rt Medical evaluation of long-term methadone-maintained clients / edited by Herbert D. Kleber, Frank Slobetz and Marjorie Mezritz. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1980. Full Article
rt Piss off : cool it : overthinking away : sodding periods. By search.wellcomelibrary.org Published On :: [London] : [publisher not identified], [2019] Full Article
rt Evaluation of the NIDA drug abuse prevention campaign, 1983-1984 : final report. By search.wellcomelibrary.org Published On :: [United States] : National Technical Information Service, United States Department of Commerce, 1984. Full Article
rt National transportation safety board public forum on alcohol and drug safety education. By search.wellcomelibrary.org Published On :: Springfield, Virginia : National Technical Information Service, 1986. Full Article
rt The incidence of drugs in fatally injured drivers : final report / [E. J. Woodhouse]. By search.wellcomelibrary.org Published On :: Springfield, Virginia : National Technical Information Service, 1974. Full Article
rt Survey of drug information needs and problems associated with communications directed to practicing physicians : part III : remedial ad survey / [Arthur Ruskin, M.D.] By search.wellcomelibrary.org Published On :: Springfield, Virginia : National Technical Information Service, 1974. Full Article
rt A survey of alcohol and drug abuse programs in the railroad industry / [Lyman C. Hitchcock, Mark S. Sanders ; Naval Weapons Support Center]. By search.wellcomelibrary.org Published On :: Washington, D.C. : Department of Transportation, Federal Railroad Administration, 1976. Full Article
rt The nature and treatment of nonopiate abuse : a review of the literature. Volume 2 / Wynne Associates for Division of Research, National Institute on Drug Abuse, Alcohol, Drug Abuse and Mental Health Administration, Department of Health, Education and Wel By search.wellcomelibrary.org Published On :: Washington, D.C. : Wynne Associates, 1974. Full Article
rt Evaluation of treatment programs for abusers of nonopiate drugs : problems and approaches. Volume 3 / Wynne Associates for Division of Research, National Institute on Drug Abuse, Alcohol, Drug Abuse and Mental Health Administration, Department of Health, By search.wellcomelibrary.org Published On :: Washington, D.C. : Wynne Associates, [1974] Full Article
rt Co-ordinating drugs services : the role of regional and district drug advisory committees : a preliminary study for the Department of Health / by Peter Baker and Dorothy Runnicles. By search.wellcomelibrary.org Published On :: London : London Research Centre, 1991. Full Article
rt The university chemical dependency project : final report : November 1 1986 / Steven A. Bloch, Steven Ungerleider. By search.wellcomelibrary.org Published On :: [Indiana] : Integrated Research Services, Inc., 1986. Full Article
rt New essays on abortion and bioethics / volume editor, Rem B. Edwards. By search.wellcomelibrary.org Published On :: Greenwich, Conn. : Jai Press Inc., 1997. Full Article
rt Collection 03: Gaye Chapman picture book artwork, 2005-2015 By feedproxy.google.com Published On :: 29/09/2015 12:00:00 AM Full Article
rt Jessie Jean Roberts recipe book, 1940s+ By feedproxy.google.com Published On :: 1/10/2015 12:00:00 AM Full Article
rt Series 01: H.C. Dorman further papers, 1950-2012 By feedproxy.google.com Published On :: 1/10/2015 12:00:00 AM Full Article
rt David Milliss further papers, 1940s-2010 By feedproxy.google.com Published On :: 6/10/2015 12:00:00 AM Full Article
rt Series 02 Part 01: Sir Augustus Charles Gregory letterbook, 1852-1854 By feedproxy.google.com Published On :: 9/10/2015 8:45:45 AM Full Article
rt Herbert Compton diaries, 17 May – 29 July 1973 By feedproxy.google.com Published On :: 9/10/2015 12:00:00 AM Full Article
rt The Most Excellent Order of the British Empire Association (New South Wales) further records, 1979-2012 By feedproxy.google.com Published On :: 9/10/2015 12:00:00 AM Full Article
rt Oregon State's Destiny Slocum enters transfer portal By sports.yahoo.com Published On :: Thu, 02 Apr 2020 23:17:03 GMT Oregon State basketball player Destiny Slocum has opted to enter the transfer portal for her final season of eligibility. Slocum, a 5-foot-7 guard, averaged a team-best 14.9 points and had 4.7 assists a game this past season with the Beavers, who finished the season ranked No. 14 with a 23-9 record. In a statement released by the university on Thursday, Slocum thanked everyone who supported her in the decision. Full Article article Sports
rt Former OSU guard Sydney Wiese talks unwavering support while recovering from coronavirus By sports.yahoo.com Published On :: Mon, 06 Apr 2020 21:41:23 GMT Pac-12 Networks' Mike Yam interviews former Oregon State guard Sydney Wiese to hear how she's recovering from contracting COVID-19. Wiese recounts her recent travel and how she's been lifted up by steadfast support from friends, family and fellow WNBA players. See more from Wiese during "Pac-12 Playlist" on Monday, April 6 at 7 p.m. PT/ 8 p.m. MT on Pac-12 Network. Full Article video Sports
rt Oregon's Sabrina Ionescu, Ruthy Hebard, Satou Sabally share meaning of Naismith Starting 5 honor By sports.yahoo.com Published On :: Wed, 08 Apr 2020 19:50:23 GMT Pac-12 Networks' Ashley Adamson speaks with Oregon stars Sabrina Ionescu, Ruthy Hebard and Satou Sabally to hear how special their recent Naismith Starting 5 honor was, as the Ducks comprise three of the nation's top five players. Ionescu (point guard), Sabally (small forward) and Hebard (power forward) led the Ducks to a 31-2 record in the 2019-20 season before it was cut short. Full Article video Sports
rt Tennessee adds graduate transfer Keyen Green from Liberty By sports.yahoo.com Published On :: Wed, 15 Apr 2020 23:06:59 GMT The Tennessee Lady Vols have added forward-center Keyen Green as a graduate transfer from Liberty. Coach Kellie Harper announced Wednesday that Green has signed a scholarship for the upcoming season. The 6-foot-1 Green spent the past four seasons at Liberty and graduated in May 2019. Full Article article Sports
rt Former Alabama prep star Davenport transfers to Georgia By sports.yahoo.com Published On :: Thu, 16 Apr 2020 01:40:32 GMT Maori Davenport, who drew national attention over an eligibility dispute during her senior year of high school, is transferring to Georgia after playing sparingly in her lone season at Rutgers. Lady Bulldogs coach Joni Taylor announced Davenport's decision Wednesday. The 6-foot-4 center from Troy, Alabama will have to sit out a season under NCAA transfer rules before she is eligible to join Georgia in 2021-22. Full Article article Sports
rt Detroit Mercy hires Gilbert as women's basketball coach By sports.yahoo.com Published On :: Fri, 24 Apr 2020 20:51:14 GMT DETROIT (AP) -- Detroit Mercy hired AnnMarie Gilbert as women’s basketball coach. Full Article article Sports
rt Oregon State's Aleah Goodman, Maddie Washington reflect on earning 2020 Pac-12 Sportsmanship Award By sports.yahoo.com Published On :: Thu, 07 May 2020 15:58:01 GMT The Pac-12 Student-Athlete Advisory Committee voted to award the Oregon State women’s basketball team with the Pac-12 Sportsmanship Award for the 2019-20 season, honoring their character and sportsmanship before a rivalry game against Oregon in Jan. 2020 -- the day Kobe Bryant, his daughter, Gigi, and seven others passed away in a helicopter crash in Southern California. In the above video, Aleah Goodman and Madison Washington share how the teams came together as one in a circle of prayer before the game. Full Article video Sports
rt Oregon State women's basketball receives Pac-12 Sportsmanship Award for supporting rival Oregon in tragedy By sports.yahoo.com Published On :: Thu, 07 May 2020 15:58:09 GMT On the day Kobe Bryant suddenly passed away, the Beavers embraced their rivals at midcourt in a moment of strength to support the Ducks, many of whom had personal connections to Bryant and his daughter, Gigi. For this, Oregon State is the 2020 recipient of the Pac-12 Sportsmanship Award. Full Article video Sports
rt NCAA lays out 9-step plan to resume sports By sports.yahoo.com Published On :: Fri, 01 May 2020 19:28:30 GMT The process is based on the U.S. three-phase federal guidelines for easing social distancing and re-opening non-essential businesses. Full Article article Sports
rt Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes By projecteuclid.org Published On :: Mon, 27 Apr 2020 22:02 EDT François Bachoc, José Betancourt, Reinhard Furrer, Thierry Klein. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1962--2008.Abstract: The asymptotic analysis of covariance parameter estimation of Gaussian processes has been subject to intensive investigation. However, this asymptotic analysis is very scarce for non-Gaussian processes. In this paper, we study a class of non-Gaussian processes obtained by regular non-linear transformations of Gaussian processes. We provide the increasing-domain asymptotic properties of the (Gaussian) maximum likelihood and cross validation estimators of the covariance parameters of a non-Gaussian process of this class. We show that these estimators are consistent and asymptotically normal, although they are defined as if the process was Gaussian. They do not need to model or estimate the non-linear transformation. Our results can thus be interpreted as a robustness of (Gaussian) maximum likelihood and cross validation towards non-Gaussianity. Our proofs rely on two technical results that are of independent interest for the increasing-domain asymptotic literature of spatial processes. First, we show that, under mild assumptions, coefficients of inverses of large covariance matrices decay at an inverse polynomial rate as a function of the corresponding observation location distances. Second, we provide a general central limit theorem for quadratic forms obtained from transformed Gaussian processes. Finally, our asymptotic results are illustrated by numerical simulations. Full Article
rt Bayesian variance estimation in the Gaussian sequence model with partial information on the means By projecteuclid.org Published On :: Mon, 27 Apr 2020 22:02 EDT Gianluca Finocchio, Johannes Schmidt-Hieber. Source: Electronic Journal of Statistics, Volume 14, Number 1, 239--271.Abstract: Consider the Gaussian sequence model under the additional assumption that a fixed fraction of the means is known. We study the problem of variance estimation from a frequentist Bayesian perspective. The maximum likelihood estimator (MLE) for $sigma^{2}$ is biased and inconsistent. This raises the question whether the posterior is able to correct the MLE in this case. By developing a new proving strategy that uses refined properties of the posterior distribution, we find that the marginal posterior is inconsistent for any i.i.d. prior on the mean parameters. In particular, no assumption on the decay of the prior needs to be imposed. Surprisingly, we also find that consistency can be retained for a hierarchical prior based on Gaussian mixtures. In this case we also establish a limiting shape result and determine the limit distribution. In contrast to the classical Bernstein-von Mises theorem, the limit is non-Gaussian. We show that the Bayesian analysis leads to new statistical estimators outperforming the correctly calibrated MLE in a numerical simulation study. Full Article
rt On the distribution, model selection properties and uniqueness of the Lasso estimator in low and high dimensions By projecteuclid.org Published On :: Mon, 17 Feb 2020 22:06 EST Karl Ewald, Ulrike Schneider. Source: Electronic Journal of Statistics, Volume 14, Number 1, 944--969.Abstract: We derive expressions for the finite-sample distribution of the Lasso estimator in the context of a linear regression model in low as well as in high dimensions by exploiting the structure of the optimization problem defining the estimator. In low dimensions, we assume full rank of the regressor matrix and present expressions for the cumulative distribution function as well as the densities of the absolutely continuous parts of the estimator. Our results are presented for the case of normally distributed errors, but do not hinge on this assumption and can easily be generalized. Additionally, we establish an explicit formula for the correspondence between the Lasso and the least-squares estimator. We derive analogous results for the distribution in less explicit form in high dimensions where we make no assumptions on the regressor matrix at all. In this setting, we also investigate the model selection properties of the Lasso and show that possibly only a subset of models might be selected by the estimator, completely independently of the observed response vector. Finally, we present a condition for uniqueness of the estimator that is necessary as well as sufficient. Full Article
rt On a Metropolis–Hastings importance sampling estimator By projecteuclid.org Published On :: Mon, 10 Feb 2020 04:01 EST Daniel Rudolf, Björn Sprungk. Source: Electronic Journal of Statistics, Volume 14, Number 1, 857--889.Abstract: A classical approach for approximating expectations of functions w.r.t. partially known distributions is to compute the average of function values along a trajectory of a Metropolis–Hastings (MH) Markov chain. A key part in the MH algorithm is a suitable acceptance/rejection of a proposed state, which ensures the correct stationary distribution of the resulting Markov chain. However, the rejection of proposals causes highly correlated samples. In particular, when a state is rejected it is not taken any further into account. In contrast to that we consider a MH importance sampling estimator which explicitly incorporates all proposed states generated by the MH algorithm. The estimator satisfies a strong law of large numbers as well as a central limit theorem, and, in addition to that, we provide an explicit mean squared error bound. Remarkably, the asymptotic variance of the MH importance sampling estimator does not involve any correlation term in contrast to its classical counterpart. Moreover, although the analyzed estimator uses the same amount of information as the classical MH estimator, it can outperform the latter in scenarios of moderate dimensions as indicated by numerical experiments. Full Article
rt On lp-Support Vector Machines and Multidimensional Kernels By Published On :: 2020 In this paper, we extend the methodology developed for Support Vector Machines (SVM) using the $ell_2$-norm ($ell_2$-SVM) to the more general case of $ell_p$-norms with $p>1$ ($ell_p$-SVM). We derive second order cone formulations for the resulting dual and primal problems. The concept of kernel function, widely applied in $ell_2$-SVM, is extended to the more general case of $ell_p$-norms with $p>1$ by defining a new operator called multidimensional kernel. This object gives rise to reformulations of dual problems, in a transformed space of the original data, where the dependence on the original data always appear as homogeneous polynomials. We adapt known solution algorithms to efficiently solve the primal and dual resulting problems and some computational experiments on real-world datasets are presented showing rather good behavior in terms of the accuracy of $ell_p$-SVM with $p>1$. Full Article
rt Perturbation Bounds for Procrustes, Classical Scaling, and Trilateration, with Applications to Manifold Learning By Published On :: 2020 One of the common tasks in unsupervised learning is dimensionality reduction, where the goal is to find meaningful low-dimensional structures hidden in high-dimensional data. Sometimes referred to as manifold learning, this problem is closely related to the problem of localization, which aims at embedding a weighted graph into a low-dimensional Euclidean space. Several methods have been proposed for localization, and also manifold learning. Nonetheless, the robustness property of most of them is little understood. In this paper, we obtain perturbation bounds for classical scaling and trilateration, which are then applied to derive performance bounds for Isomap, Landmark Isomap, and Maximum Variance Unfolding. A new perturbation bound for procrustes analysis plays a key role. Full Article
rt Expectation Propagation as a Way of Life: A Framework for Bayesian Inference on Partitioned Data By Published On :: 2020 A common divide-and-conquer approach for Bayesian computation with big data is to partition the data, perform local inference for each piece separately, and combine the results to obtain a global posterior approximation. While being conceptually and computationally appealing, this method involves the problematic need to also split the prior for the local inferences; these weakened priors may not provide enough regularization for each separate computation, thus eliminating one of the key advantages of Bayesian methods. To resolve this dilemma while still retaining the generalizability of the underlying local inference method, we apply the idea of expectation propagation (EP) as a framework for distributed Bayesian inference. The central idea is to iteratively update approximations to the local likelihoods given the state of the other approximations and the prior. The present paper has two roles: we review the steps that are needed to keep EP algorithms numerically stable, and we suggest a general approach, inspired by EP, for approaching data partitioning problems in a way that achieves the computational benefits of parallelism while allowing each local update to make use of relevant information from the other sites. In addition, we demonstrate how the method can be applied in a hierarchical context to make use of partitioning of both data and parameters. The paper describes a general algorithmic framework, rather than a specific algorithm, and presents an example implementation for it. Full Article
rt Latent Simplex Position Model: High Dimensional Multi-view Clustering with Uncertainty Quantification By Published On :: 2020 High dimensional data often contain multiple facets, and several clustering patterns can co-exist under different variable subspaces, also known as the views. While multi-view clustering algorithms were proposed, the uncertainty quantification remains difficult --- a particular challenge is in the high complexity of estimating the cluster assignment probability under each view, and sharing information among views. In this article, we propose an approximate Bayes approach --- treating the similarity matrices generated over the views as rough first-stage estimates for the co-assignment probabilities; in its Kullback-Leibler neighborhood, we obtain a refined low-rank matrix, formed by the pairwise product of simplex coordinates. Interestingly, each simplex coordinate directly encodes the cluster assignment uncertainty. For multi-view clustering, we let each view draw a parameterization from a few candidates, leading to dimension reduction. With high model flexibility, the estimation can be efficiently carried out as a continuous optimization problem, hence enjoys gradient-based computation. The theory establishes the connection of this model to a random partition distribution under multiple views. Compared to single-view clustering approaches, substantially more interpretable results are obtained when clustering brains from a human traumatic brain injury study, using high-dimensional gene expression data. Full Article
rt Optimal Bipartite Network Clustering By Published On :: 2020 We study bipartite community detection in networks, or more generally the network biclustering problem. We present a fast two-stage procedure based on spectral initialization followed by the application of a pseudo-likelihood classifier twice. Under mild regularity conditions, we establish the weak consistency of the procedure (i.e., the convergence of the misclassification rate to zero) under a general bipartite stochastic block model. We show that the procedure is optimal in the sense that it achieves the optimal convergence rate that is achievable by a biclustering oracle, adaptively over the whole class, up to constants. This is further formalized by deriving a minimax lower bound over a class of biclustering problems. The optimal rate we obtain sharpens some of the existing results and generalizes others to a wide regime of average degree growth, from sparse networks with average degrees growing arbitrarily slowly to fairly dense networks with average degrees of order $sqrt{n}$. As a special case, we recover the known exact recovery threshold in the $log n$ regime of sparsity. To obtain the consistency result, as part of the provable version of the algorithm, we introduce a sub-block partitioning scheme that is also computationally attractive, allowing for distributed implementation of the algorithm without sacrificing optimality. The provable algorithm is derived from a general class of pseudo-likelihood biclustering algorithms that employ simple EM type updates. We show the effectiveness of this general class by numerical simulations. Full Article
rt Portraits of women in the collection By feedproxy.google.com Published On :: Thu, 20 Feb 2020 00:02:06 +0000 This NSW Women's Week (2–8 March) we're showcasing portraits and stories of 10 significant women from the Lib Full Article
rt TIGER: using artificial intelligence to discover our collections By feedproxy.google.com Published On :: Tue, 10 Mar 2020 22:01:20 +0000 The State Library of NSW has almost 4 million digital files in its collection. Full Article
rt Town launches new Community Support Hotline By www.eastgwillimbury.ca Published On :: Tue, 28 Apr 2020 23:15:02 GMT Full Article
rt Measuring symmetry and asymmetry of multiplicative distortion measurement errors data By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Jun Zhang, Yujie Gai, Xia Cui, Gaorong Li. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 370--393.Abstract: This paper studies the measure of symmetry or asymmetry of a continuous variable under the multiplicative distortion measurement errors setting. The unobservable variable is distorted in a multiplicative fashion by an observed confounding variable. First, two direct plug-in estimation procedures are proposed, and the empirical likelihood based confidence intervals are constructed to measure the symmetry or asymmetry of the unobserved variable. Next, we propose four test statistics for testing whether the unobserved variable is symmetric or not. The asymptotic properties of the proposed estimators and test statistics are examined. We conduct Monte Carlo simulation experiments to examine the performance of the proposed estimators and test statistics. These methods are applied to analyze a real dataset for an illustration. Full Article
rt $W^{1,p}$-Solutions of the transport equation by stochastic perturbation By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST David A. C. Mollinedo. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 188--201.Abstract: We consider the stochastic transport equation with a possibly unbounded Hölder continuous vector field. Well-posedness is proved, namely, we show existence, uniqueness and strong stability of $W^{1,p}$-weak solutions. Full Article
rt Bayesian modelling of the abilities in dichotomous IRT models via regression with missing values in the covariates By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Flávio B. Gonçalves, Bárbara C. C. Dias. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 782--800.Abstract: Educational assessment usually considers a contextual questionnaire to extract relevant information from the applicants. This may include items related to socio-economical profile as well as items to extract other characteristics potentially related to applicant’s performance in the test. A careful analysis of the questionnaires jointly with the test’s results may evidence important relations between profiles and test performance. The most coherent way to perform this task in a statistical context is to use the information from the questionnaire to help explain the variability of the abilities in a joint model-based approach. Nevertheless, the responses to the questionnaire typically present missing values which, in some cases, may be missing not at random. This paper proposes a statistical methodology to model the abilities in dichotomous IRT models using the information of the contextual questionnaires via linear regression. The proposed methodology models the missing data jointly with the all the observed data, which allows for the estimation of the former. The missing data modelling is flexible enough to allow the specification of missing not at random structures. Furthermore, even if those structures are not assumed a priori, they can be estimated from the posterior results when assuming missing (completely) at random structures a priori. Statistical inference is performed under the Bayesian paradigm via an efficient MCMC algorithm. Simulated and real examples are presented to investigate the efficiency and applicability of the proposed methodology. Full Article
rt Keeping the balance—Bridge sampling for marginal likelihood estimation in finite mixture, mixture of experts and Markov mixture models By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Sylvia Frühwirth-Schnatter. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 706--733.Abstract: Finite mixture models and their extensions to Markov mixture and mixture of experts models are very popular in analysing data of various kind. A challenge for these models is choosing the number of components based on marginal likelihoods. The present paper suggests two innovative, generic bridge sampling estimators of the marginal likelihood that are based on constructing balanced importance densities from the conditional densities arising during Gibbs sampling. The full permutation bridge sampling estimator is derived from considering all possible permutations of the mixture labels for a subset of these densities. For the double random permutation bridge sampling estimator, two levels of random permutations are applied, first to permute the labels of the MCMC draws and second to randomly permute the labels of the conditional densities arising during Gibbs sampling. Various applications show very good performance of these estimators in comparison to importance and to reciprocal importance sampling estimators derived from the same importance densities. Full Article
rt The equivalence of dynamic and static asset allocations under the uncertainty caused by Poisson processes By projecteuclid.org Published On :: Mon, 14 Jan 2019 04:01 EST Yong-Chao Zhang, Na Zhang. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 1, 184--191.Abstract: We investigate the equivalence of dynamic and static asset allocations in the case where the price process of a risky asset is driven by a Poisson process. Under some mild conditions, we obtain a necessary and sufficient condition for the equivalence of dynamic and static asset allocations. In addition, we provide a simple sufficient condition for the equivalence. Full Article
rt Unlikeness is us : fourteen from the Exeter book By dal.novanet.ca Published On :: Fri, 1 May 2020 19:34:09 -0300 Author: Exeter book. Selections. EnglishCallnumber: PS 8631 A8489 E94 2018ISBN: 9781554471751 (softcover) Full Article
rt Public-private partnerships in Canada : law, policy and value for money By dal.novanet.ca Published On :: Fri, 1 May 2020 19:34:09 -0300 Author: Murphy, Timothy J. (Timothy John), author.Callnumber: KE 1465 M87 2019ISBN: 9780433457985 (Cloth) Full Article
rt The theory and application of penalized methods or Reproducing Kernel Hilbert Spaces made easy By projecteuclid.org Published On :: Tue, 16 Oct 2012 09:36 EDT Nancy HeckmanSource: Statist. Surv., Volume 6, 113--141.Abstract: The popular cubic smoothing spline estimate of a regression function arises as the minimizer of the penalized sum of squares $sum_{j}(Y_{j}-mu(t_{j}))^{2}+lambda int_{a}^{b}[mu''(t)]^{2},dt$, where the data are $t_{j},Y_{j}$, $j=1,ldots,n$. The minimization is taken over an infinite-dimensional function space, the space of all functions with square integrable second derivatives. But the calculations can be carried out in a finite-dimensional space. The reduction from minimizing over an infinite dimensional space to minimizing over a finite dimensional space occurs for more general objective functions: the data may be related to the function $mu$ in another way, the sum of squares may be replaced by a more suitable expression, or the penalty, $int_{a}^{b}[mu''(t)]^{2},dt$, might take a different form. This paper reviews the Reproducing Kernel Hilbert Space structure that provides a finite-dimensional solution for a general minimization problem. Particular attention is paid to the construction and study of the Reproducing Kernel Hilbert Space corresponding to a penalty based on a linear differential operator. In this case, one can often calculate the minimizer explicitly, using Green’s functions. Full Article
rt Start your Chinese Family Search at the State Library of... By feedproxy.google.com Published On :: Thu, 18 Jun 2015 13:43:48 +0000 Start your Chinese Family Search at the State Library of NSW One in ten Sydneysiders claims Chinese ancestry Full Article
rt Interpreting Rate-Distortion of Variational Autoencoder and Using Model Uncertainty for Anomaly Detection. (arXiv:2005.01889v2 [cs.LG] UPDATED) By arxiv.org Published On :: Building a scalable machine learning system for unsupervised anomaly detection via representation learning is highly desirable. One of the prevalent methods is using a reconstruction error from variational autoencoder (VAE) via maximizing the evidence lower bound. We revisit VAE from the perspective of information theory to provide some theoretical foundations on using the reconstruction error, and finally arrive at a simpler and more effective model for anomaly detection. In addition, to enhance the effectiveness of detecting anomalies, we incorporate a practical model uncertainty measure into the metric. We show empirically the competitive performance of our approach on benchmark datasets. Full Article