1 O problema do abuso de drogas prevenção através investigação, pesquisa e educação / Murillo de Macedo Pereira, Vera Kühn de Macedo Pereira. By search.wellcomelibrary.org Published On :: São Paulo : Governo do Estado de Sao Paulo, Secretaria da Segurança Pública, 1975. Full Article
1 The university chemical dependency project : final report : November 1 1986 / Steven A. Bloch, Steven Ungerleider. By search.wellcomelibrary.org Published On :: [Indiana] : Integrated Research Services, Inc., 1986. Full Article
1 Collection 03: Gaye Chapman picture book artwork, 2005-2015 By feedproxy.google.com Published On :: 29/09/2015 12:00:00 AM Full Article
1 Jeu instructif des peuples, 1815 / Paul-André Basset By feedproxy.google.com Published On :: 29/09/2015 12:00:00 AM Full Article
1 Thomas Hassall - papers, 1810-1868, 1908 By feedproxy.google.com Published On :: 29/09/2015 12:00:00 AM Full Article
1 Illuminated address presented to Andrew Lynch, 1925 By feedproxy.google.com Published On :: 30/09/2015 12:00:00 AM Full Article
1 Series 02: Merle Highet sound recordings of Frederick Rose, 1990 By feedproxy.google.com Published On :: 30/09/2015 9:43:23 AM Full Article
1 Victor J. Daley bibliography, 1885 By feedproxy.google.com Published On :: 30/09/2015 12:00:00 AM Full Article
1 Pam Liell papers relating to ‘Scrolls’ Book Club, 1994-2008 including correspondence with Alex Buzo, 1994-1998 By feedproxy.google.com Published On :: 1/10/2015 12:00:00 AM Full Article
1 Jessie Jean Roberts recipe book, 1940s+ By feedproxy.google.com Published On :: 1/10/2015 12:00:00 AM Full Article
1 Series 01: H.C. Dorman further papers, 1950-2012 By feedproxy.google.com Published On :: 1/10/2015 12:00:00 AM Full Article
1 Series 02: H.C. Dorman pictorial material, 1960-1967 By feedproxy.google.com Published On :: 1/10/2015 12:00:00 AM Full Article
1 John Laurie land grant, 8 October 1816 By feedproxy.google.com Published On :: 2/10/2015 12:00:00 AM Full Article
1 Series 01: Slides of towns in country NSW, ca 1960s-1980s By feedproxy.google.com Published On :: 2/10/2015 11:28:44 AM Full Article
1 Series 02: Slides of suburbs in Sydney NSW, ca 1960s-1980s By feedproxy.google.com Published On :: 2/10/2015 11:40:58 AM Full Article
1 Series 03: Negatives of suburbs of Sydney NSW, ca 1960s-1980s By feedproxy.google.com Published On :: 2/10/2015 11:48:12 AM Full Article
1 Ferguson family papers, 1885-1993 By feedproxy.google.com Published On :: 2/10/2015 12:00:00 AM Full Article
1 David Milliss further papers, 1940s-2010 By feedproxy.google.com Published On :: 6/10/2015 12:00:00 AM Full Article
1 Edna Ryan Award records, 2014 By feedproxy.google.com Published On :: 6/10/2015 12:00:00 AM Full Article
1 Series 04: Contact prints of suburbs of Sydney NSW, ca 1960s-1980s By feedproxy.google.com Published On :: 8/10/2015 12:18:12 PM Full Article
1 Series 02 Part 01: Sir Augustus Charles Gregory letterbook, 1852-1854 By feedproxy.google.com Published On :: 9/10/2015 8:45:45 AM Full Article
1 Herbert Compton diaries, 17 May – 29 July 1973 By feedproxy.google.com Published On :: 9/10/2015 12:00:00 AM Full Article
1 Correspondence relating to Lewis Harold Bell Lasseter, 1931 By feedproxy.google.com Published On :: 9/10/2015 12:00:00 AM Full Article
1 Echelet picumne and echelet grimpeur, male / by Jean Gabriel Prêtre, 1824 By feedproxy.google.com Published On :: 9/10/2015 12:00:00 AM Full Article
1 The Most Excellent Order of the British Empire Association (New South Wales) further records, 1979-2012 By feedproxy.google.com Published On :: 9/10/2015 12:00:00 AM Full Article
1 Selected Poems of Henry Lawson: Correspondence: Vol.1 By feedproxy.google.com Published On :: 29/10/2015 12:00:00 AM Full Article
1 Sydney in 1848 : illustrated by copper-plate engravings of its principal streets, public buildings, churches, chapels, etc. / from drawings by Joseph Fowles. By feedproxy.google.com Published On :: 28/04/2016 12:00:00 AM Full Article
1 Staley thinks No. 1 South Carolina is national champs By sports.yahoo.com Published On :: Thu, 09 Apr 2020 20:31:23 GMT South Carolina coach Dawn Staley believes her top-ranked Gamecocks are the women's basketball national champions, even without an NCAA Tournament trophy to put in their display case due to the pandemic-shortened season. The NCAA decided against officially crowning champions after its signature tournaments were called off due to the coronavirus pandemic that has sent much of the world into lock down. Staley spoke from her home where she's spent the past month managing her program and ensuring her players don't linger too much on what they missed. Full Article article Sports
1 Charli Turner Thorne drops by 'Pac-12 Playlist' to surprise former player Dr. Michelle Tom By sports.yahoo.com Published On :: Thu, 16 Apr 2020 16:51:30 GMT Pac-12 Networks' Ashley Adamson speaks with former Arizona State women's basketball player Michelle Tom, who is now a doctor treating COVID-19 patients in Winslow, Arizona. Full Article video Sports
1 Dr. Michelle Tom shares journey from ASU women's hoops to treating COVID-19 patients By sports.yahoo.com Published On :: Thu, 16 Apr 2020 23:44:26 GMT Pac-12 Networks' Ashley Adamson speaks with former Arizona State women's basketball player Michelle Tom, who is now a doctor treating COVID-19 patients Winslow Indian Health Care Center and Little Colorado Medical Center in Eastern Arizona. Full Article video Sports
1 Bill Walton joins Pac-12 Perspective to talk about Bike for Humanity By sports.yahoo.com Published On :: Sat, 18 Apr 2020 01:59:16 GMT Pac-12 Networks' Yogi Roth and Ashley Adamson talk with Hall of Fame player and Pac-12 Networks talent Bill Walton during Thursday's Pac-12 Perspective podcast. Full Article video Sports
1 Oregon State's Aleah Goodman, Maddie Washington reflect on earning 2020 Pac-12 Sportsmanship Award By sports.yahoo.com Published On :: Thu, 07 May 2020 15:58:01 GMT The Pac-12 Student-Athlete Advisory Committee voted to award the Oregon State women’s basketball team with the Pac-12 Sportsmanship Award for the 2019-20 season, honoring their character and sportsmanship before a rivalry game against Oregon in Jan. 2020 -- the day Kobe Bryant, his daughter, Gigi, and seven others passed away in a helicopter crash in Southern California. In the above video, Aleah Goodman and Madison Washington share how the teams came together as one in a circle of prayer before the game. Full Article video Sports
1 Oregon State women's basketball receives Pac-12 Sportsmanship Award for supporting rival Oregon in tragedy By sports.yahoo.com Published On :: Thu, 07 May 2020 15:58:09 GMT On the day Kobe Bryant suddenly passed away, the Beavers embraced their rivals at midcourt in a moment of strength to support the Ducks, many of whom had personal connections to Bryant and his daughter, Gigi. For this, Oregon State is the 2020 recipient of the Pac-12 Sportsmanship Award. Full Article video Sports
1 Pac-12 women's basketball student-athletes reflect on the influence of their moms ahead of Mother's Day By sports.yahoo.com Published On :: Fri, 08 May 2020 21:24:08 GMT Pac-12 student-athletes give shout-outs to their moms ahead of Mother's Day on May 10th, 2020 including UCLA's Michaela Onyenwere, Oregon's Sabrina Ionescu and Satou Sabally, Arizona's Aari McDonald, Cate Reese, and Lacie Hull, Stanford's Kiana Williams, USC's Endyia Rogers, and Aliyah Jeune, and Utah's Brynna Maxwell. Full Article video Sports
1 Sparse equisigned PCA: Algorithms and performance bounds in the noisy rank-1 setting By projecteuclid.org Published On :: Mon, 27 Apr 2020 22:02 EDT Arvind Prasadan, Raj Rao Nadakuditi, Debashis Paul. Source: Electronic Journal of Statistics, Volume 14, Number 1, 345--385.Abstract: Singular value decomposition (SVD) based principal component analysis (PCA) breaks down in the high-dimensional and limited sample size regime below a certain critical eigen-SNR that depends on the dimensionality of the system and the number of samples. Below this critical eigen-SNR, the estimates returned by the SVD are asymptotically uncorrelated with the latent principal components. We consider a setting where the left singular vector of the underlying rank one signal matrix is assumed to be sparse and the right singular vector is assumed to be equisigned, that is, having either only nonnegative or only nonpositive entries. We consider six different algorithms for estimating the sparse principal component based on different statistical criteria and prove that by exploiting sparsity, we recover consistent estimates in the low eigen-SNR regime where the SVD fails. Our analysis reveals conditions under which a coordinate selection scheme based on a sum-type decision statistic outperforms schemes that utilize the $ell _{1}$ and $ell _{2}$ norm-based statistics. We derive lower bounds on the size of detectable coordinates of the principal left singular vector and utilize these lower bounds to derive lower bounds on the worst-case risk. Finally, we verify our findings with numerical simulations and a illustrate the performance with a video data where the interest is in identifying objects. Full Article
1 Non-parametric adaptive estimation of order 1 Sobol indices in stochastic models, with an application to Epidemiology By projecteuclid.org Published On :: Wed, 22 Apr 2020 04:02 EDT Gwenaëlle Castellan, Anthony Cousien, Viet Chi Tran. Source: Electronic Journal of Statistics, Volume 14, Number 1, 50--81.Abstract: Global sensitivity analysis is a set of methods aiming at quantifying the contribution of an uncertain input parameter of the model (or combination of parameters) on the variability of the response. We consider here the estimation of the Sobol indices of order 1 which are commonly-used indicators based on a decomposition of the output’s variance. In a deterministic framework, when the same inputs always give the same outputs, these indices are usually estimated by replicated simulations of the model. In a stochastic framework, when the response given a set of input parameters is not unique due to randomness in the model, metamodels are often used to approximate the mean and dispersion of the response by deterministic functions. We propose a new non-parametric estimator without the need of defining a metamodel to estimate the Sobol indices of order 1. The estimator is based on warped wavelets and is adaptive in the regularity of the model. The convergence of the mean square error to zero, when the number of simulations of the model tend to infinity, is computed and an elbow effect is shown, depending on the regularity of the model. Applications in Epidemiology are carried to illustrate the use of non-parametric estimators. Full Article
1 A Low Complexity Algorithm with O(√T) Regret and O(1) Constraint Violations for Online Convex Optimization with Long Term Constraints By Published On :: 2020 This paper considers online convex optimization over a complicated constraint set, which typically consists of multiple functional constraints and a set constraint. The conventional online projection algorithm (Zinkevich, 2003) can be difficult to implement due to the potentially high computation complexity of the projection operation. In this paper, we relax the functional constraints by allowing them to be violated at each round but still requiring them to be satisfied in the long term. This type of relaxed online convex optimization (with long term constraints) was first considered in Mahdavi et al. (2012). That prior work proposes an algorithm to achieve $O(sqrt{T})$ regret and $O(T^{3/4})$ constraint violations for general problems and another algorithm to achieve an $O(T^{2/3})$ bound for both regret and constraint violations when the constraint set can be described by a finite number of linear constraints. A recent extension in Jenatton et al. (2016) can achieve $O(T^{max{ heta,1- heta}})$ regret and $O(T^{1- heta/2})$ constraint violations where $ hetain (0,1)$. The current paper proposes a new simple algorithm that yields improved performance in comparison to prior works. The new algorithm achieves an $O(sqrt{T})$ regret bound with $O(1)$ constraint violations. Full Article
1 Provably robust estimation of modulo 1 samples of a smooth function with applications to phase unwrapping By Published On :: 2020 Consider an unknown smooth function $f: [0,1]^d ightarrow mathbb{R}$, and assume we are given $n$ noisy mod 1 samples of $f$, i.e., $y_i = (f(x_i) + eta_i) mod 1$, for $x_i in [0,1]^d$, where $eta_i$ denotes the noise. Given the samples $(x_i,y_i)_{i=1}^{n}$, our goal is to recover smooth, robust estimates of the clean samples $f(x_i) mod 1$. We formulate a natural approach for solving this problem, which works with angular embeddings of the noisy mod 1 samples over the unit circle, inspired by the angular synchronization framework. This amounts to solving a smoothness regularized least-squares problem -- a quadratically constrained quadratic program (QCQP) -- where the variables are constrained to lie on the unit circle. Our proposed approach is based on solving its relaxation, which is a trust-region sub-problem and hence solvable efficiently. We provide theoretical guarantees demonstrating its robustness to noise for adversarial, as well as random Gaussian and Bernoulli noise models. To the best of our knowledge, these are the first such theoretical results for this problem. We demonstrate the robustness and efficiency of our proposed approach via extensive numerical simulations on synthetic data, along with a simple least-squares based solution for the unwrapping stage, that recovers the original samples of $f$ (up to a global shift). It is shown to perform well at high levels of noise, when taking as input the denoised modulo $1$ samples. Finally, we also consider two other approaches for denoising the modulo 1 samples that leverage tools from Riemannian optimization on manifolds, including a Burer-Monteiro approach for a semidefinite programming relaxation of our formulation. For the two-dimensional version of the problem, which has applications in synthetic aperture radar interferometry (InSAR), we are able to solve instances of real-world data with a million sample points in under 10 seconds, on a personal laptop. Full Article
1 Exact Guarantees on the Absence of Spurious Local Minima for Non-negative Rank-1 Robust Principal Component Analysis By Published On :: 2020 This work is concerned with the non-negative rank-1 robust principal component analysis (RPCA), where the goal is to recover the dominant non-negative principal components of a data matrix precisely, where a number of measurements could be grossly corrupted with sparse and arbitrary large noise. Most of the known techniques for solving the RPCA rely on convex relaxation methods by lifting the problem to a higher dimension, which significantly increase the number of variables. As an alternative, the well-known Burer-Monteiro approach can be used to cast the RPCA as a non-convex and non-smooth $ell_1$ optimization problem with a significantly smaller number of variables. In this work, we show that the low-dimensional formulation of the symmetric and asymmetric positive rank-1 RPCA based on the Burer-Monteiro approach has benign landscape, i.e., 1) it does not have any spurious local solution, 2) has a unique global solution, and 3) its unique global solution coincides with the true components. An implication of this result is that simple local search algorithms are guaranteed to achieve a zero global optimality gap when directly applied to the low-dimensional formulation. Furthermore, we provide strong deterministic and probabilistic guarantees for the exact recovery of the true principal components. In particular, it is shown that a constant fraction of the measurements could be grossly corrupted and yet they would not create any spurious local solution. Full Article
1 Unique Sharp Local Minimum in L1-minimization Complete Dictionary Learning By Published On :: 2020 We study the problem of globally recovering a dictionary from a set of signals via $ell_1$-minimization. We assume that the signals are generated as i.i.d. random linear combinations of the $K$ atoms from a complete reference dictionary $D^*in mathbb R^{K imes K}$, where the linear combination coefficients are from either a Bernoulli type model or exact sparse model. First, we obtain a necessary and sufficient norm condition for the reference dictionary $D^*$ to be a sharp local minimum of the expected $ell_1$ objective function. Our result substantially extends that of Wu and Yu (2015) and allows the combination coefficient to be non-negative. Secondly, we obtain an explicit bound on the region within which the objective value of the reference dictionary is minimal. Thirdly, we show that the reference dictionary is the unique sharp local minimum, thus establishing the first known global property of $ell_1$-minimization dictionary learning. Motivated by the theoretical results, we introduce a perturbation based test to determine whether a dictionary is a sharp local minimum of the objective function. In addition, we also propose a new dictionary learning algorithm based on Block Coordinate Descent, called DL-BCD, which is guaranteed to decrease the obective function monotonically. Simulation studies show that DL-BCD has competitive performance in terms of recovery rate compared to other state-of-the-art dictionary learning algorithms when the reference dictionary is generated from random Gaussian matrices. Full Article
1 (1 + epsilon)-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets By Published On :: 2020 Anomaly detection is not an easy problem since distribution of anomalous samples is unknown a priori. We explore a novel method that gives a trade-off possibility between one-class and two-class approaches, and leads to a better performance on anomaly detection problems with small or non-representative anomalous samples. The method is evaluated using several data sets and compared to a set of conventional one-class and two-class approaches. Full Article
1 COVID-19 collecting drive By feedproxy.google.com Published On :: Mon, 30 Mar 2020 23:02:48 +0000 We need your help! We are collecting posters, flyers and mail-outs appearing in our local neighbourhoods in respo Full Article
1 Cook commemoration sparks 1970 protest By feedproxy.google.com Published On :: Tue, 28 Apr 2020 04:52:55 +0000 In 1970, celebrations and commemorations were held across the nation for the 200th anniversary of the Endeavour’s visit Full Article
1 $W^{1,p}$-Solutions of the transport equation by stochastic perturbation By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST David A. C. Mollinedo. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 188--201.Abstract: We consider the stochastic transport equation with a possibly unbounded Hölder continuous vector field. Well-posedness is proved, namely, we show existence, uniqueness and strong stability of $W^{1,p}$-weak solutions. Full Article
1 Odysseus asleep : uncollected sequences, 1994-2019 By dal.novanet.ca Published On :: Fri, 1 May 2020 19:34:09 -0300 Author: Sanger, Peter, 1943- author.Callnumber: PS 8587 A372 O44 2019ISBN: 9781554472048 Full Article
1 Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis. (arXiv:2005.02535v1 [econ.EM] CROSS LISTED) By arxiv.org Published On :: Arctic sea ice extent (SIE) in September 2019 ranked second-to-lowest in history and is trending downward. The understanding of how internal variability amplifies the effects of external $ ext{CO}_2$ forcing is still limited. We propose the VARCTIC, which is a Vector Autoregression (VAR) designed to capture and extrapolate Arctic feedback loops. VARs are dynamic simultaneous systems of equations, routinely estimated to predict and understand the interactions of multiple macroeconomic time series. Hence, the VARCTIC is a parsimonious compromise between fullblown climate models and purely statistical approaches that usually offer little explanation of the underlying mechanism. Our "business as usual" completely unconditional forecast has SIE hitting 0 in September by the 2060s. Impulse response functions reveal that anthropogenic $ ext{CO}_2$ emission shocks have a permanent effect on SIE - a property shared by no other shock. Further, we find Albedo- and Thickness-based feedbacks to be the main amplification channels through which $ ext{CO}_2$ anomalies impact SIE in the short/medium run. Conditional forecast analyses reveal that the future path of SIE crucially depends on the evolution of $ ext{CO}_2$ emissions, with outcomes ranging from recovering SIE to it reaching 0 in the 2050s. Finally, Albedo and Thickness feedbacks are shown to play an important role in accelerating the speed at which predicted SIE is heading towards 0. Full Article
1 Generating Thermal Image Data Samples using 3D Facial Modelling Techniques and Deep Learning Methodologies. (arXiv:2005.01923v2 [cs.CV] UPDATED) By arxiv.org Published On :: Methods for generating synthetic data have become of increasing importance to build large datasets required for Convolution Neural Networks (CNN) based deep learning techniques for a wide range of computer vision applications. In this work, we extend existing methodologies to show how 2D thermal facial data can be mapped to provide 3D facial models. For the proposed research work we have used tufts datasets for generating 3D varying face poses by using a single frontal face pose. The system works by refining the existing image quality by performing fusion based image preprocessing operations. The refined outputs have better contrast adjustments, decreased noise level and higher exposedness of the dark regions. It makes the facial landmarks and temperature patterns on the human face more discernible and visible when compared to original raw data. Different image quality metrics are used to compare the refined version of images with original images. In the next phase of the proposed study, the refined version of images is used to create 3D facial geometry structures by using Convolution Neural Networks (CNN). The generated outputs are then imported in blender software to finally extract the 3D thermal facial outputs of both males and females. The same technique is also used on our thermal face data acquired using prototype thermal camera (developed under Heliaus EU project) in an indoor lab environment which is then used for generating synthetic 3D face data along with varying yaw face angles and lastly facial depth map is generated. Full Article
1 Interpreting Rate-Distortion of Variational Autoencoder and Using Model Uncertainty for Anomaly Detection. (arXiv:2005.01889v2 [cs.LG] UPDATED) By arxiv.org Published On :: Building a scalable machine learning system for unsupervised anomaly detection via representation learning is highly desirable. One of the prevalent methods is using a reconstruction error from variational autoencoder (VAE) via maximizing the evidence lower bound. We revisit VAE from the perspective of information theory to provide some theoretical foundations on using the reconstruction error, and finally arrive at a simpler and more effective model for anomaly detection. In addition, to enhance the effectiveness of detecting anomalies, we incorporate a practical model uncertainty measure into the metric. We show empirically the competitive performance of our approach on benchmark datasets. Full Article