us

Modeling COVID-19: A new video describing the types of models used

Below, Mac Hyman, Tulane University, talks about types of mathematical models--their strengths and weaknesses--the data that we currently have and what we really need, and what models can tell us about a possible second wave.

At the beginning of the video, he thanks the mathematics community for its work, and near the end says, "Our mathematical community is really playing a central role in helping to predict the spread, and help mitigate this epidemic, and prioritize our efforts. …Do not underestimate the power that mathematics can have in helping to mitigate this epidemic—-we have a role to play."

See the full set of videos on modeling COVID-19 and see media coverage of mathematics' role in modeling the pandemic.




us

Lecture Notes on Cluster Algebras

Robert J. Marsh, University of Leeds - A publication of the European Mathematical Society, 2014, 122 pp., Softcover, ISBN-13: 978-3-03719-130-9, List: US$36, All AMS Members: US$28.80, EMSZLEC/19

Cluster algebras are combinatorially defined commutative algebras which were introduced by S. Fomin and A. Zelevinsky as a tool for studying the dual...




us

Classical Mechanics with Calculus of Variations and Optimal Control: An Intuitive Introduction

Mark Levi, Pennsylvania State University - AMS, 2014, 299 pp., Softcover, ISBN-13: 978-0-8218-9138-4, List: US$42, All AMS Members: US$33.60, STML/69

It is hard to imagine a more original and insightful approach to classical mechanics. Most physicists would regard this as a well-worn and settled...




us

Semiclassical Standing Waves with Clustering Peaks for Nonlinear Schrodinger Equations

Jaeyoung Byeon, KAIST, and Kazunaga Tanaka, Waseda University - AMS, 2013, 89 pp., Softcover, ISBN-13: 978-0-8218-9163-6, List: US$71, All AMS Members: US$56.80, MEMO/229/1076

The authors study the following singularly perturbed problem: (-epsilon^2Delta u+V(x)u = f(u)) in (mathbf{R}^N). Their main result is the...




us

Inhibiting thrombin protects against dangerous infant digestive disease

(University of South Florida (USF Health)) A new preclinical study by researchers at the University of South Florida Health (USF Health) Morsani College of Medicine and Johns Hopkins University School of Medicine offers promise of a specific treatment for NEC, a rare inflammatory bowel disease that is a leading cause of death in premature infants. The team found that inhibiting the inflammatory and blood-clotting molecule thrombin with targeted nanotherapy can protect against NEC-like injury in newborn mice.




us

Research found a new way to make functional materials based on polymers of metal clusters

(University of Jyväskylä - Jyväskylän yliopisto) Researchers at the universities of Jyvaskyla and Xiamen discovered a novel way to make functional macroscopic crystalline materials out of nanometer-size 34-atom silver-gold intermetallic clusters. The cluster material has a highly anisotropic electrical conductivity, being a semiconductor in one direction and an electrical insulator in other directions. The research was published in Nature Communications on May 6, 2020.




us

Shedding new light on nanolasers using 2D semiconductors

(Arizona State University) Cun-Zheng Ning, a professor of electrical engineering in the Ira A. Fulton Schools of Engineering at Arizona State University, and collaborators from Tsinghua University in China discovered a process of physics that enables low-power nanolasers to be produced in 2D semiconductor materials. Understanding the physics behind lasers at nanoscale and how they interact with semiconductors can have major implications for high-speed communication channels for supercomputers and data centers.




us

Gov’t to distribute reusable masks

The Government will distribute free reusable face masks to all Hong Kong citizens, the Innovation & Technology Bureau announced today.

 

The CuMask, made with six layers and special ergonomic features, was developed by the Hong Kong Research Institute of Textiles & Apparel.

 

Two of its layers contain copper which is capable of immobilising bacteria, common viruses and other harmful substances.

 

The mask complies with the American Society for Testing & Materials F2100 Level 1 Standard in terms of particle and bacterial filtration efficiency, resistance to penetration by synthetic blood, and flammability and pressure resistance.

 

It is also reusable for up to 60 washes.

 

The bureau said, except for babies and infants, all holders of valid Hong Kong identity cards are eligible to obtain a mask.

 

Citizens can register online from 7am tomorrow till June 6. Each registration can cater for a maximum of six persons.

 

Upon successful registration, the mask will be delivered to the door by Hongkong Post within two weeks.

 

Primary and kindergarten students will each be given two masks, which will be delivered directly to children's schools. Parents do not have to register.

 

The Government has also arranged to deliver over 140,000 of the masks to residential homes and social welfare institutions for their distribution to those including elderly and the homeless.

 

Click here for registration details.




us

Gov't calls for rational discussion

The Government urged District Councillors to focus on livelihood issues and discuss matters rationally, adding that it will continue to co-operate with the District Council under the principles of mutual respect, observation of order and rational discussion.

 

The Government issued the statement after a number of Central & Western District Council members today entered the office area of the Central & Western District Office without consent.

 

The statement noted that the members shouted loudly and knocked on the door of the office.

 

Despite repeated responses and an appeal from the District Office staff, the members still refused to leave.

 

The statement added that the members stayed in the District Office for a long time, seriously affecting its operation.

 

The Government expressed regret over their acts.




us

Emerging Roles for the Nucleolus 2019 [Meeting Report]

IntroductionThe nucleolus is the central organelle within eukaryotic cells whose primary function is to generate ribosomes, the major protein producing machines within all cells. New roles for the nucleolus are continuously emerging as we explore its molecular intricacies. Despite the central and fundamental role of the nucleolus in cell biology, there has previously been no single official meeting that enables the gathering of scientists whose research converges on the nucleolus. As a result, the community of researchers who study this organelle risks fragmentation across disciplines. The Emerging Roles for the Nucleolus Symposium, which has now taken place twice on a biennial basis, first in 2017 (1) and again in 2019, therefore, represents the first of its kind. The overarching goals of this symposium are (a) to convene researchers who study the nucleolus across model systems (yeast, nematodes, fruit flies, mouse, human cell lines) and biological perspectives (structural, biophysical, molecular, cellular, pathophysiology), (b) to share and disseminate the latest research breakthroughs in nucleolar biology, (c) to promote interaction, engagement, and collaboration centered on the nucleolus across disciplines, and (d) to provide trainees and early career investigators with an organelle-specific scientific community of support.The second Emerging Roles for the Nucleolus meeting was sponsored by the American Society for Biochemistry and Molecular Biology and was held at the Stowers Institute for Medical Research in Kansas City, MO, from October 24 to October 27, 2019. It was organized by Jennifer Gerton (Stowers Institute), Francesca Duncan (Northwestern University Feinberg School of Medicine), and Craig Pikaard...




us

Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers [Microbiology]

Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall–associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis. On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin.




us

Biochemical and structural insights into how amino acids regulate pyruvate kinase muscle isoform 2 [Enzymology]

Pyruvate kinase muscle isoform 2 (PKM2) is a key glycolytic enzyme involved in ATP generation and critical for cancer metabolism. PKM2 is expressed in many human cancers and is regulated by complex mechanisms that promote tumor growth and proliferation. Therefore, it is considered an attractive therapeutic target for modulating tumor metabolism. Various stimuli allosterically regulate PKM2 by cycling it between highly active and less active states. Several small molecules activate PKM2 by binding to its intersubunit interface. Serine and cysteine serve as an activator and inhibitor of PKM2, respectively, by binding to its amino acid (AA)-binding pocket, which therefore represents a potential druggable site. Despite binding similarly to PKM2, how cysteine and serine differentially regulate this enzyme remains elusive. Using kinetic analyses, fluorescence binding, X-ray crystallography, and gel filtration experiments with asparagine, aspartate, and valine as PKM2 ligands, we examined whether the differences in the side-chain polarity of these AAs trigger distinct allosteric responses in PKM2. We found that Asn (polar) and Asp (charged) activate PKM2 and that Val (hydrophobic) inhibits it. The results also indicate that both Asn and Asp can restore the activity of Val-inhibited PKM2. AA-bound crystal structures of PKM2 displayed distinctive interactions within the binding pocket, causing unique allosteric effects in the enzyme. These structure-function analyses of AA-mediated PKM2 regulation shed light on the chemical requirements in the development of mechanism-based small-molecule modulators targeting the AA-binding pocket of PKM2 and provide broader insights into the regulatory mechanisms of complex allosteric enzymes.




us

Development of a novel {beta}-1,6-glucan-specific detection system using functionally-modified recombinant endo-{beta}-1,6-glucanase [Methods and Resources]

β-1,3-d-Glucan is a ubiquitous glucose polymer produced by plants, bacteria, and most fungi. It has been used as a diagnostic tool in patients with invasive mycoses via a highly-sensitive reagent consisting of the blood coagulation system of horseshoe crab. However, no method is currently available for measuring β-1,6-glucan, another primary β-glucan structure of fungal polysaccharides. Herein, we describe the development of an economical and highly-sensitive and specific assay for β-1,6-glucan using a modified recombinant endo-β-1,6-glucanase having diminished glucan hydrolase activity. The purified β-1,6-glucanase derivative bound to the β-1,6-glucan pustulan with a KD of 16.4 nm. We validated the specificity of this β-1,6-glucan probe by demonstrating its ability to detect cell wall β-1,6-glucan from both yeast and hyphal forms of the opportunistic fungal pathogen Candida albicans, without any detectable binding to glucan lacking the long β-1,6-glucan branch. We developed a sandwich ELISA-like assay with a low limit of quantification for pustulan (1.5 pg/ml), and we successfully employed this assay in the quantification of extracellular β-1,6-glucan released by >250 patient-derived strains of different Candida species (including Candida auris) in culture supernatant in vitro. We also used this assay to measure β-1,6-glucan in vivo in the serum and in several organs in a mouse model of systemic candidiasis. Our work describes a reliable method for β-1,6-glucan detection, which may prove useful for the diagnosis of invasive fungal infections.




us

The transcriptional regulator IscR integrates host-derived nitrosative stress and iron starvation in activation of the vvhBA operon in Vibrio vulnificus [Gene Regulation]

For successful infection of their hosts, pathogenic bacteria recognize host-derived signals that induce the expression of virulence factors in a spatiotemporal manner. The fulminating food-borne pathogen Vibrio vulnificus produces a cytolysin/hemolysin protein encoded by the vvhBA operon, which is a virulence factor preferentially expressed upon exposure to murine blood and macrophages. The Fe-S cluster containing transcriptional regulator IscR activates the vvhBA operon in response to nitrosative stress and iron starvation, during which the cellular IscR protein level increases. Here, electrophoretic mobility shift and DNase I protection assays revealed that IscR directly binds downstream of the vvhBA promoter PvvhBA, which is unusual for a positive regulator. We found that in addition to IscR, the transcriptional regulator HlyU activates vvhBA transcription by directly binding upstream of PvvhBA, whereas the histone-like nucleoid-structuring protein (H-NS) represses vvhBA by extensively binding to both downstream and upstream regions of its promoter. Of note, the binding sites of IscR and HlyU overlapped with those of H-NS. We further substantiated that IscR and HlyU outcompete H-NS for binding to the PvvhBA regulatory region, resulting in the release of H-NS repression and vvhBA induction. We conclude that concurrent antirepression by IscR and HlyU at regions both downstream and upstream of PvvhBA provides V. vulnificus with the means of integrating host-derived signal(s) such as nitrosative stress and iron starvation for precise regulation of vvhBA transcription, thereby enabling successful host infection.




us

Structures of the MHC-I molecule BF2*1501 disclose the preferred presentation of an H5N1 virus-derived epitope [Protein Structure and Folding]

Lethal infections by strains of the highly-pathogenic avian influenza virus (HPAIV) H5N1 pose serious threats to both the poultry industry and public health worldwide. A lack of confirmed HPAIV epitopes recognized by cytotoxic T lymphocytes (CTLs) has hindered the utilization of CD8+ T-cell–mediated immunity and has precluded the development of effectively diversified epitope-based vaccination approaches. In particular, an HPAIV H5N1 CTL-recognized epitope based on the peptide MHC-I–β2m (pMHC-I) complex has not yet been designed. Here, screening a collection of selected peptides of several HPAIV strains against a specific pathogen-free pMHC-I (pBF2*1501), we identified a highly-conserved HPAIV H5N1 CTL epitope, named HPAIV–PA123–130. We determined the structure of the BF2*1501–PA123–130 complex at 2.1 Å resolution to elucidate the molecular mechanisms of a preferential presentation of the highly-conserved PA123–130 epitope in the chicken B15 lineage. Conformational characteristics of the PA123–130 epitope with a protruding Tyr-7 residue indicated that this epitope has great potential to be recognized by specific TCRs. Moreover, significantly increased numbers of CD8+ T cells specific for the HPAIV–PA123–130 epitope in peptide-immunized chickens indicated that a repertoire of CD8+ T cells can specifically respond to this epitope. We anticipate that the identification and structural characterization of the PA123–130 epitope reported here could enable further studies of CTL immunity against HPAIV H5N1. Such studies may aid in the development of vaccine development strategies using well-conserved internal viral antigens in chickens.




us

An enzyme-based protocol for cell-free synthesis of nature-identical capsular oligosaccharides from Actinobacillus pleuropneumoniae serotype 1 [Enzymology]

Actinobacillus pleuropneumoniae (App) is the etiological agent of acute porcine pneumonia and responsible for severe economic losses worldwide. The capsule polymer of App serotype 1 (App1) consists of [4)-GlcNAc-β(1,6)-Gal-α-1-(PO4-] repeating units that are O-acetylated at O-6 of the GlcNAc. It is a major virulence factor and was used in previous studies in the successful generation of an experimental glycoconjugate vaccine. However, the application of glycoconjugate vaccines in the animal health sector is limited, presumably because of the high costs associated with harvesting the polymer from pathogen culture. Consequently, here we exploited the capsule polymerase Cps1B of App1 as an in vitro synthesis tool and an alternative for capsule polymer provision. Cps1B consists of two catalytic domains, as well as a domain rich in tetratricopeptide repeats (TPRs). We compared the elongation mechanism of Cps1B with that of a ΔTPR truncation (Cps1B-ΔTPR). Interestingly, the product profiles displayed by Cps1B suggested processive elongation of the nascent polymer, whereas Cps1B-ΔTPR appeared to work in a more distributive manner. The dispersity of the synthesized products could be reduced by generating single-action transferases and immobilizing them on individual columns, separating the two catalytic activities. Furthermore, we identified the O-acetyltransferase Cps1D of App1 and used it to modify the polymers produced by Cps1B. Two-dimensional NMR analyses of the products revealed O-acetylation levels identical to those of polymer harvested from App1 culture supernatants. In conclusion, we have established a protocol for the pathogen-free in vitro synthesis of tailored, nature-identical App1 capsule polymers.




us

Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPAR{alpha}-regulated genes [Lipids]

Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2−/−) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2−/− mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2−/− mice and a total of 91 in female Fatp2−/− mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator–activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2−/− liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities.




us

Determination of globotriaosylceramide analogs in the organs of a mouse model of Fabry disease [Lipids]

Fabry disease is a heritable lipid disorder caused by the low activity of α-galactosidase A and characterized by the systemic accumulation of globotriaosylceramide (Gb3). Recent studies have reported a structural heterogeneity of Gb3 in Fabry disease, including Gb3 isoforms with different fatty acids and Gb3 analogs with modifications on the sphingosine moiety. However, Gb3 assays are often performed only on the selected Gb3 isoforms. To precisely determine the total Gb3 concentration, here we established two methods for determining both Gb3 isoforms and analogs. One was the deacylation method, involving Gb3 treatment with sphingolipid ceramide N-deacylase, followed by an assay of the deacylated products, globotriaosylsphingosine (lyso-Gb3) and its analogs, by ultra-performance LC coupled to tandem MS (UPLC-MS/MS). The other method was a direct assay established in the present study for 37 Gb3 isoforms and analogs/isoforms by UPLC-MS/MS. Gb3s from the organs of symptomatic animals of a Fabry disease mouse model were mainly Gb3 isoforms and two Gb3 analogs, such as Gb3(+18) containing the lyso-Gb3(+18) moiety and Gb3(−2) containing the lyso-Gb3(−2) moiety. The total concentrations and Gb3 analog distributions determined by the two methods were comparable. Gb3(+18) levels were high in the kidneys (24% of total Gb3) and the liver (13%), and we observed Gb3(−2) in the heart (10%) and the kidneys (5%). These results indicate organ-specific expression of Gb3 analogs, insights that may lead to a deeper understanding of the pathophysiology of Fabry disease.




us

NF-{kappa}B mediates lipopolysaccharide-induced alternative pre-mRNA splicing of MyD88 in mouse macrophages [Signal Transduction]

Although a robust inflammatory response is needed to combat infection, this response must ultimately be terminated to prevent chronic inflammation. One mechanism that terminates inflammatory signaling is the production of alternative mRNA splice forms in the Toll-like receptor (TLR) signaling pathway. Whereas most genes in the TLR pathway encode positive mediators of inflammatory signaling, several, including that encoding the MyD88 signaling adaptor, also produce alternative spliced mRNA isoforms that encode dominant-negative inhibitors of the response. Production of these negatively acting alternatively spliced isoforms is induced by stimulation with the TLR4 agonist lipopolysaccharide (LPS); thus, this alternative pre-mRNA splicing represents a negative feedback loop that terminates TLR signaling and prevents chronic inflammation. In the current study, we investigated the mechanisms regulating the LPS-induced alternative pre-mRNA splicing of the MyD88 transcript in murine macrophages. We found that 1) the induction of the alternatively spliced MyD88 form is due to alternative pre-mRNA splicing and not caused by another RNA regulatory mechanism, 2) MyD88 splicing is regulated by both the MyD88- and TRIF-dependent arms of the TLR signaling pathway, 3) MyD88 splicing is regulated by the NF-κB transcription factor, and 4) NF-κB likely regulates MyD88 alternative pre-mRNA splicing per se rather than regulating splicing indirectly by altering MyD88 transcription. We conclude that alternative splicing of MyD88 may provide a sensitive mechanism that ensures robust termination of inflammation for tissue repair and restoration of normal tissue homeostasis once an infection is controlled.




us

Certain ortho-hydroxylated brominated ethers are promiscuous kinase inhibitors that impair neuronal signaling and neurodevelopmental processes [Cell Biology]

The developing nervous system is remarkably sensitive to environmental signals, including disruptive toxins, such as polybrominated diphenyl ethers (PBDEs). PBDEs are an environmentally pervasive class of brominated flame retardants whose neurodevelopmental toxicity mechanisms remain largely unclear. Using dissociated cortical neurons from embryonic Rattus norvegicus, we found here that chronic exposure to 6-OH–BDE-47, one of the most prevalent hydroxylated PBDE metabolites, suppresses both spontaneous and evoked neuronal electrical activity. On the basis of our previous work on mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) (MEK) biology and our observation that 6-OH–BDE-47 is structurally similar to kinase inhibitors, we hypothesized that certain hydroxylated PBDEs mediate neurotoxicity, at least in part, by impairing the MEK–ERK axis of MAPK signal transduction. We tested this hypothesis on three experimental platforms: 1) in silico, where modeling ligand–protein docking suggested that 6-OH–BDE-47 is a promiscuous ATP-competitive kinase inhibitor; 2) in vitro in dissociated neurons, where 6-OH–BDE-47 and another specific hydroxylated BDE metabolite similarly impaired phosphorylation of MEK/ERK1/2 and activity-induced transcription of a neuronal immediate early gene; and 3) in vivo in Drosophila melanogaster, where developmental exposures to 6-OH–BDE-47 and a MAPK inhibitor resulted in offspring displaying similarly increased frequency of mushroom-body β–lobe midline crossing, a metric of axonal guidance. Taken together, our results support that certain ortho-hydroxylated PBDE metabolites are promiscuous kinase inhibitors and can cause disruptions of critical neurodevelopmental processes, including neuronal electrical activity, pre-synaptic functions, MEK–ERK signaling, and axonal guidance.




us

The hibernating 100S complex is a target of ribosome-recycling factor and elongation factor G in Staphylococcus aureus [Protein Synthesis and Degradation]

The formation of translationally inactive 70S dimers (called 100S ribosomes) by hibernation-promoting factor is a widespread survival strategy among bacteria. Ribosome dimerization is thought to be reversible, with the dissociation of the 100S complexes enabling ribosome recycling for participation in new rounds of translation. The precise pathway of 100S ribosome recycling has been unclear. We previously found that the heat-shock GTPase HflX in the human pathogen Staphylococcus aureus is a minor disassembly factor. Cells lacking hflX do not accumulate 100S ribosomes unless they are subjected to heat exposure, suggesting the existence of an alternative pathway during nonstressed conditions. Here, we provide biochemical and genetic evidence that two essential translation factors, ribosome-recycling factor (RRF) and GTPase elongation factor G (EF-G), synergistically split 100S ribosomes in a GTP-dependent but tRNA translocation-independent manner. We found that although HflX and the RRF/EF-G pair are functionally interchangeable, HflX is expressed at low levels and is dispensable under normal growth conditions. The bacterial RRF/EF-G pair was previously known to target only the post-termination 70S complexes; our results reveal a new role in the reversal of ribosome hibernation that is intimately linked to bacterial pathogenesis, persister formation, stress responses, and ribosome integrity.




us

COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids]

Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism.




us

Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence [Molecular Biophysics]

The rapid emergence and dissemination of methicillin-resistant Staphylococcus aureus (MRSA) strains poses a major threat to public health. MRSA possesses an arsenal of secreted host-damaging virulence factors that mediate pathogenicity and blunt immune defenses. Panton–Valentine leukocidin (PVL) and α-toxin are exotoxins that create lytic pores in the host cell membrane. They are recognized as being important for the development of invasive MRSA infections and are thus potential targets for antivirulence therapies. Here, we report the high-resolution X-ray crystal structures of both PVL and α-toxin in their soluble, monomeric, and oligomeric membrane-inserted pore states in complex with n-tetradecylphosphocholine (C14PC). The structures revealed two evolutionarily conserved phosphatidylcholine-binding mechanisms and their roles in modulating host cell attachment, oligomer assembly, and membrane perforation. Moreover, we demonstrate that the soluble C14PC compound protects primary human immune cells in vitro against cytolysis by PVL and α-toxin and hence may serve as the basis for the development of an antivirulence agent for managing MRSA infections.




us

AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice [Metabolism]

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a newly discovered class of signaling lipids with anti-inflammatory and anti-diabetic properties. However, the endogenous regulation of FAHFAs remains a pressing but unanswered question. Here, using MS-based FAHFA hydrolysis assays, LC-MS–based lipidomics analyses, and activity-based protein profiling, we found that androgen-induced gene 1 (AIG1) and androgen-dependent TFPI-regulating protein (ADTRP), two threonine hydrolases, control FAHFA levels in vivo in both genetic and pharmacologic mouse models. Tissues from mice lacking ADTRP (Adtrp-KO), or both AIG1 and ADTRP (DKO) had higher concentrations of FAHFAs particularly isomers with the ester bond at the 9th carbon due to decreased FAHFA hydrolysis activity. The levels of other lipid classes were unaltered indicating that AIG1 and ADTRP specifically hydrolyze FAHFAs. Complementing these genetic studies, we also identified a dual AIG1/ADTRP inhibitor, ABD-110207, which is active in vivo. Acute treatment of WT mice with ABD-110207 resulted in elevated FAHFA levels, further supporting the notion that AIG1 and ADTRP activity control endogenous FAHFA levels. However, loss of AIG1/ADTRP did not mimic the changes associated with pharmacologically administered FAHFAs on extent of upregulation of FAHFA levels, glucose tolerance, or insulin sensitivity in mice, indicating that therapeutic strategies should weigh more on FAHFA administration. Together, these findings identify AIG1 and ADTRP as the first endogenous FAHFA hydrolases identified and provide critical genetic and chemical tools for further characterization of these enzymes and endogenous FAHFAs to unravel their physiological functions and roles in health and disease.




us

5-Ethynyl-2'-deoxycytidine and 5-ethynyl-2'-deoxyuridine are differentially incorporated in cells infected with HSV-1, HCMV, and KSHV viruses [Microbiology]

Nucleoside analogues are a valuable experimental tool. Incorporation of these molecules into newly synthesized DNA (i.e. pulse-labeling) is used to monitor cell proliferation or to isolate nascent DNA. Some of the most common nucleoside analogues used for pulse-labeling of DNA in cells are the deoxypyrimidine analogues 5-ethynyl-2'-deoxyuridine (EdU) and 5-ethynyl-2'-deoxycytidine (EdC). Click chemistry enables conjugation of an azide molecule tagged with a fluorescent dye or biotin to the alkyne of the analog, which can then be used to detect incorporation of EdU and EdC into DNA. The use of EdC is often recommended because of the potential cytotoxicity associated with EdU during longer incubations. Here, by comparing the relative incorporation efficiencies of EdU and EdC during short 30-min pulses, we demonstrate significantly lower incorporation of EdC than of EdU in noninfected human fibroblast cells or in cells infected with either human cytomegalovirus or Kaposi's sarcoma-associated herpesvirus. Interestingly, cells infected with herpes simplex virus type-1 (HSV-1) incorporated EdC and EdU at similar levels during short pulses. Of note, exogenous expression of HSV-1 thymidine kinase increased the incorporation efficiency of EdC. These results highlight the limitations when using substituted pyrimidine analogues in pulse-labeling and suggest that EdU is the preferable nucleoside analogue for short pulse-labeling experiments, resulting in increased recovery and sensitivity for downstream applications. This is an important discovery that may help to better characterize the biochemical properties of different nucleoside analogues with a given kinase, ultimately leading to significant differences in labeling efficiency of nascent DNA.




us

SED on student protests at universities campuses




us

SED on universities funding and limit of access to university campuses




us

First School Allocation Exercise 2020 invites applications for five kindergarten premises in public housing estates




us

Suspending Classes without Suspending Learning




us

Continuous learning and development in time of epidemic




us

EDB to adjust public services




us

Suspending Classes without Suspending Learning – e-Learning




us

Stay focused and prepared for HKDSE Examination




us

Print your own laboratory-grade microscope for US$18

(University of Bath) For the first time, labs around the world can 3D print their own precision microscopes, thanks to an open-source design created at Bath.




us

Study shows need for new focus in anti-vaping efforts for older teens and young adults

(Michigan Medicine - University of Michigan) They know it's addictive. They know it's linked to dangerous lung diseases. And they know it delivers more nicotine than the cigarettes it's supposed to replace. But the social aspects of vaping drives young people to use Juul and other e-cigarettes, according to nearly two-thirds of teens and young adults in a new study. Less than 5% say the availability of fruity flavors drives use of e-cigarettes by members of their generation, and only 10% say addiction does.




us

Could a polio vaccine stop the coronavirus pandemic? (video)

(American Chemical Society) The COVID-19 pandemic has scientists considering a few less-conventional options while vaccines against SARS-CoV-2 are being developed. One option might be the oral polio vaccine. We chatted with one of the researchers proposing the idea -- Robert Gallo, M.D. -- to understand why a vaccine that hasn't been used in the U.S. for two decades might provide short-term protection against this new coronavirus: https://youtu.be/Wqw4aX4c33c.




us

Ultraviolet light exposes contagion spread from improper PPE use

(Florida Atlantic University) Despite PPE use, reports show that many health care workers contracted COVID-19. A novel training technique reinforces the importance of using proper procedures to put on and take off PPE when caring for patients during the pandemic. Researchers vividly demonstrate how aerosol-generating procedures can lead to exposure of the contagion with improper PPE use. The most common error made by the health care workers was contaminating the face or forearms during PPE removal.




us

ASU professor recognized nationally with Camille Dreyfus Teacher-Scholar Award

(Arizona State University) Gary Moore, assistant professor in ASU's School of Molecular Sciences and the Biodesign Institute's Center for Applied Structural Discovery has just been named one of 14 young faculty nationwide to be honored with a 2020 Camille Dreyfus Teacher-Scholar Award by the Camille and Henry Dreyfus Foundation.




us

Refuse transfer subsidy disbursed

The Government today announced that the Environment Bureau has disbursed about $6.5 million in subsidies to 809 private municipal solid waste collectors by cheque.

 

Under the Government's latest round of anti-epidemic measures, the bureau launched the Subsidy Scheme for the Refuse Transfer Station Account Holders for Transporting Municipal Solid Waste to provide a one-off relief subsidy of $8,000 to each eligible private municipal solid waste collector.

 

To provide financial support to the industry as soon as possible, the Environmental Protection Department, following funding approval by the Legislative Council Finance Committee, expedited the subsidy disbursement arrangement by waiving the application procedures.

 

The cheques have been issued and posted to all eligible private collectors.

 

Eligible collectors are refuse transfer station account holders who transported municipal solid waste to refuse transfer stations or landfills in the first quarter of the year.

 

The subsidy will assist them in increasing resources to enhance workers' personal protective equipment and strengthen the disinfection of refuse transport vehicles to curb the risk of virus transmission and maintain environmental hygiene.




us

Hausdorff Dimension, Lagrange and Markov Dynamical Spectra for Geometric Lorenz Attractors

Carlos Gustavo T. Moreira, Maria José Pacifico and Sergio Romaña Ibarra
Bull. Amer. Math. Soc. 57 (2018), 269-292.
Abstract, references and article information




us

SAS Notes for SAS®9 - 32202: Dual-monitor setup might cause problems in SAS Enterprise Guide

Problems might occur when using SAS Enterprise Guide with dual monitors. For example, it might appear there is a performance problem with the query builder or other task, or it might appear that code or a task is hung, or




us

New Study Measures Impact of U.S. Treasury Supply Versus Fed’s Monetary Policy on Bank Deposit Funding

Tuesday, January 28, 2020 - 13:00

New Research from Columbia Business School Challenges Conventional Wisdom of Bank Funding




us

Balancing Act: Consumers Are Willing to Sacrifice Privacy to See Fewer Digital Ads, According to New Columbia Business School Research

Tuesday, February 4, 2020 - 12:45

NEW YORK – In the era of online surveillance, consumers continually express concerns about how their digital footprint is being tracked and their privacy compromised.




us

Same Old Tune: Columbia Business School Research Shows Bias Against Women in the Music Industry

Thursday, February 27, 2020 - 16:45

NEW YORK – In 2018, the Grammy Awards faced criticism when male artists swept the most prestigious music awards – prompting Recording Academy president Neil Portnow to say the solution is for women to “step up.” But the truth is women artists have been stepping up for decades, according to research from Columbia Business School’s Professor of Business Michael Mauskapf and Associate Professor of Organizational Behavior Noah Askin.




us

How to Make Sound Decisions with Limited Data During the Coronavirus Pandemic

Thursday, April 2, 2020 - 13:00

Coronavirus presents an unprecedented predicament: Everyday, leaders must make momentous decisions with life or death consequences for many—but there is a dearth of data. Oded Netzer is a Columbia Business School professor and Data Science Institute affiliate who builds statistical and econometric models to measure consumer behavior that help business leaders make data-driven decisions. Here, he discusses how leaders from all fields can make sound decisions with scarce data to guide them.




us

Research from Columbia Business School Suggests Hypersensitivity to Coronavirus News Is Driving Market Reactions – and Vice Versa

Friday, April 10, 2020 - 22:45

NEW YORK – On March 11th, the Dow Jones Industrial Average plunged 1,485 points, ending the longest bull-market run in history, and sending the market into nosedive the likes of which has not been witnessed since the Great Recession. While it could take years to fully understand all of the factors that led to this recent crash, a consensus has emerged that fear of an economic downturn brought on by the coronavirus has played a large role.




us

New Research from Columbia Business School Shows Radical Changes in Household Spending Habits During COVID-19 Epidemic

Tuesday, April 28, 2020 - 14:30

Study provides first real-time view into household consumption during outbreak in U.S., showing an initial sharp increase in key categories, followed by a sharp decrease in overall spending

 




us

Lockdown Losses: Lack of Government Transparency during COVID-19 Pandemic Holds Back Businesses from Taking Risks, Making Financial Decisions

Thursday, April 30, 2020 - 14:15

NEW YORK – Since the coronavirus outbreak began, states across the U.S. have implemented stay-at-home orders, disrupting businesses and causing many to shut down. In addition, almost half of U.S. states from New York to Oregon have extended their lockdown orders beyond the original end date. These extensions of lockdown policy, while clearly beneficial to address public health concerns, can damage the economy beyond their immediate impact on business closures and layoffs.




us

New Research: Entrepreneurship, New Business Creation are Critical to COVID-19 Economic Recovery

Tuesday, May 5, 2020 - 09:00

Working Paper from Columbia Business School Emphasizes the Need to Accelerate New Businesses, Not Just Protect Existing Ones, to Restore the U.S. Economy




us

Focused ultrasound opening brain to previously impossible treatments

(University of Virginia Health System) Focused ultrasound, the researchers hope, could revolutionize treatment for conditions from Alzheimer's to epilepsy to brain tumors -- and even help repair the devastating damage caused by stroke.