bs

Pandemic slams healthcare jobs

The steep plunge in U.S. payrolls caused by the pandemic also slammed the healthcare sector, as many workers in dentists' and doctors' offices lost their jobs. Fred Katayama reports.




bs

Spiders think with their webs, challenging our ideas of intelligence

With the help of their webs, spiders are capable of foresight, planning, learning and other smarts that indicate they may possess consciousness




bs

Tiny 2-billion-year-old fossil blobs may be the oldest complex cells

Fossils of single cells found in China are 2 billion years old, making them the oldest eukaryotic cells in the fossil record and possibly our distant relatives




bs

UK observes two-minute silence to commemorate VE Day 75th anniversary

Along with millions around the nation, Prince Charles held a two-minute silence outside his family's Balmoral estate, while military jets flew over the United Kingdom's four capitals, and 1940s-style tea parties plus singalongs were planned in homes.




bs

Why do so many people become obsessed with UFOs and aliens?

They Are Already Here: UFO culture and why we see saucers by Sarah Scoles tries to find out what's so appealing about hunting UFOs




bs

Don't Miss: absurd animals, the chemical age and DIY dancing

Watch Netflix's Absurd Planet explore weird animals, discover the powerful chemical industry and create dance using a choreographer’s motion-capture moves




bs

Spiders think with their webs, challenging our ideas of intelligence

With the help of their webs, spiders are capable of foresight, planning, learning and other smarts that indicate they may possess consciousness




bs

Conmebol unhappy with FIFA over five substitutes change

FIFA's decision to temporarily allow up to five substitutions per match to help cope with potential fixture congestion was met coolly in South America on Friday.




bs

Former CBS News president returns to News Corp to help Murdoch's UK operations

David Rhodes, the former president of CBS News who started his career at Fox News, is returning to Rupert Murdoch's News Corp to help the company's News UK operations in the video business, a source familiar with the matter said.




bs

RBS: misconduct charges could be higher

RBS reports a £134 million third quarter operating loss and warns costs relating to past misconduct could be substantially higher than expected. Meantime France's BNP Paribas posts a 14.5 per cent rise in net income. It comes a day after Deutsche Bank said it would be slashing 15,000 jobs. Analysts say despite the upheaval, the medium term outlook for investment banks is positive. Hayley Platt reports.




bs

Pandemic slams healthcare jobs

The steep plunge in U.S. payrolls caused by the pandemic also slammed the healthcare sector, as many workers in dentists' and doctors' offices lost their jobs. Fred Katayama reports.




bs

Scientists Discover Substance That Causes Pain

Title: Scientists Discover Substance That Causes Pain
Category: Health News
Created: 4/28/2010 2:10:00 PM
Last Editorial Review: 4/29/2010 12:00:00 AM




bs

Teen Impulsiveness Has Different Sources in ADHD, Substance Use

Title: Teen Impulsiveness Has Different Sources in ADHD, Substance Use
Category: Health News
Created: 4/29/2012 4:05:00 PM
Last Editorial Review: 4/30/2012 12:00:00 AM




bs

Health Tip: Help Manage IBS With Diet

Title: Health Tip: Help Manage IBS With Diet
Category: Health News
Created: 4/30/2014 7:35:00 AM
Last Editorial Review: 4/30/2014 12:00:00 AM




bs

Ex-Baseball Star Kirk Gibson Has Parkinson's Disease

Title: Ex-Baseball Star Kirk Gibson Has Parkinson's Disease
Category: Health News
Created: 4/28/2015 12:00:00 AM
Last Editorial Review: 4/29/2015 12:00:00 AM




bs

Curbing School Bus Pollution Might Reduce Absences

Title: Curbing School Bus Pollution Might Reduce Absences
Category: Health News
Created: 4/29/2015 12:00:00 AM
Last Editorial Review: 4/30/2015 12:00:00 AM




bs

E. Coli Outbreak Tied to Ground Beef Climbs to 177 Cases

Title: E. Coli Outbreak Tied to Ground Beef Climbs to 177 Cases
Category: Health News
Created: 4/29/2019 12:00:00 AM
Last Editorial Review: 4/30/2019 12:00:00 AM




bs

Interest in Unproven COVID Drugs Soared After Trump Gave Thumbs Up

Title: Interest in Unproven COVID Drugs Soared After Trump Gave Thumbs Up
Category: Health News
Created: 4/29/2020 12:00:00 AM
Last Editorial Review: 4/30/2020 12:00:00 AM




bs

Full text now available for OA subset articles, in plain text format

In order to facilitate text and data mining for articles in the Open Access Subset, we are now providing plain text files for those articles on our FTP site. These files contain the full text of the article, extracted either from the XML source files, or (for those articles that don't have XML) the PDF files. Users are directly and solely responsible for compliance with copyright restrictions and are expected to adhere to the terms and conditions defined by the copyright holder (see the PMC Copyright Notice).

These text files are bundled in gzipped archives. Note that these files are quite large (each greater than one gigabyte). They are available for download as:

These files are updated every week, on Saturday.

For more information, see the Bulk Packages of OA Articles section of our FTP Service page.




bs

Open Access Subset FTP Clean Up

On March 18, 2019, PMC will no longer provide bulk packages of Open Access (OA) Subset text and XML at the top level directory of the FTP Service. These files were superseded in August 2016 by the Commercial Use and Non-Commercial Use bulk packages located in the oa_bulk subdirectory. One set comprises articles that may be used for commercial purposes (the Commercial Use Collection); the other contains articles that can be used only for non-commercial purposes. Anyone planning to use OA subset content for non-commercial purposes will need to download both “non_comm_use.*.tar.gz” and “comm_use.*.tar.gz” to access the complete collection. See the Open Access Subset page for additional details. Questions should be directed to pubmedcentral@ncbi.nlm.nih.gov.




bs

PubMed Labs Update: Using Filters

Users can now use filters to narrow search results in PubMed Labs by article type, text availability, publication date, species, language, sex, subject, journal category, and age. The most popular filters are included on the sidebar by default.




bs

Nose Jobs Make Women Look Years Younger, Robot Says

Title: Nose Jobs Make Women Look Years Younger, Robot Says
Category: Health News
Created: 1/28/2020 12:00:00 AM
Last Editorial Review: 1/28/2020 12:00:00 AM




bs

Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy [Thematic Reviews]

Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy.




bs

Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in Klebsiella pneumoniae

ABSTRACT

Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated tmexCD1-toprJ1, on plasmids from five pandrug-resistant Klebsiella pneumoniae isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for K. pneumoniae, Escherichia coli, and Salmonella. TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of Pseudomonas aeruginosa. In an IncFIA plasmid, pHNAH8I, the tmexCD1-toprJ1 gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in E. coli resulted in increased tigecycline efflux and in K. pneumoniae negated the efficacy of tigecycline in an in vivo infection model. Expression of TMexCD1-TOprJ1 reduced the growth of E. coli and Salmonella but not K. pneumoniae. tmexCD1-toprJ1-positive Enterobacteriaceae isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne tmexCD1-toprJ1-like gene clusters were identified in sequences in GenBank from Enterobacteriaceae and Pseudomonas strains from multiple continents. The possibility of further global dissemination of the tmexCD1-toprJ1 gene cluster and its analogues in Enterobacteriaceae via plasmids may be an important consideration for public health planning.

IMPORTANCE In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae, the most problematic pathogens in human clinical settings—especially carbapenem-resistant K. pneumoniae. Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a "One Health" perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this.




bs

Direct Observation of the Dynamics of Single-Cell Metabolic Activity during Microbial Diauxic Growth

ABSTRACT

Population-level analyses are rapidly becoming inadequate to answer many of biomedical science and microbial ecology’s most pressing questions. The role of microbial populations within ecosystems and the evolutionary selective pressure on individuals depend fundamentally on the metabolic activity of single cells. Yet, many existing single-cell technologies provide only indirect evidence of metabolic specialization because they rely on correlations between transcription and phenotype established at the level of the population to infer activity. In this study, we take a top-down approach using isotope labels and secondary ion mass spectrometry to track the uptake of carbon and nitrogen atoms from different sources into biomass and directly observe dynamic changes in anabolic specialization at the level of single cells. We investigate the classic microbiological phenomenon of diauxic growth at the single-cell level in the model methylotroph Methylobacterium extorquens. In nature, this organism inhabits the phyllosphere, where it experiences diurnal changes in the available carbon substrates, necessitating an overhaul of central carbon metabolism. We show that the population exhibits a unimodal response to the changing availability of viable substrates, a conclusion that supports the canonical model but has thus far been supported by only indirect evidence. We anticipate that the ability to monitor the dynamics of anabolism in individual cells directly will have important applications across the fields of ecology, medicine, and biogeochemistry, especially where regulation downstream of transcription has the potential to manifest as heterogeneity that would be undetectable with other existing single-cell approaches.

IMPORTANCE Understanding how genetic information is realized as the behavior of individual cells is a long-term goal of biology but represents a significant technological challenge. In clonal microbial populations, variation in gene regulation is often interpreted as metabolic heterogeneity. This follows the central dogma of biology, in which information flows from DNA to RNA to protein and ultimately manifests as activity. At present, DNA and RNA can be characterized in single cells, but the abundance and activity of proteins cannot. Inferences about metabolic activity usually therefore rely on the assumption that transcription reflects activity. By tracking the atoms from which they build their biomass, we make direct observations of growth rate and substrate specialization in individual cells throughout a period of growth in a changing environment. This approach allows the flow of information from DNA to be constrained from the distal end of the regulatory cascade and will become an essential tool in the rapidly advancing field of single-cell metabolism.




bs

Vaccine-Induced Th1-Type Response Protects against Invasive Group A Streptococcus Infection in the Absence of Opsonizing Antibodies

ABSTRACT

Recent global advocacy efforts have highlighted the importance of development of a vaccine against group A Streptococcus (GAS). Combo5 is a non-M protein-based vaccine that provides protection against GAS skin infection in mice and reduces the severity of pharyngitis in nonhuman primates. However, Combo5 with the addition of aluminum hydroxide (alum) as an adjuvant failed to protect against invasive GAS infection of mice. Here, we show that formulation of Combo5 with adjuvants containing saponin QS21 significantly improves protective efficacy, even though all 7 adjuvants tested generated high antigen-specific IgG antibody titers, including alum. Detailed characterization of Combo5 formulated with SMQ adjuvant, a squalene-in-water emulsion containing a TLR4 agonist and QS21, showed significant differences from the results obtained with alum in IgG subclasses generated following immunization, with an absence of GAS opsonizing antibodies. SMQ, but not alum, generated strong interleukin-6 (IL-6), gamma interferon (IFN-), and tumor necrosis alpha (TNF-α) responses. This work highlights the importance of adjuvant selection for non-M protein-based GAS vaccines to optimize immune responses and protective efficacy.

IMPORTANCE Availability of a group A Streptococcus vaccine remains an unmet public health need. Here, we tested different adjuvant formulations to improve the protective efficacy of non-M protein vaccine Combo5 in an invasive disease model. We show that novel adjuvants can dramatically shape the type of immune response developed following immunization with Combo5 and significantly improve protection. In addition, protection afforded by Combo5 is not mediated by opsonizing antibodies, believed to be the main correlate of protection against GAS infections. Overall, this report highlights the importance of adjuvant selection in raising protective immune responses against GAS invasive infection. Adjuvants that can provide a more balanced Th1/Th2-type response may be required to optimize protection of GAS vaccines, particularly those based on non-M protein antigens.




bs

The Absence of (p)ppGpp Renders Initiation of Escherichia coli Chromosomal DNA Synthesis Independent of Growth Rates

ABSTRACT

The initiation of Escherichia coli chromosomal DNA replication starts with the oligomerization of the DnaA protein at repeat sequences within the origin (ori) region. The amount of ori DNA per cell directly correlates with the growth rate. During fast growth, the cell generation time is shorter than the time required for complete DNA replication; therefore, overlapping rounds of chromosome replication are required. Under these circumstances, the ori region DNA abundance exceeds the DNA abundance in the termination (ter) region. Here, high ori/ter ratios are found to persist in (p)ppGpp-deficient [(p)ppGpp0] cells over a wide range of balanced exponential growth rates determined by medium composition. Evidently, (p)ppGpp is necessary to maintain the usual correlation of slow DNA replication initiation with a low growth rate. Conversely, ori/ter ratios are lowered when cell growth is slowed by incrementally increasing even low constitutive basal levels of (p)ppGpp without stress, as if (p)ppGpp alone is sufficient for this response. There are several previous reports of (p)ppGpp inhibition of chromosomal DNA synthesis initiation that occurs with very high levels of (p)ppGpp that stop growth, as during the stringent starvation response or during serine hydroxamate treatment. This work suggests that low physiological levels of (p)ppGpp have significant functions in growing cells without stress through a mechanism involving negative supercoiling, which is likely mediated by (p)ppGpp regulation of DNA gyrase.

IMPORTANCE Bacterial cells regulate their own chromosomal DNA synthesis and cell division depending on the growth conditions, producing more DNA when growing in nutritionally rich media than in poor media (i.e., human gut versus water reservoir). The accumulation of the nucleotide analog (p)ppGpp is usually viewed as serving to warn cells of impending peril due to otherwise lethal sources of stress, which stops growth and inhibits DNA, RNA, and protein synthesis. This work importantly finds that small physiological changes in (p)ppGpp basal levels associated with slow balanced exponential growth incrementally inhibit the intricate process of initiation of chromosomal DNA synthesis. Without (p)ppGpp, initiations mimic the high rates present during fast growth. Here, we report that the effect of (p)ppGpp may be due to the regulation of the expression of gyrase, an important enzyme for the replication of DNA that is a current target of several antibiotics.




bs

Lipid Anchoring of Archaeosortase Substrates and Midcell Growth in Haloarchaea

ABSTRACT

The archaeal cytoplasmic membrane provides an anchor for many surface proteins. Recently, a novel membrane anchoring mechanism involving a peptidase, archaeosortase A (ArtA), and C-terminal lipid attachment of surface proteins was identified in the model archaeon Haloferax volcanii. ArtA is required for optimal cell growth and morphogenesis, and the S-layer glycoprotein (SLG), the sole component of the H. volcanii cell wall, is one of the targets for this anchoring mechanism. However, how exactly ArtA function and regulation control cell growth and morphogenesis is still elusive. Here, we report that archaeal homologs to the bacterial phosphatidylserine synthase (PssA) and phosphatidylserine decarboxylase (PssD) are involved in ArtA-dependent protein maturation. Haloferax volcanii strains lacking either HvPssA or HvPssD exhibited motility, growth, and morphological phenotypes similar to those of an artA mutant. Moreover, we showed a loss of covalent lipid attachment to SLG in the hvpssA mutant and that proteolytic cleavage of the ArtA substrate HVO_0405 was blocked in the hvpssA and hvpssD mutant strains. Strikingly, ArtA, HvPssA, and HvPssD green fluorescent protein (GFP) fusions colocalized to the midcell position of H. volcanii cells, strongly supporting that they are involved in the same pathway. Finally, we have shown that the SLG is also recruited to the midcell before being secreted and lipid anchored at the cell outer surface. Collectively, our data suggest that haloarchaea use the midcell as the main surface processing hot spot for cell elongation, division, and shape determination.

IMPORTANCE The subcellular organization of biochemical processes in space and time is still one of the most mysterious topics in archaeal cell biology. Despite the fact that haloarchaea largely rely on covalent lipid anchoring to coat the cell envelope, little is known about how cells coordinate de novo synthesis and about the insertion of this proteinaceous layer throughout the cell cycle. Here, we report the identification of two novel contributors to ArtA-dependent lipid-mediated protein anchoring to the cell surface, HvPssA and HvPssD. ArtA, HvPssA, and HvPssD, as well as SLG, showed midcell localization during growth and cytokinesis, indicating that haloarchaeal cells confine phospholipid processing in order to promote midcell elongation. Our findings have important implications for the biogenesis of the cell surface.




bs

Characterization of the Efflux Capability and Substrate Specificity of Aspergillus fumigatus PDR5-like ABC Transporters Expressed in Saccharomyces cerevisiae

ABSTRACT

This research analyzed six Aspergillus fumigatus genes encoding putative efflux proteins for their roles as transporters. The A. fumigatus genes abcA, abcC, abcF, abcG, abcH, and abcI were cloned into plasmids and overexpressed in a Saccharomyces cerevisiae strain in which the highly active endogenous ABC transporter gene PDR5 was deleted. The activity of each transporter was measured by efflux of rhodamine 6G and accumulation of alanine β-naphthylamide. The transporters AbcA, AbcC, and AbcF had the strongest efflux activities of these compounds. All of the strains with plasmid-expressed transporters had more efflux activity than did the PDR5-deleted background strain. We performed broth microdilution drug susceptibility testing and agar spot assays using an array of compounds and antifungal drugs to determine the transporter specificity and drug susceptibility of the strains. The transporters AbcC and AbcF showed the broadest range of substrate specificity, while AbcG and AbcH had the narrowest range of substrates. Strains expressing the AbcA, AbcC, AbcF, or AbcI transporter were more resistant to fluconazole than was the PDR5-deleted background strain. Strains expressing AbcC and AbcF were additionally more resistant to clotrimazole, itraconazole, ketoconazole, and posaconazole than was the background strain. Finally, we analyzed the expression levels of the genes by reverse transcription-quantitative PCR (RT-qPCR) in triazole-susceptible and -resistant A. fumigatus clinical isolates. All of these transporters are expressed at a measurable level, and transporter expression varied significantly between strains, demonstrating the high degree of phenotypic variation, plasticity, and divergence of which this species is capable.

IMPORTANCE One mechanism behind drug resistance is altered export out of the cell. This work is a multifaceted analysis of membrane efflux transporters in the human fungal pathogen A. fumigatus. Bioinformatics evidence infers that there is a relatively large number of genes in A. fumigatus that encode ABC efflux transporters. However, very few of these transporters have been directly characterized and analyzed for their potential role in drug resistance.

Our objective was to determine if these undercharacterized proteins function as efflux transporters and then to better define whether their efflux substrates include antifungal drugs used to treat fungal infections. We chose six A. fumigatus potential plasma membrane ABC transporter genes for analysis and found that all six genes produced functional transporter proteins. We used two fungal systems to look for correlations between transporter function and drug resistance. These transporters have the potential to produce drug-resistant phenotypes in A. fumigatus. Continued characterization of these and other transporters may assist in the development of efflux inhibitor drugs.




bs

Avoiding Drug Resistance by Substrate Envelope-Guided Design: Toward Potent and Robust HCV NS3/4A Protease Inhibitors

ABSTRACT

Hepatitis C virus (HCV) infects millions of people worldwide, causing chronic liver disease that can lead to cirrhosis, hepatocellular carcinoma, and liver transplant. In the last several years, the advent of direct-acting antivirals, including NS3/4A protease inhibitors (PIs), has remarkably improved treatment outcomes of HCV-infected patients. However, selection of resistance-associated substitutions and polymorphisms among genotypes can lead to drug resistance and in some cases treatment failure. A proactive strategy to combat resistance is to constrain PIs within evolutionarily conserved regions in the protease active site. Designing PIs using the substrate envelope is a rational strategy to decrease the susceptibility to resistance by using the constraints of substrate recognition. We successfully designed two series of HCV NS3/4A PIs to leverage unexploited areas in the substrate envelope to improve potency, specifically against resistance-associated substitutions at D168. Our design strategy achieved better resistance profiles over both the FDA-approved NS3/4A PI grazoprevir and the parent compound against the clinically relevant D168A substitution. Crystallographic structural analysis and inhibition assays confirmed that optimally filling the substrate envelope is critical to improve inhibitor potency while avoiding resistance. Specifically, inhibitors that enhanced hydrophobic packing in the S4 pocket and avoided an energetically frustrated pocket performed the best. Thus, the HCV substrate envelope proved to be a powerful tool to design robust PIs, offering a strategy that can be translated to other targets for rational design of inhibitors with improved potency and resistance profiles.

IMPORTANCE Despite significant progress, hepatitis C virus (HCV) continues to be a major health problem with millions of people infected worldwide and thousands dying annually due to resulting complications. Recent antiviral combinations can achieve >95% cure, but late diagnosis, low access to treatment, and treatment failure due to drug resistance continue to be roadblocks against eradication of the virus. We report the rational design of two series of HCV NS3/4A protease inhibitors with improved resistance profiles by exploiting evolutionarily constrained regions of the active site using the substrate envelope model. Optimally filling the S4 pocket is critical to avoid resistance and improve potency. Our results provide drug design strategies to avoid resistance that are applicable to other quickly evolving viral drug targets.




bs

Metabolism of Gluconeogenic Substrates by an Intracellular Fungal Pathogen Circumvents Nutritional Limitations within Macrophages

ABSTRACT

Microbial pathogens exploit host nutrients to proliferate and cause disease. Intracellular pathogens, particularly those exclusively living in the phagosome such as Histoplasma capsulatum, must adapt and acquire nutrients within the nutrient-limited phagosomal environment. In this study, we investigated which host nutrients could be utilized by Histoplasma as carbon sources to proliferate within macrophages. Histoplasma yeasts can grow on hexoses and amino acids but not fatty acids as the carbon source in vitro. Transcriptional analysis and metabolism profiling showed that Histoplasma yeasts downregulate glycolysis and fatty acid utilization but upregulate gluconeogenesis within macrophages. Depletion of glycolysis or fatty acid utilization pathways does not prevent Histoplasma growth within macrophages or impair virulence in vivo. However, loss of function in Pck1, the enzyme catalyzing the first committed step of gluconeogenesis, impairs Histoplasma growth within macrophages and severely attenuates virulence in vivo, indicating that Histoplasma yeasts rely on catabolism of gluconeogenic substrates (e.g., amino acids) to proliferate within macrophages.

IMPORTANCE Histoplasma is a primary human fungal pathogen that survives and proliferates within host immune cells, particularly within the macrophage phagosome compartment. The phagosome compartment is a nutrient-limited environment, requiring Histoplasma yeasts to be able to assimilate available carbon sources within the phagosome to meet their nutritional needs. In this study, we showed that Histoplasma yeasts do not utilize fatty acids or hexoses for growth within macrophages. Instead, Histoplasma yeasts consume gluconeogenic substrates to proliferate in macrophages. These findings reveal the phagosome composition from a nutrient standpoint and highlight essential metabolic pathways that are required for a phagosomal pathogen to proliferate in this intracellular environment.




bs

Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in Klebsiella pneumoniae

ABSTRACT

In Gram-negative bacteria, the permeability of the outer membrane governs rates of antibiotic uptake and thus the efficacy of antimicrobial treatment. Hydrophilic drugs like β-lactam antibiotics depend on diffusion through pore-forming outer membrane proteins to reach their intracellular targets. In this study, we investigated the distribution of porin genes in more than 2,700 Klebsiella isolates and found a widespread loss of OmpK35 functionality, particularly in those strains isolated from clinical environments. Using a defined set of outer-membrane-remodeled mutants, the major porin OmpK35 was shown to be largely responsible for β-lactam permeation. Sequence similarity network analysis characterized the porin protein subfamilies and led to discovery of a new porin family member, OmpK38. Structure-based comparisons of OmpK35, OmpK36, OmpK37, OmpK38, and PhoE showed near-identical pore frameworks but defining differences in the sequence characteristics of the extracellular loops. Antibiotic sensitivity profiles of isogenic Klebsiella pneumoniae strains, each expressing a different porin as its dominant pore, revealed striking differences in the antibiotic permeability characteristics of each channel in a physiological context. Since K. pneumoniae is a nosocomial pathogen with high rates of antimicrobial resistance and concurrent mortality, these experiments elucidate the role of porins in conferring specific drug-resistant phenotypes in a global context, informing future research to combat antimicrobial resistance in K. pneumoniae.

IMPORTANCE Klebsiella pneumoniae is a pathogen of humans with high rates of mortality and a recognized global rise in incidence of carbapenem-resistant K. pneumoniae (CRKP). The outer membrane of K. pneumoniae forms a permeability barrier that modulates the ability of antibiotics to reach their intracellular target. OmpK35, OmpK36, OmpK37, OmpK38, PhoE, and OmpK26 are porins in the outer membrane of K. pneumoniae, demonstrated here to have a causative relationship to drug resistance phenotypes in a physiological context. The data highlight that currently trialed combination treatments with a carbapenem and β-lactamase inhibitors could be effective on porin-deficient K. pneumoniae. Together with structural data, the results reveal the role of outer membrane proteome remodeling in antimicrobial resistance of K. pneumoniae and point to the role of extracellular loops, not channel parameters, in drug permeation. This significant finding warrants care in the development of phage therapies for K. pneumoniae infections, given the way porin expression will be modulated to confer phage-resistant—and collateral drug-resistant—phenotypes in K. pneumoniae.




bs

The Cellular Response to Lanthanum Is Substrate Specific and Reveals a Novel Route for Glycerol Metabolism in Pseudomonas putida KT2440

ABSTRACT

Ever since the discovery of the first rare earth element (REE)-dependent enzyme, the physiological role of lanthanides has become an emerging field of research due to the environmental implications and biotechnological opportunities. In Pseudomonas putida KT2440, the two pyrroloquinoline quinone-dependent alcohol dehydrogenases (PQQ-ADHs) PedE and PedH are inversely regulated in response to REE availability. This transcriptional switch is orchestrated by a complex regulatory network that includes the PedR2/PedS2 two-component system and is important for efficient growth on several alcoholic volatiles. To study whether cellular responses beyond the REE switch exist, the differential proteomic responses that occur during growth on various model carbon sources were analyzed. Apart from the Ca2+-dependent enzyme PedE, the differential abundances of most identified proteins were conditional. During growth on glycerol—and concomitant with the proteomic changes—lanthanum (La3+) availability affected different growth parameters, including the onset of logarithmic growth and final optical densities. Studies with mutant strains revealed a novel metabolic route for glycerol utilization, initiated by PedE and/or PedH activity. Upon oxidation to glycerate via glyceraldehyde, phosphorylation by the glycerate kinase GarK most likely yields glycerate-2-phosphate, which is eventually channeled into the central metabolism of the cell. This new route functions in parallel with the main degradation pathway encoded by the glpFKRD operon and provides a growth advantage to the cells by allowing an earlier onset of growth with glycerol as the sole source of carbon and energy.

IMPORTANCE The biological role of REEs has long been underestimated, and research has mainly focused on methanotrophic and methylotrophic bacteria. We have recently demonstrated that P. putida, a plant growth-promoting bacterium that thrives in the rhizosphere of various food crops, possesses a REE-dependent alcohol dehydrogenase (PedH), but knowledge about REE-specific effects on physiological traits in nonmethylotrophic bacteria is still scarce. This study demonstrates that the cellular response of P. putida to lanthanum (La3+) is mostly substrate specific and that La3+ availability highly affects the growth of cells on glycerol. Further, a novel route for glycerol metabolism is identified, which is initiated by PedE and/or PedH activity and provides a growth advantage to this biotechnologically relevant organism by allowing a faster onset of growth. Overall, these findings demonstrate that lanthanides can affect physiological traits in nonmethylotrophic bacteria and might influence their competitiveness in various environmental niches.




bs

A Cohort Comparison of Differences Between Regional and Buncombe County Patients of a Comprehensive Perinatal Substance Use Disorders Program in Western North Carolina

BACKGROUND Pregnant patients from rural counties of Western North Carolina face additional barriers when accessing comprehensive perinatal substance use disorders care at Project CARA as compared to patients local to the program in Buncombe County. We hypothesized regional patients would be less engaged in care.

METHOD Using a retrospective cohort design, univariate analyses (2, t-test; P < .05) compared patients' characteristics, engagement in care, and delivery outcomes. Engagement in care, the primary outcome, was operationalized as: attendance at expected, program-specific prenatal and postpartum visits, utilization of in-house counseling, community-based and/or inpatient substance use disorders treatment, and maternal urine drug screen at delivery negative for illicit substances.

RESULTS Regional patients (n = 324) were more likely than Buncombe County patients (n = 284) to have opioid [209 (64.5%) versus 162 (57.0%)] or amphetamine/methamphetamine use disorders (25 [7.7%] versus 13 [4.6%]), but less likely to have cannabis use (19 [5.9%] versus 38 [13.4%]; P = .009) and concurrent psychiatric disorders (214 [66.0%] versus 220 [77.5%]; P = .002). Engagement at postpartum visits was the significantly different outcome between patients (110/221 [49.8%] versus 146/226 [64.6%]; P = .002).

LIMITATIONS Outcomes were available for 66.8% of regional and 79.6% of Buncombe County patients of one program in one predominately white, non-Hispanic region of the state.

CONCLUSION Contrary to our hypothesis, regional and Buncombe County women engaged in prenatal care equally. However, a more formal transition into the postpartum period is needed, especially for regional women. A "hub-and-spokes" model that extends delivery of perinatal substance use disorders care into rural communities may be more effective for engagement retention.




bs

Digging deeper: The influence of historical mining on Glasgow's subsurface thermal state to inform geothermal research

Studies of the former NE England coalfield in Tyneside demonstrated that heat flow perturbations in boreholes were due to the entrainment and lateral dispersion of heat from deeper in the subsurface through flooded mine workings. This work assesses the influence of historical mining on geothermal observations across Greater Glasgow. The regional heat flow for Glasgow is 60 mW m–2 and, after correction for palaeoclimate, is estimated as c. 80 mW m–2. An example of reduced heat flow above mine workings is observed at Hallside (c. 10 km SE of Glasgow), where the heat flow through a 352 m deep borehole is c. 14 mW m–2. Similarly, the heat flow across the 199 m deep GGC01 borehole in the Glasgow Geothermal Energy Research Field Site is c. 44 mW m–2. The differences between these values and the expected regional heat flow suggest a significant component of horizontal heat flow into surrounding flooded mine workings. This deduction also influences the quantification of deeper geothermal resources, as extrapolation of the temperature gradient above mine workings would underestimate the temperature at depth. Future projects should consider the influence of historical mining on heat flow when temperature datasets such as these are used in the design of geothermal developments.

Supplementary material: Background information on the chronology of historical mining at each borehole location and a summary of groundwater flow in mine workings beneath Glasgow are available at https://doi.org/10.6084/m9.figshare.c.4681100

Thematic collection: This article is part of the ‘Early Career Research’ available at: https://www.lyellcollection.org/cc/SJG-early-career-research




bs

Obstructive sleep apnoea treatment and blood pressure: which phenotypes predict a response? A systematic review and meta-analysis

The treatment for obstructive sleep apnoea (OSA) with continuous positive airway pressure (CPAP) or mandibular advancement devices (MADs) is associated with blood pressure (BP) reduction; however, the overall effect is modest. The aim of this systematic review and meta-analysis of randomised controlled trials (RCTs) comparing the effect of such treatments on BP was to identify subgroups of patients who respond best to treatment.

The article search was performed in three different databases with specific search terms and selection criteria. From 2289 articles, we included 68 RCTs that compared CPAP or MADs with either passive or active treatment. When all the studies were pooled together, CPAP and MADs were associated with a mean BP reduction of –2.09 (95% CI –2.78– –1.40) mmHg for systolic BP and –1.92 (95% CI –2.40– –1.43) mmHg for diastolic BP and –1.27 (95% CI –2.34– –0.20) mmHg for systolic BP and –1.11 (95% CI –1.82– –0.41) mmHg for diastolic BP, respectively. The subgroups of patients who showed a greater response were those aged <60 years (systolic BP –2.93 mmHg), with uncontrolled BP at baseline (systolic BP –4.14 mmHg) and with severe oxygen desaturations (minimum arterial oxygen saturation measured by pulse oximetry <77%) at baseline (24-h systolic BP –7.57 mmHg).

Although this meta-analysis shows that the expected reduction of BP by CPAP/MADs is modest, it identifies specific characteristics that may predict a pronounced benefit from CPAP in terms of BP control. These findings should be interpreted with caution; however, they are particularly important in identifying potential phenotypes associated with BP reduction in patients treated for OSA.




bs

Ames SG, Davis BS, Marin JR, L. Fink EL, Olson LM, Gausche-Hill M, Kahn JM. Emergency Department Pediatric Readiness and Mortality in Critically Ill Children. Pediatrics. 2019;144(3):e20190568




bs

E-cigarette Product Characteristics and Subsequent Frequency of Cigarette Smoking

BACKGROUND:

There is a dearth of evidence regarding the association of use of electronic cigarettes (e-cigarettes) with certain product characteristics and adolescent and young adult risk of unhealthy tobacco use patterns (eg, frequency of combustible cigarette smoking), which is needed to inform the regulation of e-cigarettes.

METHODS:

Data were collected via an online survey of participants in the Southern California Children’s Health Study from 2015 to 2016 (baseline) and 2016 to 2017 (follow-up) (N = 1312). We evaluated the association of binary categories of 3 nonmutually exclusive characteristics of the e-cigarette used most frequently with the number of cigarettes smoked in the past 30 days at 1-year follow-up. Product characteristics included device (vape pen and/or modifiable electronic cigarette [mod]), use of nicotine in electronic liquid (e-liquid; yes or no), and use for dripping (directly dripping e-liquid onto the device; yes or no).

RESULTS:

Relative to never e-cigarette users, past-30-day e-cigarette use was associated with greater frequency of past-30-day cigarette smoking at follow-up. Among baseline past-30-day e-cigarette users, participants who used mods (versus vape pens) smoked >6 times as many cigarettes at follow-up (mean: 20.8 vs 1.3 cigarettes; rate ratio = 6.33; 95% confidence interval: 1.64–24.5) after adjustment for sociodemographic characteristics, baseline frequency of cigarette smoking, and number of days of e-cigarette use. After adjustment for device, neither nicotine e-liquid nor dripping were associated with frequency of cigarette smoking.

CONCLUSIONS:

Baseline mod users (versus vape pen users) smoked more cigarettes in the past 30 days at follow-up. Regulation of e-cigarette device type warrants consideration as a strategy to reduce cigarette smoking among adolescents and young adults who vape.




bs

Inhaled Corticosteroid Treatment in Chronic Obstructive Pulmonary Disease (COPD): Boon or Bane?

Inhaled corticosteroid (ICS)–based therapy is often used for patients with chronic obstructive pulmonary disease (COPD). However, this approach is under scrutiny because of ICS overuse in patients for whom it is not recommended and because of concerns about adverse events, particularly pneumonia, with long-term ICS use. Evidence suggests ICS may be beneficial in specific patients, namely, those with high blood eosinophil counts (eg, ≥300 cells/µL) or who are at a high risk of exacerbations. According to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2020 ABCD assessment tool, these patients belong in group D. For these patients, recommended initial treatment includes ICS in combination with long-acting β2-agonists (LABAs) when blood eosinophil counts are ≥300 cells/µL or LABA + long-acting muscarinic antagonist (LAMA) when patients are highly symptomatic, that is, with greater dyspnea and/or exercise limitation. Follow-up treatments for patients with persistent dyspnea and/or exacerbations may include LABA + ICS, LABA + LAMA, or LABA + LAMA + ICS, with use of ICS being guided by blood eosinophil counts. In this review, differences in the inflammatory mechanism underlying COPD and asthma and the role of ICS treatment in COPD are summarized. Furthermore, findings from recent clinical trials where use of ICS-based dual or triple therapy in COPD was compared with LABA + LAMA therapy and trials in which ICS withdrawal was evaluated in patients with COPD are reviewed. Finally, a step-by-step guide for ICS withdrawal in patients who are unlikely to benefit from this treatment is proposed. A video of the author discussing the overall takeaway of the review article could be downloaded from the link provided: https://www.youtube.com/watch?v=Uq7Sr5jqPDI.




bs

The effects of elevated temperature and PCO2 on the energetics and haemolymph pH homeostasis of juveniles of the European lobster, Homarus gammarus [RESEARCH ARTICLE]

Daniel P. Small, Piero Calosi, Samuel P. S. Rastrick, Lucy M. Turner, Stephen Widdicombe, and John I. Spicer

Regulation of extracellular acid–base balance, while maintaining energy metabolism, is recognised as an important aspect when defining an organism's sensitivity to environmental changes. This study investigated the haemolymph buffering capacity and energy metabolism (oxygen consumption, haemolymph [l-lactate] and [protein]) in early benthic juveniles (carapace length <40 mm) of the European lobster, Homarus gammarus, exposed to elevated temperature and PCO2. At 13°C, H. gammarus juveniles were able to fully compensate for acid–base disturbances caused by the exposure to elevated seawater PCO2 at levels associated with ocean acidification and carbon dioxide capture and storage (CCS) leakage scenarios, via haemolymph [HCO3] regulation. However, metabolic rate remained constant and food consumption decreased under elevated PCO2, indicating reduced energy availability. Juveniles at 17°C showed no ability to actively compensate haemolymph pH, resulting in decreased haemolymph pH particularly under CCS conditions. Early benthic juvenile lobsters at 17°C were not able to increase energy intake to offset increased energy demand and therefore appear to be unable to respond to acid–base disturbances due to increased PCO2 at elevated temperature. Analysis of haemolymph metabolites suggests that, even under control conditions, juveniles were energetically limited. They exhibited high haemolymph [l-lactate], indicating recourse to anaerobic metabolism. Low haemolymph [protein] was linked to minimal non-bicarbonate buffering and reduced oxygen transport capacity. We discuss these results in the context of potential impacts of ongoing ocean change and CCS leakage scenarios on the development of juvenile H. gammarus and future lobster populations and stocks.




bs

Body temperature stability observed in the whale sharks, the world's largest fish [RESEARCH ARTICLE]

Itsumi Nakamura, Rui Matsumoto, and Katsufumi Sato

It is generally assumed that the body temperature of large animals is less likely to change due to their large body size, resulting in a high thermal inertia and a smaller surface area to volume ratio. The goal of this study was to investigate the stability of body temperature in large fish using data from field experiments. We measured the muscle temperatures of free-ranging whale sharks (Rhincodon typus), the largest extant fish globally, and investigated their ectothermic physiology and the stability of their body temperatures. The measured muscle temperature of the whale sharks changed substantially more slowly than the water temperature fluctuations associated with vertical movements, and the whole-body heat-transfer coefficients (HTC) of whale sharks estimated using heat-budget models were lower than those of any other fish species measured to date. The heat-budget models also showed that internal heat production does not contribute to changes in muscle temperature. A comparative analysis showed that the HTC at cooling in various fish species including both ectothermic and endothermic species ranging from 10–4 to 103 kg was proportional to body mass–0.63. This allometry was present regardless of whether the fish were ectothermic or endothermic, and was an extension of the relationship observed in previous studies on small fish. Thus, large fish have the advantage of body temperature stability while moving in environments with large temperature variations. Our results suggest that the large body size of whale sharks aids in preventing a decrease in body temperature during deep excursions to more than 1000 m depths without high metabolic costs of producing heat.




bs

Absolute ethanol intake predicts ethanol preference in Drosophila [SHORT COMMUNICATION]

Scarlet J. Park and William W. Ja

Factors that mediate ethanol preference in Drosophila melanogaster are not well understood. A major confound has been the use of diverse methods to estimate ethanol consumption. We measured fly consumptive ethanol preference on base diets varying in nutrients, taste, and ethanol concentration. Both sexes showed ethanol preference that was abolished on high nutrient concentration diets. Additionally, manipulating total food intake without altering the nutritive value of the base diet or the ethanol concentration was sufficient to evoke or eliminate ethanol preference. Absolute ethanol intake and food volume consumed were stronger predictors of ethanol preference than caloric intake or the dietary caloric content. Our findings suggest that the effect of the base diet on ethanol preference is largely mediated by total consumption associated with the delivery medium, which ultimately determines the level of ethanol intake. We speculate that a physiologically relevant threshold for ethanol intake is essential for preferential ethanol consumption.




bs

The Timed Inspiratory Effort Index as a Weaning Predictor: Analysis of Intra- and Interobserver Reproducibility

BACKGROUND:Prolonged ventilatory weaning may expose patients to unnecessary discomfort, increase the risk of complications, and raise the costs of hospital treatment. In this scenario, indexes that reliably predict successful liberation can be helpful.OBJECTIVE:To evaluate the intra- and interobserver reproducibility of the timed inspiratory effort index as a weaning predictor.METHODS:This prospective observational study included subjects judged as able to start liberation from mechanical ventilation. For the intra-observer analysis, the same investigator performed 2 measurements in each selected patient with an interval of 30 min a rest. For interobserver analysis, 2 measurements were obtained in another sample of subjects, also with an interval of 30 min rest, but each of one performed by a different investigator. The Bland-Altman diagram, the coefficient concordance of kappa, and the Pearson correlation coefficient were used to compare the measurements. The performance of the timed inspiratory effort index was assessed by receiver operating characteristic curves. Values of P < .05 were considered significant.RESULTS:We selected 113 subjects (43 males; mean ± SD age, 77 ± 14 y). Fifty-six (49.6%) achieved successful liberation, and 33 (29%) died in the ICU. The mean ± SD duration of mechanical ventilation was 14.4 ± 6.7 d. The Bland-Altman diagrams that addressed intra- and interobservers agreement showed low variability between measurements. Values of the concordance coefficients of kappa were 0.82 (0.68–0.95) and 0.80 (0.65–0.94), and of the linear correlation coefficients, 0.86 (0.77–0.91) and 0.89 (0.82–0.93) for the intra- and interobservers measurements, respectively. The mean ± SD values for the area under the curve for each pair of the intra- and interobserver measurements were 0.96 ± 0.07 versus 0.94 ± 0.07 (P = .41) and 0.94 ± 0.05 versus 0.90 ± 0.07 (P = .14), respectively.CONCLUSIONS:The variability of the measurement of the timed inspiratory effort index by intra- and interobservers showed very high reproducibility, which reinforced the index as a sensible, accurate, and reliable outcome predictor of liberation from mechanical ventilation.




bs

Role of Oatp2b1 in Drug Absorption and Drug-Drug Interactions [Articles]

The organic anion transporting polypeptide (OATP)2B1 is localized on the basolateral membrane of hepatocytes and is expressed in enterocytes. Based on its distribution pattern and functional similarity to OATP1B-type transporters, OATP2B1 might have a role in the absorption and disposition of a range of xenobiotics. Although several prescription drugs, including hydroxymethylglutaryl-coenzyme A-CoA reductase inhibitors (statins) such as fluvastatin, are OATP2B1 substrates in vitro, evidence supporting the in vivo relevance of this transporter remains limited, and most has relied on substrate-inhibitor interactions resulting in altered pharmacokinetic properties of the victim drugs. To address this knowledge deficit, we developed and characterized an Oatp2b1-deficient mouse model and evaluated the impact of this transporter on the absorption and disposition of fluvastatin. Consistent with the intestinal localization of Oatp2b1, we found that the genetic deletion or pharmacological inhibition of Oatp2b1 was associated with decreased absorption of fluvastatin by 2- to 3-fold. The availability of a viable Oatp2b1-deficient mouse model provides an opportunity to unequivocally determine the contribution of this transporter to the absorption and drug-drug interaction potential of drugs.

SIGNIFICANCE STATEMENT

The current investigation suggests that mice deficient in Oatp2b1 provide a valuable tool to study the in vivo importance of this transporter. In addition, our studies have identified novel potent inhibitors of OATP2B1 among the class of tyrosine kinase inhibitors, a rapidly expanding class of drugs used in various therapeutic areas that may cause drug-drug interactions with OATP2B1 substrates.




bs

Ontogeny and Cross-species Comparison of Pathways Involved in Drug Absorption, Distribution, Metabolism, and Excretion in Neonates (Review): Kidney [Minireview]

The kidneys play an important role in many processes, including urine formation, water conservation, acid-base equilibrium, and elimination of waste. The anatomic and functional development of the kidney has different maturation time points in humans versus animals, with critical differences between species in maturation before and after birth. Absorption, distribution, metabolism, and excretion (ADME) of drugs vary depending on age and maturation, which will lead to differences in toxicity and efficacy. When neonate/juvenile laboratory animal studies are designed, a thorough knowledge of the differences in kidney development between newborns/children and laboratory animals is essential. The human and laboratory animal data must be combined to obtain a more complete picture of the development in the kidneys around the neonatal period and the complexity of ADME in newborns and children. This review examines the ontogeny and cross-species differences in ADME processes in the developing kidney in preterm and term laboratory animals and children. It provides an overview of insights into ADME functionality in the kidney by identifying what is currently known and which gaps still exist. Currently important renal function properties such as glomerular filtration rate, renal blood flow, and ability to concentrate are generally well known, while detailed knowledge about transporter and metabolism maturation is growing but is still lacking. Preclinical data in those properties is limited to rodents and generally covers only the expression levels of transporter or enzyme-encoding genes. More knowledge on a functional level is needed to predict the kinetics and toxicity in neonate/juvenile toxicity and efficacy studies.

SIGNIFICANCE STATEMENT

This review provides insight in cross-species developmental differences of absorption, distribution, metabolism, and excretion properties in the kidney, which should be considered in neonate/juvenile study interpretation, hypotheses generation, and experimental design.




bs

Structural basis of substrate recognition and catalysis by fucosyltransferase 8 [Protein Structure and Folding]

Fucosylation of the innermost GlcNAc of N-glycans by fucosyltransferase 8 (FUT8) is an important step in the maturation of complex and hybrid N-glycans. This simple modification can dramatically affect the activities and half-lives of glycoproteins, effects that are relevant to understanding the invasiveness of some cancers, development of mAb therapeutics, and the etiology of a congenital glycosylation disorder. The acceptor substrate preferences of FUT8 are well-characterized and provide a framework for understanding N-glycan maturation in the Golgi; however, the structural basis of these substrate preferences and the mechanism through which catalysis is achieved remain unknown. Here we describe several structures of mouse and human FUT8 in the apo state and in complex with GDP, a mimic of the donor substrate, and with a glycopeptide acceptor substrate at 1.80–2.50 Å resolution. These structures provide insights into a unique conformational change associated with donor substrate binding, common strategies employed by fucosyltransferases to coordinate GDP, features that define acceptor substrate preferences, and a likely mechanism for enzyme catalysis. Together with molecular dynamics simulations, the structures also revealed how FUT8 dimerization plays an important role in defining the acceptor substrate-binding site. Collectively, this information significantly builds on our understanding of the core fucosylation process.




bs

Roles of active-site residues in catalysis, substrate binding, cooperativity, and the reaction mechanism of the quinoprotein glycine oxidase [Enzymology]

The quinoprotein glycine oxidase from the marine bacterium Pseudoalteromonas luteoviolacea (PlGoxA) uses a protein-derived cysteine tryptophylquinone (CTQ) cofactor to catalyze conversion of glycine to glyoxylate and ammonia. This homotetrameric enzyme exhibits strong cooperativity toward glycine binding. It is a good model for studying enzyme kinetics and cooperativity, specifically for being able to separate those aspects of protein function through directed mutagenesis. Variant proteins were generated with mutations in four active-site residues, Phe-316, His-583, Tyr-766, and His-767. Structures for glycine-soaked crystals were obtained for each. Different mutations had differential effects on kcat and K0.5 for catalysis, K0.5 for substrate binding, and the Hill coefficients describing the steady-state kinetics or substrate binding. Phe-316 and Tyr-766 variants retained catalytic activity, albeit with altered kinetics and cooperativity. Substitutions of His-583 revealed that it is essential for glycine binding, and the structure of H583C PlGoxA had no active-site glycine present in glycine-soaked crystals. The structure of H767A PlGoxA revealed a previously undetected reaction intermediate, a carbinolamine product-reduced CTQ adduct, and exhibited only negligible activity. The results of these experiments, as well as those with the native enzyme and previous variants, enabled construction of a detailed mechanism for the reductive half-reaction of glycine oxidation. This proposed mechanism includes three discrete reaction intermediates that are covalently bound to CTQ during the reaction, two of which have now been structurally characterized by X-ray crystallography.




bs

A single amino acid substitution uncouples catalysis and allostery in an essential biosynthetic enzyme in Mycobacterium tuberculosis [Enzymology]

Allostery exploits the conformational dynamics of enzymes by triggering a shift in population ensembles toward functionally distinct conformational or dynamic states. Allostery extensively regulates the activities of key enzymes within biosynthetic pathways to meet metabolic demand for their end products. Here, we have examined a critical enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS), at the gateway to aromatic amino acid biosynthesis in Mycobacterium tuberculosis, which shows extremely complex dynamic allostery: three distinct aromatic amino acids jointly communicate occupancy to the active site via subtle changes in dynamics, enabling exquisite fine-tuning of delivery of these essential metabolites. Furthermore, this allosteric mechanism is co-opted by pathway branchpoint enzyme chorismate mutase upon complex formation. In this study, using statistical coupling analysis, site-directed mutagenesis, isothermal calorimetry, small-angle X-ray scattering, and X-ray crystallography analyses, we have pinpointed a critical node within the complex dynamic communication network responsible for this sophisticated allosteric machinery. Through a facile Gly to Pro substitution, we have altered backbone dynamics, completely severing the allosteric signal yet remarkably, generating a nonallosteric enzyme that retains full catalytic activity. We also identified a second residue of prime importance to the inter-enzyme communication with chorismate mutase. Our results reveal that highly complex dynamic allostery is surprisingly vulnerable and provide further insights into the intimate link between catalysis and allostery.




bs

A Single Intramuscular Dose of a Plant-Made Virus-Like Particle Vaccine Elicits a Balanced Humoral and Cellular Response and Protects Young and Aged Mice from Influenza H1N1 Virus Challenge despite a Modest/Absent Humoral Response [Vaccines]

Virus-like-particle (VLP) influenza vaccines can be given intramuscularly (i.m.) or intranasally (i.n.) and may have advantages over split-virion formulations in the elderly. We tested a plant-made VLP vaccine candidate bearing the viral hemagglutinin (HA) delivered either i.m. or i.n. in young and aged mice. Young adult (5- to 8-week-old) and aged (16- to 20-month-old) female BALB/c mice received a single 3-μg dose based on the HA (A/California/07/2009 H1N1) content of a plant-made H1-VLP (i.m. or i.n.) split-virion vaccine (i.m.) or were left naive. After vaccination, humoral and splenocyte responses were assessed, and some mice were challenged. Both VLP and split vaccines given i.m. protected 100% of the young animals, but the VLP group lost the least weight and had stronger humoral and cellular responses. Compared to split-vaccine recipients, aged animals vaccinated i.m. with VLP were more likely to survive challenge (80% versus 60%). The lung viral load postchallenge was lowest in the VLP i.m. groups. Mice vaccinated with VLP i.n. had little detectable immune response, but survival was significantly increased. In both age groups, i.m. administration of the H1-VLP vaccine elicited more balanced humoral and cellular responses and provided better protection from homologous challenge than the split-virion vaccine.




bs

Ocrelizumab initiation in patients with MS: A multicenter observational study

Objective

To provide first real-world experience on patients with MS treated with the B cell–depleting antibody ocrelizumab.

Methods

We retrospectively collected data of patients who had received at least 1 treatment cycle (2 infusions) of ocrelizumab at 3 large neurology centers. Patients' characteristics including premedication, clinical disease course, and documented side effects were analyzed.

Results

We could identify 210 patients (125 women, mean age ± SD, 42.1 ± 11.4 years) who had received ocrelizumab with a mean disease duration of 7.3 years and a median Expanded Disability Status Scale score of 3.75 (interquartile range 2.5–5.5; range 0–8). Twenty-six percent of these patients had a primary progressive MS (PPMS), whereas 74% had a relapsing-remitting (RRMS) or active secondary progressive (aSPMS) disease course. Twenty-four percent of all patients were treatment naive, whereas 76% had received immune therapies before. After ocrelizumab initiation (median follow-up was 200 days, range 30–1,674 days), 13% of patients with RRMS/aSPMS experienced a relapse (accounting for an annualized relapse rate of 0.17, 95% CI 0.10–0.24), and 5% of all patients with MS experienced a 12-week confirmed disability progression. Treatment was generally well tolerated, albeit only short-term side effects were recorded, including direct infusion-related reactions and mild infections.

Conclusions

We provide class IV evidence that treatment with ocrelizumab can stabilize naive and pretreated patients, indicating that ocrelizumab is an option following potent MS drugs such as natalizumab and fingolimod. Further studies are warranted to confirm these findings and to reveal safety concerns in the longer-term follow-up.

Classification of evidence

This study provides Class IV evidence that for patients with MS, ocrelizumab can stabilize both treatment-naive and previously treated patients.