data item is used in a custom category, which is then used in a hierarchy. The issue can occur in the following scenario: Full Article VISANLYTBNDL+SAS+Visual+Analytics
sig Problem Notes for SAS®9 - 65868: Saving a report distribution in SAS Visual Analytics Designer fails with "The name is invalid" By feedproxy.google.com Published On :: Fri, 24 Apr 2020 12:03:57 EST When you attempt to save a report distribution in SAS Visual Analytics Designer, you might see the error shown in the following display: imgalt="" src="{fusion_65868_1_distributionerror.png}" /> Full Article VISANLYTBNDL+SAS+Visual+Analytics
sig A Peripheral Blood DNA Methylation Signature of Hepatic Fat Reveals a Potential Causal Pathway for Nonalcoholic Fatty Liver Disease By diabetes.diabetesjournals.org Published On :: 2019-04-01T13:15:12-07:00 Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D). We aimed to identify the peripheral blood DNA methylation signature of hepatic fat. We conducted epigenome-wide association studies of hepatic fat in 3,400 European ancestry (EA) participants and in 401 Hispanic ancestry and 724 African ancestry participants from four population-based cohort studies. Hepatic fat was measured using computed tomography or ultrasound imaging and DNA methylation was assessed at >400,000 cytosine-guanine dinucleotides (CpGs) in whole blood or CD14+ monocytes using a commercial array. We identified 22 CpGs associated with hepatic fat in EA participants at a false discovery rate <0.05 (corresponding P = 6.9 x 10–6) with replication at Bonferroni-corrected P < 8.6 x 10–4. Mendelian randomization analyses supported the association of hypomethylation of cg08309687 (LINC00649) with NAFLD (P = 2.5 x 10–4). Hypomethylation of the same CpG was also associated with risk for new-onset T2D (P = 0.005). Our study demonstrates that a peripheral blood–derived DNA methylation signature is robustly associated with hepatic fat accumulation. The hepatic fat–associated CpGs may represent attractive biomarkers for T2D. Future studies are warranted to explore mechanisms and to examine DNA methylation signatures of NAFLD across racial/ethnic groups. Full Article
sig Connecting Rodent and Human Pharmacokinetic Models for the Design and Translation of Glucose-Responsive Insulin By diabetes.diabetesjournals.org Published On :: 2020-03-09T06:50:09-07:00 Despite considerable progress, development of glucose-responsive insulins (GRI) still largely depends on empirical knowledge and tedious experimentation – especially on rodents. To assist the rational design and clinical translation of the therapeutic, we present a Pharmacokinetic Algorithm Mapping GRI Efficacies in Rodents and Humans (PAMERAH), built upon our previous human model. PAMERAH constitutes a framework for predicting the therapeutic efficacy of a GRI candidate from its user-specified mechanism of action, kinetics, and dosage, which we show is accurate when checked against data from experiments and literature. Results from simulated glucose clamps also agree quantitatively with recent GRI publications. We demonstrate that the model can be used to explore the vast number of permutations constituting the GRI parameter space, and thereby identify the optimal design ranges that yield desired performance. A design guide aside, PAMERAH more importantly can facilitate GRI’s clinical translation by connecting each candidate’s efficacies in rats, mice, and humans. The resultant mapping helps find GRIs which appear promising in rodents but underperform in humans (i.e. false-positives). Conversely, it also allows for the discovery of optimal human GRI dynamics not captured by experiments on a rodent population (false-negatives). We condense such information onto a translatability grid as a straightforward, visual guide for GRI development. Full Article
sig Amylin/Calcitonin Receptor-Mediated Signaling in POMC Neurons Influences Energy Balance and Locomotor Activity in Chow-Fed Male Mice By diabetes.diabetesjournals.org Published On :: 2020-03-09T12:48:09-07:00 Amylin, a pancreatic hormone and neuropeptide, acts principally in the hindbrain to decrease food intake and has been recently shown to act as a neurotrophic factor to control the development of AP->NTS and ARC->PVN axonal fiber outgrowth. Amylin is also able to activate ERK signaling specifically in POMC neurons independently of leptin. To investigate the physiological role of amylin signaling in POMC neurons, the core component of the amylin receptor, calcitonin receptor (CTR) was depleted from POMC neurons using an inducible mouse model. The loss of CTR in POMC neurons leads to increased body weight gain, increased adiposity, and glucose intolerance in male knockout mice, characterized by decreased energy expenditure (EE) and decreased expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT). Furthermore, a decreased spontaneous locomotor activity and absent thermogenic reaction to the application of the amylin receptor agonist were observed in male and female mice. Together, these results show a significant physiological impact of amylin/calcitonin signaling in CTR-POMC neurons on energy metabolism and demonstrate the need for sex-specific approaches in obesity research and potentially treatment. Full Article
sig Dopamine and Early Retinal Dysfunction in Diabetes: Insights From a Phase 1 Study By diabetes.diabetesjournals.org Published On :: 2020-04-20T15:26:16-07:00 Full Article
sig Secretory Functions of Macrophages in the Human Pancreatic Islet are Regulated by Endogenous Purinergic Signaling By diabetes.diabetesjournals.org Published On :: 2020-04-24T13:05:31-07:00 Endocrine cells of the pancreatic islet interact with their microenvironment to maintain tissue homeostasis. Communication with local macrophages is particularly important in this context, but the homeostatic functions of human islet macrophages are not known. Here we show that the human islet contains macrophages in perivascular regions that are the main local source of the anti-inflammatory cytokine Il-10 and the metalloproteinase MMP9. Macrophage production and secretion of these homeostatic factors is controlled by endogenous purinergic signals. In obese and diabetic states, macrophage expression of purinergic receptors, MMP9, and Il-10 is reduced. We propose that in those states exacerbated beta cell activity due to increased insulin demand and increased cell death produces high levels of ATP that downregulate purinergic receptor expression. Loss of ATP sensing in macrophages may reduce their secretory capacity. Full Article
sig Branched-Chain Amino Acids Exacerbate Obesity-Related Hepatic Glucose and Lipid Metabolic Disorders via Attenuating Akt2 Signaling By diabetes.diabetesjournals.org Published On :: 2020-04-24T14:07:36-07:00 Branched chain amino acids (BCAAs) are associated with the progression of obesity-related metabolic disorders, including T2DM and non-alcoholic fatty liver disease. However, whether BCAAs disrupt the homeostasis of hepatic glucose and lipid metabolism remains unknown. In this study, we observed that BCAAs supplementation significantly reduced high-fat (HF) diet-induced hepatic lipid accumulation while increasing the plasma lipid levels and promoting muscular and renal lipid accumulation. Further studies demonstrated that BCAAs supplementation significantly increased hepatic gluconeogenesis and suppressed hepatic lipogenesis in HF diet-induced obese (DIO) mice. These phenotypes resulted from severe attenuation of Akt2 signaling via mTORC1- and mTORC2-dependent pathways. BCAAs/branched-chain α-keto acids (BCKAs) chronically suppressed Akt2 activation through mTORC1 and mTORC2 signaling and promoted Akt2 ubiquitin-proteasome-dependent degradation through the mTORC2 pathway. Moreover, the E3 ligase Mul1 played an essential role in BCAAs/BCKAs-mTORC2-induced Akt2 ubiquitin-dependent degradation. We also demonstrated that BCAAs inhibited hepatic lipogenesis by blocking Akt2/SREBP1/INSIG2a signaling and increased hepatic glycogenesis by regulating Akt2/Foxo1 signaling. Collectively, these data demonstrate that in DIO mice, BCAAs supplementation resulted in serious hepatic metabolic disorder and severe liver insulin resistance: insulin failed to not only suppress gluconeogenesis but also activate lipogenesis. Intervening BCAA metabolism is a potential therapeutic target for severe insulin-resistant disease. Full Article
sig Empagliflozin Ameliorates Obesity-Related Cardiac Dysfunction by Regulating Sestrin2-Mediated AMPK-mTOR Signaling and Redox Homeostasis in High-Fat Induced Obese Mice By diabetes.diabetesjournals.org Published On :: 2020-04-24T18:07:35-07:00 Sodium glucose co-transporter-2 inhibitors (SGLT2i) have favorable cardiovascular outcomes in diabetic patients. However, whether SGLT2i can improve obesity-related cardiac dysfunction is unknown. Sestrin2 is a novel stress-inducible protein that regulates AMPK-mTOR and suppresses oxidative damage. The aim of this study was to determine whether empagliflozin (EMPA) improves obesity-related cardiac dysfunction via regulating Sestrin2-mediated pathways in diet-induced obesity. C57BL/6J mice and Sestrin2 knockout mice were fed a high-fat diet (HFD) for 12 weeks and then treated with or without EMPA (10 mg/kg) for 8 weeks. Treating HFD-fed C57BL/6J mice with EMPA reduced body weight, whole-body fat, and improved metabolic disorders. Furthermore, EMPA improved myocardial hypertrophy/fibrosis and cardiac function, and reduced cardiac fat accumulation and mitochondria injury. Additionally, EMPA significantly augmented Sestrin2 levels, increased AMPK and eNOS phosphorylation, but inhibited Akt and mTOR phosphorylation. These beneficial effects were partially attenuated in HFD-fed Sestrin2 knockout mice. Intriguingly, EMPA treatment enhanced the Nrf2/HO-1-mediated oxidative stress response, suggesting antioxidant and anti-inflammatory activity. Thus, EMPA improved obesity-related cardiac dysfunction via regulating Sestrin2-mediated AMPK-mTOR signaling and maintaining redox homeostasis. These findings provide a novel mechanism for the cardiovascular protection of SGLT2i in obesity. Full Article
sig Glucose-Stimulated Insulin Secretion Fundamentally Requires H2O2 Signaling by NADPH Oxidase 4 By diabetes.diabetesjournals.org Published On :: 2020-04-24T18:07:35-07:00 NADPH facilitates glucose-stimulated insulin secretion (GSIS) in pancreatic islet (PI) β-cells by an as yet unknown mechanism. We found NADPH oxidase, isoform-4 (NOX4), to be the major producer of cytosolic H2O2, essential for GSIS, while the increase in ATP/ADP alone was insufficient. The fast GSIS phase was absent in PIs from NOX4-null, β-cell-specific knockout mice (NOX4βKO) (not NOX2KO), and NOX4-silenced or catalase-overexpressing INS-1E cells. Lentiviral NOX4 overexpression or H2O2 rescued GSIS in PIs from NOX4βKO mice. NOX4 silencing suppressed Ca2+ oscillations and the patch-clamped ATP-sensitive potassium channel (KATP) opened more frequently at high glucose. Mitochondrial H2O2, decreasing upon GSIS, provided an alternative redox signaling when 2-oxo-isocaproate or fatty acid oxidation formed superoxide by electron-transport flavoprotein:Q-oxidoreductase. Unlike GSIS, this ceased with mitochondrial antioxidant SkQ1. Both NOX4KO and NOX4βKO strains exhibited impaired glucose tolerance and peripheral insulin resistance. Thus the redox signaling previously suggested to cause β-cell-self-checking – hypothetically induces insulin resistance when absent. In conclusion, ATP plus H2O2 elevations constitute an essential switch-on signal of insulin exocytosis for glucose and branched-chain oxoacids as secretagogues (partly for fatty acids). Redox signaling could be impaired by cytosolic antioxidants, hence those targeting mitochondria should be preferred for clinical applications to treat (pre)diabetes at any stage. Full Article
sig Role of VIP and Sonic Hedgehog Signaling Pathways in Mediating Epithelial Wound Healing, Sensory Nerve Regeneration and their Defects in Diabetic Corneas By diabetes.diabetesjournals.org Published On :: 2020-04-28T07:09:24-07:00 Diabetic Keratopathy, a sight-threatening corneal disease, comprises several symptomatic conditions including delayed epithelial wound healing, recurrent erosions, and sensory nerve (SN) neuropathy. We investigated the role of neuropeptides in mediating corneal wound healing, including epithelial wound closure and SN regeneration. Denervation by Resiniferatoxin severely impaired corneal wound healing and markedly up-regulated pro-inflammatory gene expression. Exogenous neuropeptides CGRP, SP, and VIP partially reversed Resiniferatoxin’s effects, with VIP specifically inducing IL-10 expression. Hence, we focused on VIP and observed that wounding induced VIP and VIPR1 expression in normal (NL), but not diabetic (DM) mouse corneas. Targeting VIPR1 in NL corneas attenuated corneal wound healing, dampened wound-induced expression of neurotrophic factors, and exacerbated inflammatory responses while exogenous VIP had the opposite effects in DM corneas. Remarkably, wounding and diabetes also affected the expression of Sonic Hedgehog (SHH) in a VIP-dependent manner. Downregulating SHH expression in NL corneas decreased, while exogenous SHH in DM corneas increased the rates of corneal wound healing. Furthermore, inhibition of SHH signaling dampened VIP-promoted corneal wound healing. We conclude that VIP regulates epithelial wound healing, inflammatory response, and nerve regeneration in the corneas in a SHH-dependent manner, suggesting a therapeutic potential for these molecules in treating diabetic keratopathy. Full Article
sig Repurposing Doxepin to Ameliorate Steatosis and Hyperglycemia by Activating FAM3A Signaling Pathway By diabetes.diabetesjournals.org Published On :: 2020-05-07T08:35:09-07:00 Mitochondrial protein FAM3A suppresses hepatic gluconeogenesis and lipogenesis. This study aimed to screen drug(s) that activates FAM3A expression and evaluate its effect(s) on hyperglycemia and steatosis. Drug-repurposing methodology predicted that antidepressive drug doxepin was among the drugs that potentially activated FAM3A expression. Doxepin was further validated to stimulate the translocation of transcription factor HNF4α from the cytoplasm into the nucleus, where it promoted FAM3A transcription to enhance ATP synthesis, suppress gluconeogenesis, and reduce lipid deposition in hepatocytes. HNF4α antagonism or FAM3A deficiency blunted doxepin-induced suppression on gluconeogenesis and lipid deposition in hepatocytes. Doxepin administration attenuated hyperglycemia, steatosis, and obesity in obese diabetic mice with upregulated FAM3A expression in liver and brown adipose tissues (BAT). Notably, doxepin failed to correct dysregulated glucose and lipid metabolism in FAM3A-deficient mice fed on high-fat diet. Doxepin’s effects on ATP production, Akt activation, gluconeogenesis, and lipogenesis repression were also blunted in FAM3A-deficient mouse livers. In conclusion, FAM3A is a therapeutic target for diabetes and steatosis. Antidepressive drug doxepin activates FAM3A signaling pathways in liver and BAT to improve hyperglycemia and steatosis of obese diabetic mice. Doxepin might be preferentially recommended as an antidepressive drug in potential treatment of patients with diabetes complicated with depression. Full Article
sig Circulating Protein Signatures and Causal Candidates for Type 2 Diabetes By diabetes.diabetesjournals.org Published On :: 2020-05-08T10:11:46-07:00 The increasing prevalence of type 2 diabetes poses a major challenge to societies worldwide. Blood-based factors like serum proteins are in contact with every organ in the body to mediate global homeostasis and may thus directly regulate complex processes such as aging and the development of common chronic diseases. We applied a data-driven proteomics approach, measuring serum levels of 4,137 proteins in 5,438 elderly Icelanders and identified 536 proteins associated with prevalent and/or incident type 2 diabetes. We validated a subset of the observed associations in an independent case-control study of type 2 diabetes. These protein associations provide novel biological insights into the molecular mechanisms that are dysregulated prior to and following the onset of type 2 diabetes and can be detected in serum. A bi-directional two-sample Mendelian randomization analysis indicated that serum changes of at least 23 proteins are downstream of the disease or its genetic liability, while 15 proteins were supported as having a causal role in type 2 diabetes. Full Article
sig Certain ortho-hydroxylated brominated ethers are promiscuous kinase inhibitors that impair neuronal signaling and neurodevelopmental processes [Cell Biology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 The developing nervous system is remarkably sensitive to environmental signals, including disruptive toxins, such as polybrominated diphenyl ethers (PBDEs). PBDEs are an environmentally pervasive class of brominated flame retardants whose neurodevelopmental toxicity mechanisms remain largely unclear. Using dissociated cortical neurons from embryonic Rattus norvegicus, we found here that chronic exposure to 6-OH–BDE-47, one of the most prevalent hydroxylated PBDE metabolites, suppresses both spontaneous and evoked neuronal electrical activity. On the basis of our previous work on mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) (MEK) biology and our observation that 6-OH–BDE-47 is structurally similar to kinase inhibitors, we hypothesized that certain hydroxylated PBDEs mediate neurotoxicity, at least in part, by impairing the MEK–ERK axis of MAPK signal transduction. We tested this hypothesis on three experimental platforms: 1) in silico, where modeling ligand–protein docking suggested that 6-OH–BDE-47 is a promiscuous ATP-competitive kinase inhibitor; 2) in vitro in dissociated neurons, where 6-OH–BDE-47 and another specific hydroxylated BDE metabolite similarly impaired phosphorylation of MEK/ERK1/2 and activity-induced transcription of a neuronal immediate early gene; and 3) in vivo in Drosophila melanogaster, where developmental exposures to 6-OH–BDE-47 and a MAPK inhibitor resulted in offspring displaying similarly increased frequency of mushroom-body β–lobe midline crossing, a metric of axonal guidance. Taken together, our results support that certain ortho-hydroxylated PBDE metabolites are promiscuous kinase inhibitors and can cause disruptions of critical neurodevelopmental processes, including neuronal electrical activity, pre-synaptic functions, MEK–ERK signaling, and axonal guidance. Full Article
sig The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining {alpha}-tubulin acetylation [Signal Transduction] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Kindlins are focal adhesion proteins that regulate integrin activation and outside-in signaling. The kindlin family consists of three members, kindlin-1, -2, and -3. Kindlin-2 is widely expressed in multiple cell types, except those from the hematopoietic lineage. A previous study has reported that the Drosophila Fit1 protein (an ortholog of kindlin-2) prevents abnormal spindle assembly; however, the mechanism remains unknown. Here, we show that kindlin-2 maintains spindle integrity in mitotic human cells. The human neuroblastoma SH-SY5Y cell line expresses only kindlin-2, and we found that when SH-SY5Y cells are depleted of kindlin-2, they exhibit pronounced spindle abnormalities and delayed mitosis. Of note, acetylation of α-tubulin, which maintains microtubule flexibility and stability, was diminished in the kindlin-2–depleted cells. Mechanistically, we found that kindlin-2 maintains α-tubulin acetylation by inhibiting the microtubule-associated deacetylase histone deacetylase 6 (HDAC6) via a signaling pathway involving AKT Ser/Thr kinase (AKT)/glycogen synthase kinase 3β (GSK3β) or paxillin. We also provide evidence that prolonged hypoxia down-regulates kindlin-2 expression, leading to spindle abnormalities not only in the SH-SY5Y cell line, but also cell lines derived from colon and breast tissues. The findings of our study highlight that kindlin-2 regulates mitotic spindle assembly and that this process is perturbed in cancer cells in a hypoxic environment. Full Article