ni Case Study: Cognitive Impairment, Depression, and Severe Hypoglycemia By spectrum.diabetesjournals.org Published On :: 2006-10-01 John ZrebiecOct 1, 2006; 19:212-215Clinical Decision Making Full Article
ni Recognizing and Appropriately Treating Latent Autoimmune Diabetes in Adults By spectrum.diabetesjournals.org Published On :: 2016-11-01 Katherine S. O’NealNov 1, 2016; 29:249-252Pharmacy and Therapeutics Full Article
ni Glucagon-Like Peptide 1 Receptor Agonists for Type 2 Diabetes By spectrum.diabetesjournals.org Published On :: 2017-08-01 Deborah HinnenAug 1, 2017; 30:202-210Feature Articles Full Article
ni Patrick Nip inspects public services By www.news.gov.hk Published On :: Tue, 28 Apr 2020 00:00:00 +0800 Secretary for the Civil Service Patrick Nip today visited the Transport Department (TD) and the Social Welfare Department (SWD) to learn more about the preparations made by both departments to resume public services. The Government announced that the resumption of public services will start from May 4 under a phased approach. While the TD will resume road tests on that day, written tests will resume on May 26. The SWD will also gradually resume the services of its Integrated Family Service Centres (IFSC). Mr Nip first visited the driving test centre in Ho Man Tin where he was briefed by the Commissioner for Transport Mable Chan on arrangements for the resumption of road tests and the implementation of infection control measures at driving test centres. Such measures will require candidates to wear surgical masks and undergo body temperature screening at entrances. As for the written tests, Mr Nip said he was pleased to learn that the TD will keep seats apart at appropriate distances and step up cleansing of computers at test centres. Mr Nip then visited the Causeway Bay Integrated Family Service Centre where he was briefed on the plan to gradually resume services at IFSCs and measures to reduce social contact. Mr Nip also learned that various infection control measures to safeguard the health of colleagues as well as service users will be put in place. For example, group activities will be conducted for no more than four participants and physical partitioning will be erected in meeting rooms for counselling services. Mr Nip emphasised that many people hope that the Government can provide more public services when the epidemic situation becomes stable. “I am pleased to learn that the departments have made all the necessary preparations for providing the services needed by the public while striving to safeguard public health. “Government departments will continue to maintain a high degree of vigilance and adopt all the necessary precautionary measures. The Government will also closely monitor the situation and determine when to embark on a full resumption of normal business.” Mr Nip expressed hope that the public will continue to fight the virus together with the Government. He also thanked civil servants for their commitment and dedicated efforts to serve the public during the epidemic. Full Article
ni Patrick Nip visits IRD, Labour Dep't By www.news.gov.hk Published On :: Mon, 04 May 2020 00:00:00 +0800 Secretary for the Civil Service Patrick Nip today visited the Inland Revenue Department and the Labour Department to inspect the resumption of public services. The Government had earlier announced that public services will be resumed under a phased approach. Counter services of most government departments have returned to normal. Mr Nip first visited the Inland Revenue Department in Revenue Tower and was briefed on counter services at the Central Enquiry Counter, the Business Registration Office and the Stamp Office. He learnt that the department has implemented various infection control and crowd management measures, such as a ticketing system, to safeguard the health of colleagues and the public. Later Mr Nip visited the Hong Kong East Job Centre and a recruitment centre for the catering and retail industries and was briefed on the resumption of normal services at the Labour Department's job and recruitment centres. He said: “While maintaining a high degree of vigilance and adopting all necessary precautionary measures, the Government gradually resumed public services today in a smooth and orderly manner. “Various infection control measures have been put in place at government buildings and offices. These include checking the body temperature of persons at entrances, providing alcohol-based hand sanitiser and enhancing the cleaning of public facilities. “The Government will closely monitor the situation to determine when to embark on full resumption of normal business.” Full Article
ni DeepMind founder Mustafa Suleyman leaves indefinitely By www.techworld.com Published On :: Thu, 22 Aug 2019 08:35:00 GMT DeepMind's cofounder and head of applied artificial intelligence, Mustafa Suleyman, has abruptly left the company for an indefinite period Full Article
ni Tech unicorns ask chancellor for access to emergency loans By www.techworld.com Published On :: Thu, 09 Apr 2020 08:17:00 GMT The 'unicorn letter', sent by some of the best-funded private technology companies in the country, asks the chancellor to form an urgent taskforce to give them access to government-backed lending schemes during the pandemic Full Article
ni Karin Melnick receives Birman Fellowship By www.ams.org Published On :: Tue, 28 Apr 2020 00:00:00 EST Karin Melnick of the University of Maryland, College Park, has been awarded the AMS Joan and Joseph Birman Fellowship for Women Scholars for the 2020–2021 academic year. Melnick’s research is on differential-geometric aspects of rigidity. This work comprises global and local results relating the automorphisms of a differential-geometric structure with the geometric and topological properties of the space. Melnick also works in smooth dynamics, in which an invariant differential-geometric structure plays an important role in the proof of rigidity theorems. Melnick is a leader in research on the Lorentzian Lichnerowicz conjecture, a statement about conformal transformations of compact Lorentzian manifolds. Together with collaborators, she has developed new techniques in the setting of Cartan connections that have facilitated progress on this problem, as well as many results for other differential-geometric structures and general parabolic Cartan geometries. Brief Biography of Karin Melnick: Melnick received her PhD at the University of Chicago in 2006 under the direction of Benson Farb. With an NSF Postdoctoral Research Fellowship, she went to Yale University as a Gibbs Assistant Professor. She received a Junior Research Fellowship from the Erwin Schrödinger Institute in the spring of 2009 and that fall began at the University of Maryland, where she is now an associate professor. Previously, Melnick has been awarded an AMS Centennial Fellowship and an NSF CAREER grant. She divides her time between the U.S. and Germany with her partner and their young child, and is very grateful for the flexibility provided by the Birman Fellowship and the opportunities it provides to advance her research and career goals. About the Fellowship: Established in 2017, the AMS Joan and Joseph Birman Fellowship for Women Scholars seeks to give exceptionally talented women extra research support during their mid-career years. The primary selection criterion for the Birman Fellowship, which carries a stipend of US$50,000, is the excellence of the candidate’s research. Read an interview with Joan Birman about her decision to create the Fellowship with the goal of "helping more women mathematicians to develop their creative voices." See more information about the Fellowship. [% ams_include('pao-contact') %] * * * * * The American Mathematical Society is dedicated to advancing research and connecting the diverse global mathematical community through our publications, meetings and conferences, MathSciNet, professional services, advocacy, and awareness programs. Full Article
ni Harmonic Analysis and Partial Differential Equations By www.ams.org Published On :: Patricio Cifuentes and Jose Garcia-Cuerva, Universidad Autonoma de Madrid, Gustavo Garrigos, Universidad de Murcia, Eugenio Hernandez, Universidad Autonoma de Madrid, Jose Maria Martell, Javier Parcet, and Keith M. Rogers, Consejo Superior de Investigaciones Cientificas, and Alberto Ruiz, Fernando Soria, and Ana Vargas, Universidad Autonoma de Madrid, Editors - AMS, 2014, 178 pp., Softcover, ISBN-13: 978-0-8218-9433-0, List: US$78, All AMS Members: US$62.40, CONM/612 This volume contains the Proceedings of the 9th International Conference on Harmonic Analysis and Partial Differential Equations, held June 11-15,... Full Article
ni Classical Mechanics with Calculus of Variations and Optimal Control: An Intuitive Introduction By www.ams.org Published On :: Mark Levi, Pennsylvania State University - AMS, 2014, 299 pp., Softcover, ISBN-13: 978-0-8218-9138-4, List: US$42, All AMS Members: US$33.60, STML/69 It is hard to imagine a more original and insightful approach to classical mechanics. Most physicists would regard this as a well-worn and settled... Full Article
ni Introduction to 3-Manifolds By www.ams.org Published On :: Jennifer Schultens, University of California, Davis - AMS, 2014, approx. 293 pp., Hardcover, ISBN-13: 978-1-4704-1020-9, List: US$75, All AMS Members: US$60, GSM/151 This book grew out of a graduate course on 3-manifolds and is intended for a mathematically experienced audience that is new to low-dimensional... Full Article
ni Math Students + Habitat for Humanity build homes By www.ams.org Published On :: Tue, 24 Dec 2019 00:00:00 EST Students in a math class at Columbine High School in Colorado used geometry to work with Habitat for Humanity to build homes for those in need. See the video segment at "Students Build Houses For Families In Need...In Math Class," by Shaun Boyd, CBS4 Denver TV, December 23, 2019. Full Article
ni Repression of sphingosine kinase (SK)-interacting protein (SKIP) in acute myeloid leukemia diminishes SK activity and its re-expression restores SK function [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Previous studies have shown that sphingosine kinase interacting protein (SKIP) inhibits sphingosine kinase (SK) function in fibroblasts. SK phosphorylates sphingosine producing the potent signaling molecule sphingosine-1-phosphate (S1P). SKIP gene (SPHKAP) expression is silenced by hypermethylation of its promoter in acute myeloid leukemia (AML). However, why SKIP activity is silenced in primary AML cells is unclear. Here, we investigated the consequences of SKIP down-regulation in AML primary cells and the effects of SKIP re-expression in leukemic cell lines. Using targeted ultra-HPLC-tandem MS (UPLC-MS/MS), we measured sphingolipids (including S1P and ceramides) in AML and control cells. Primary AML cells had significantly lower SK activity and intracellular S1P concentrations than control cells, and SKIP-transfected leukemia cell lines exhibited increased SK activity. These findings show that SKIP re-expression enhances SK activity in leukemia cells. Furthermore, other bioactive sphingolipids such as ceramide were also down-regulated in primary AML cells. Of note, SKIP re-expression in leukemia cells increased ceramide levels 2-fold, inactivated the key signaling protein extracellular signal-regulated kinase, and increased apoptosis following serum deprivation or chemotherapy. These results indicate that SKIP down-regulation in AML reduces SK activity and ceramide levels, an effect that ultimately inhibits apoptosis in leukemia cells. The findings of our study contrast with previous results indicating that SKIP inhibits SK function in fibroblasts and therefore challenge the notion that SKIP always inhibits SK activity. Full Article
ni Inhibition of the erythropoietin-producing receptor EPHB4 antagonizes androgen receptor overexpression and reduces enzalutamide resistance [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Prostate cancer (PCa) cells heavily rely on an active androgen receptor (AR) pathway for their survival. Enzalutamide (MDV3100) is a second-generation antiandrogenic drug that was approved by the Food and Drug Administration in 2012 to treat patients with castration-resistant prostate cancer (CRPC). However, emergence of resistance against this drug is inevitable, and it has been a major challenge to develop interventions that help manage enzalutamide-resistant CRPC. Erythropoietin-producing human hepatocellular (Eph) receptors are targeted by ephrin protein ligands and have a broad range of functions. Increasing evidence indicates that this signaling pathway plays an important role in tumorigenesis. Overexpression of EPH receptor B4 (EPHB4) has been observed in multiple types of cancer, being closely associated with proliferation, invasion, and metastasis of tumors. Here, using RNA-Seq analyses of clinical and preclinical samples, along with several biochemical and molecular methods, we report that enzalutamide-resistant PCa requires an active EPHB4 pathway that supports drug resistance of this tumor type. Using a small kinase inhibitor and RNAi-based gene silencing to disrupt EPHB4 activity, we found that these disruptions re-sensitize enzalutamide-resistant PCa to the drug both in vitro and in vivo. Mechanistically, we found that EPHB4 stimulates the AR by inducing proto-oncogene c-Myc (c-Myc) expression. Taken together, these results provide critical insight into the mechanism of enzalutamide resistance in PCa, potentially offering a therapeutic avenue for enhancing the efficacy of enzalutamide to better manage this common malignancy. Full Article
ni Cell-specific expression of the transcriptional regulator RHAMM provides a timing mechanism that controls appropriate wound re-epithelialization [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Prevention of aberrant cutaneous wound repair and appropriate regeneration of an intact and functional integument require the coordinated timing of fibroblast and keratinocyte migration. Here, we identified a mechanism whereby opposing cell-specific motogenic functions of a multifunctional intracellular and extracellular protein, the receptor for hyaluronan-mediated motility (RHAMM), coordinates fibroblast and keratinocyte migration speed and ensures appropriate timing of excisional wound closure. We found that, unlike in WT mice, in Rhamm-null mice, keratinocyte migration initiates prematurely in the excisional wounds, resulting in wounds that have re-surfaced before the formation of normal granulation tissue, leading to a defective epidermal architecture. We also noted aberrant keratinocyte and fibroblast migration in the Rhamm-null mice, indicating that RHAMM suppresses keratinocyte motility but increases fibroblast motility. This cell context–dependent effect resulted from cell-specific regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) activation and expression of a RHAMM target gene encoding matrix metalloprotease 9 (MMP-9). In fibroblasts, RHAMM promoted ERK1/2 activation and MMP-9 expression, whereas in keratinocytes, RHAMM suppressed these activities. In keratinocytes, loss of RHAMM function or expression promoted epidermal growth factor receptor–regulated MMP-9 expression via ERK1/2, which resulted in cleavage of the ectodomain of the RHAMM partner protein CD44 and thereby increased keratinocyte motility. These results identify RHAMM as a key factor that integrates the timing of wound repair by controlling cell migration. Full Article
ni The transcriptional regulator IscR integrates host-derived nitrosative stress and iron starvation in activation of the vvhBA operon in Vibrio vulnificus [Gene Regulation] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 For successful infection of their hosts, pathogenic bacteria recognize host-derived signals that induce the expression of virulence factors in a spatiotemporal manner. The fulminating food-borne pathogen Vibrio vulnificus produces a cytolysin/hemolysin protein encoded by the vvhBA operon, which is a virulence factor preferentially expressed upon exposure to murine blood and macrophages. The Fe-S cluster containing transcriptional regulator IscR activates the vvhBA operon in response to nitrosative stress and iron starvation, during which the cellular IscR protein level increases. Here, electrophoretic mobility shift and DNase I protection assays revealed that IscR directly binds downstream of the vvhBA promoter PvvhBA, which is unusual for a positive regulator. We found that in addition to IscR, the transcriptional regulator HlyU activates vvhBA transcription by directly binding upstream of PvvhBA, whereas the histone-like nucleoid-structuring protein (H-NS) represses vvhBA by extensively binding to both downstream and upstream regions of its promoter. Of note, the binding sites of IscR and HlyU overlapped with those of H-NS. We further substantiated that IscR and HlyU outcompete H-NS for binding to the PvvhBA regulatory region, resulting in the release of H-NS repression and vvhBA induction. We conclude that concurrent antirepression by IscR and HlyU at regions both downstream and upstream of PvvhBA provides V. vulnificus with the means of integrating host-derived signal(s) such as nitrosative stress and iron starvation for precise regulation of vvhBA transcription, thereby enabling successful host infection. Full Article
ni Substrate recognition and ATPase activity of the E. coli cysteine/cystine ABC transporter YecSC-FliY [Microbiology] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Sulfur is essential for biological processes such as amino acid biogenesis, iron–sulfur cluster formation, and redox homeostasis. To acquire sulfur-containing compounds from the environment, bacteria have evolved high-affinity uptake systems, predominant among which is the ABC transporter family. Theses membrane-embedded enzymes use the energy of ATP hydrolysis for transmembrane transport of a wide range of biomolecules against concentration gradients. Three distinct bacterial ABC import systems of sulfur-containing compounds have been identified, but the molecular details of their transport mechanism remain poorly characterized. Here we provide results from a biochemical analysis of the purified Escherichia coli YecSC-FliY cysteine/cystine import system. We found that the substrate-binding protein FliY binds l-cystine, l-cysteine, and d-cysteine with micromolar affinities. However, binding of the l- and d-enantiomers induced different conformational changes of FliY, where the l- enantiomer–substrate-binding protein complex interacted more efficiently with the YecSC transporter. YecSC had low basal ATPase activity that was moderately stimulated by apo FliY, more strongly by d-cysteine–bound FliY, and maximally by l-cysteine– or l-cystine–bound FliY. However, at high FliY concentrations, YecSC reached maximal ATPase rates independent of the presence or nature of the substrate. These results suggest that FliY exists in a conformational equilibrium between an open, unliganded form that does not bind to the YecSC transporter and closed, unliganded and closed, liganded forms that bind this transporter with variable affinities but equally stimulate its ATPase activity. These findings differ from previous observations for similar ABC transporters, highlighting the extent of mechanistic diversity in this large protein family. Full Article
ni Dopamine transporter trafficking and Rit2 GTPase: Mechanism of action and in vivo impact [Neurobiology] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Following its evoked release, dopamine (DA) signaling is rapidly terminated by presynaptic reuptake, mediated by the cocaine-sensitive DA transporter (DAT). DAT surface availability is dynamically regulated by endocytic trafficking, and direct protein kinase C (PKC) activation acutely diminishes DAT surface expression by accelerating DAT internalization. Previous cell line studies demonstrated that PKC-stimulated DAT endocytosis requires both Ack1 inactivation, which releases a DAT-specific endocytic brake, and the neuronal GTPase, Rit2, which binds DAT. However, it is unknown whether Rit2 is required for PKC-stimulated DAT endocytosis in DAergic terminals or whether there are region- and/or sex-dependent differences in PKC-stimulated DAT trafficking. Moreover, the mechanisms by which Rit2 controls PKC-stimulated DAT endocytosis are unknown. Here, we directly examined these important questions. Ex vivo studies revealed that PKC activation acutely decreased DAT surface expression selectively in ventral, but not dorsal, striatum. AAV-mediated, conditional Rit2 knockdown in DAergic neurons impacted baseline DAT surface:intracellular distribution in DAergic terminals from female ventral, but not dorsal, striatum. Further, Rit2 was required for PKC-stimulated DAT internalization in both male and female ventral striatum. FRET and surface pulldown studies in cell lines revealed that PKC activation drives DAT-Rit2 surface dissociation and that the DAT N terminus is required for both PKC-mediated DAT-Rit2 dissociation and DAT internalization. Finally, we found that Rit2 and Ack1 independently converge on DAT to facilitate PKC-stimulated DAT endocytosis. Together, our data provide greater insight into mechanisms that mediate PKC-regulated DAT internalization and reveal unexpected region-specific differences in PKC-stimulated DAT trafficking in bona fide DAergic terminals. Full Article
ni Learning the ABCs of ATP release [Signal Transduction] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 ATP plays important roles outside the cell, but the mechanism by which it is arrives in the extracellular environment is not clear. Dunn et al. now show that decreases in cellular cholesterol levels mediated by the ABCG1 transporter increase ATP release by volume-regulated anion channels under hypotonic conditions. Importantly, these results may imply that cells that handle cholesterol differently might experience differential extracellular ATP release during hypotonicity. Full Article
ni ABC transporters control ATP release through cholesterol-dependent volume-regulated anion channel activity [Signal Transduction] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Purinergic signaling by extracellular ATP regulates a variety of cellular events and is implicated in both normal physiology and pathophysiology. Several molecules have been associated with the release of ATP and other small molecules, but their precise contributions have been difficult to assess because of their complexity and heterogeneity. Here, we report on the results of a gain-of-function screen for modulators of hypotonicity-induced ATP release using HEK-293 cells and murine cerebellar granule neurons, along with bioluminescence, calcium FLIPR, and short hairpin RNA–based gene-silencing assays. This screen utilized the most extensive genome-wide ORF collection to date, covering 90% of human, nonredundant, protein-encoding genes. We identified two ABCG1 (ABC subfamily G member 1) variants, which regulate cellular cholesterol, as modulators of hypotonicity-induced ATP release. We found that cholesterol levels control volume-regulated anion channel–dependent ATP release. These findings reveal novel mechanisms for the regulation of ATP release and volume-regulated anion channel activity and provide critical links among cellular status, cholesterol, and purinergic signaling. Full Article
ni Correction: A dual druggable genome-wide siRNA and compound library screening approach identifies modulators of parkin recruitment to mitochondria. [Additions and Corrections] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 VOLUME 295 (2020) PAGES 3285–3300An incorrect graph was used in Fig. 5C. This error has now been corrected. Additionally, some of the statistics reported in the legend and text referring to Fig. 5C were incorrect. The F statistics for Fig. 5C should state Fken(3,16) = 7.454, p < 0.01; FCCCP(1,16) = 102.9, p < 0.0001; Finteraction(3,16) = 7.480, p < 0.01. This correction does not affect the results or conclusions of this work.jbc;295/17/5835/F5F1F5Figure 5C. Full Article
ni X-ray structures of catalytic intermediates of cytochrome c oxidase provide insights into its O2 activation and unidirectional proton-pump mechanisms [Molecular Biophysics] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Cytochrome c oxidase (CcO) reduces O2 to water, coupled with a proton-pumping process. The structure of the O2-reduction site of CcO contains two reducing equivalents, Fea32+ and CuB1+, and suggests that a peroxide-bound state (Fea33+–O−–O−–CuB2+) rather than an O2-bound state (Fea32+–O2) is the initial catalytic intermediate. Unexpectedly, however, resonance Raman spectroscopy results have shown that the initial intermediate is Fea32+–O2, whereas Fea33+–O−–O−–CuB2+ is undetectable. Based on X-ray structures of static noncatalytic CcO forms and mutation analyses for bovine CcO, a proton-pumping mechanism has been proposed. It involves a proton-conducting pathway (the H-pathway) comprising a tandem hydrogen-bond network and a water channel located between the N- and P-side surfaces. However, a system for unidirectional proton-transport has not been experimentally identified. Here, an essentially identical X-ray structure for the two catalytic intermediates (P and F) of bovine CcO was determined at 1.8 Å resolution. A 1.70 Å Fe–O distance of the ferryl center could best be described as Fea34+ = O2−, not as Fea34+–OH−. The distance suggests an ∼800-cm−1 Raman stretching band. We found an interstitial water molecule that could trigger a rapid proton-coupled electron transfer from tyrosine-OH to the slowly forming Fea33+–O−–O−–CuB2+ state, preventing its detection, consistent with the unexpected Raman results. The H-pathway structures of both intermediates indicated that during proton-pumping from the hydrogen-bond network to the P-side, a transmembrane helix closes the water channel connecting the N-side with the hydrogen-bond network, facilitating unidirectional proton-pumping during the P-to-F transition. Full Article
ni Structural insight into the recognition of pathogen-derived phosphoglycolipids by C-type lectin receptor DCAR [Protein Structure and Folding] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 The C-type lectin receptors (CLRs) form a family of pattern recognition receptors that recognize numerous pathogens, such as bacteria and fungi, and trigger innate immune responses. The extracellular carbohydrate-recognition domain (CRD) of CLRs forms a globular structure that can coordinate a Ca2+ ion, allowing receptor interactions with sugar-containing ligands. Although well-conserved, the CRD fold can also display differences that directly affect the specificity of the receptors for their ligands. Here, we report crystal structures at 1.8–2.3 Å resolutions of the CRD of murine dendritic cell-immunoactivating receptor (DCAR, or Clec4b1), the CLR that binds phosphoglycolipids such as acylated phosphatidyl-myo-inositol mannosides (AcPIMs) of mycobacteria. Using mutagenesis analysis, we identified critical residues, Ala136 and Gln198, on the surface surrounding the ligand-binding site of DCAR, as well as an atypical Ca2+-binding motif (Glu-Pro-Ser/EPS168–170). By chemically synthesizing a water-soluble ligand analog, inositol-monophosphate dimannose (IPM2), we confirmed the direct interaction of DCAR with the polar moiety of AcPIMs by biolayer interferometry and co-crystallization approaches. We also observed a hydrophobic groove extending from the ligand-binding site that is in a suitable position to interact with the lipid portion of whole AcPIMs. These results suggest that the hydroxyl group-binding ability and hydrophobic groove of DCAR mediate its specific binding to pathogen-derived phosphoglycolipids such as mycobacterial AcPIMs. Full Article
ni An enzyme-based protocol for cell-free synthesis of nature-identical capsular oligosaccharides from Actinobacillus pleuropneumoniae serotype 1 [Enzymology] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Actinobacillus pleuropneumoniae (App) is the etiological agent of acute porcine pneumonia and responsible for severe economic losses worldwide. The capsule polymer of App serotype 1 (App1) consists of [4)-GlcNAc-β(1,6)-Gal-α-1-(PO4-] repeating units that are O-acetylated at O-6 of the GlcNAc. It is a major virulence factor and was used in previous studies in the successful generation of an experimental glycoconjugate vaccine. However, the application of glycoconjugate vaccines in the animal health sector is limited, presumably because of the high costs associated with harvesting the polymer from pathogen culture. Consequently, here we exploited the capsule polymerase Cps1B of App1 as an in vitro synthesis tool and an alternative for capsule polymer provision. Cps1B consists of two catalytic domains, as well as a domain rich in tetratricopeptide repeats (TPRs). We compared the elongation mechanism of Cps1B with that of a ΔTPR truncation (Cps1B-ΔTPR). Interestingly, the product profiles displayed by Cps1B suggested processive elongation of the nascent polymer, whereas Cps1B-ΔTPR appeared to work in a more distributive manner. The dispersity of the synthesized products could be reduced by generating single-action transferases and immobilizing them on individual columns, separating the two catalytic activities. Furthermore, we identified the O-acetyltransferase Cps1D of App1 and used it to modify the polymers produced by Cps1B. Two-dimensional NMR analyses of the products revealed O-acetylation levels identical to those of polymer harvested from App1 culture supernatants. In conclusion, we have established a protocol for the pathogen-free in vitro synthesis of tailored, nature-identical App1 capsule polymers. Full Article
ni Structural and mutational analyses of the bifunctional arginine dihydrolase and ornithine cyclodeaminase AgrE from the cyanobacterium Anabaena [Enzymology] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 In cyanobacteria, metabolic pathways that use the nitrogen-rich amino acid arginine play a pivotal role in nitrogen storage and mobilization. The N-terminal domains of two recently identified bacterial enzymes: ArgZ from Synechocystis and AgrE from Anabaena, have been found to contain an arginine dihydrolase. This enzyme provides catabolic activity that converts arginine to ornithine, resulting in concomitant release of CO2 and ammonia. In Synechocystis, the ArgZ-mediated ornithine–ammonia cycle plays a central role in nitrogen storage and remobilization. The C-terminal domain of AgrE contains an ornithine cyclodeaminase responsible for the formation of proline from ornithine and ammonia production, indicating that AgrE is a bifunctional enzyme catalyzing two sequential reactions in arginine catabolism. Here, the crystal structures of AgrE in three different ligation states revealed that it has a tetrameric conformation, possesses a binding site for the arginine dihydrolase substrate l-arginine and product l-ornithine, and contains a binding site for the coenzyme NAD(H) required for ornithine cyclodeaminase activity. Structure–function analyses indicated that the structure and catalytic mechanism of arginine dihydrolase in AgrE are highly homologous with those of a known bacterial arginine hydrolase. We found that in addition to other active-site residues, Asn-71 is essential for AgrE's dihydrolase activity. Further analysis suggested the presence of a passage for substrate channeling between the two distinct AgrE active sites, which are situated ∼45 Å apart. These results provide structural and functional insights into the bifunctional arginine dihydrolase–ornithine cyclodeaminase enzyme AgrE required for arginine catabolism in Anabaena. Full Article
ni Noncatalytic Bruton's tyrosine kinase activates PLC{gamma}2 variants mediating ibrutinib resistance in human chronic lymphocytic leukemia cells [Membrane Biology] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Treatment of patients with chronic lymphocytic leukemia (CLL) with inhibitors of Bruton's tyrosine kinase (BTK), such as ibrutinib, is limited by primary or secondary resistance to this drug. Examinations of CLL patients with late relapses while on ibrutinib, which inhibits BTK's catalytic activity, revealed several mutations in BTK, most frequently resulting in the C481S substitution, and disclosed many mutations in PLCG2, encoding phospholipase C-γ2 (PLCγ2). The PLCγ2 variants typically do not exhibit constitutive activity in cell-free systems, leading to the suggestion that in intact cells they are hypersensitive to Rac family small GTPases or to the upstream kinases spleen-associated tyrosine kinase (SYK) and Lck/Yes-related novel tyrosine kinase (LYN). The sensitivity of the PLCγ2 variants to BTK itself has remained unknown. Here, using genetically-modified DT40 B lymphocytes, along with various biochemical assays, including analysis of PLCγ2-mediated inositol phosphate formation, inositol phospholipid assessments, fluorescence recovery after photobleaching (FRAP) static laser microscopy, and determination of intracellular calcium ([Ca2+]i), we show that various CLL-specific PLCγ2 variants such as PLCγ2S707Y are hyper-responsive to activated BTK, even in the absence of BTK's catalytic activity and independently of enhanced PLCγ2 phospholipid substrate supply. At high levels of B-cell receptor (BCR) activation, which may occur in individual CLL patients, catalytically-inactive BTK restored the ability of the BCR to mediate increases in [Ca2+]i. Because catalytically-inactive BTK is insensitive to active-site BTK inhibitors, the mechanism involving the noncatalytic BTK uncovered here may contribute to preexisting reduced sensitivity or even primary resistance of CLL to these drugs. Full Article
ni CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects [DNA and Chromosomes] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Cas12a (Cpf1) is an RNA-guided endonuclease in the bacterial type V-A CRISPR-Cas anti-phage immune system that can be repurposed for genome editing. Cas12a can bind and cut dsDNA targets with high specificity in vivo, making it an ideal candidate for expanding the arsenal of enzymes used in precise genome editing. However, this reported high specificity contradicts Cas12a's natural role as an immune effector against rapidly evolving phages. Here, we employed high-throughput in vitro cleavage assays to determine and compare the native cleavage specificities and activities of three different natural Cas12a orthologs (FnCas12a, LbCas12a, and AsCas12a). Surprisingly, we observed pervasive sequence-specific nicking of randomized target libraries, with strong nicking of DNA sequences containing up to four mismatches in the Cas12a-targeted DNA-RNA hybrid sequences. We also found that these nicking and cleavage activities depend on mismatch type and position and vary with Cas12a ortholog and CRISPR RNA sequence. Our analysis further revealed robust nonspecific nicking of dsDNA when Cas12a is activated by binding to a target DNA. Together, our findings reveal that Cas12a has multiple nicking activities against dsDNA substrates and that these activities vary among different Cas12a orthologs. Full Article
ni Withdrawal: Distinct roles of Ape1 protein, an enzyme involved in DNA repair, in high or low linear energy transfer ionizing radiation-induced cell killing. [Withdrawals/Retractions] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 VOLUME 289 (2014) PAGES 30635–30644This article has been withdrawn by Guangnan Chen, Dongkyoo Park, Francis A. Cucinotta, David S. Yu, Xingming Deng, William S. Dynan, Paul W. Doetsch, and Ya Wang. Hongyan Wang, Xiang Wang, Xiangming Zhang, and Xiaobing Tang could not be reached. The last two lanes of the actin immunoblot in Fig. 1A were reused in the last two lanes of the actin immunoblot in Fig. 1C. In Fig. 2A, the γ-H2AX and the merge with DAPI images for no IR treatment do not match. In Fig. 3A, lanes 3 and 4 of the γ-H2AX immunoblot were reused in lanes 7 and 8, and lanes 5 and 6 of the H2A immunoblot were reused in lanes 7 and 8. In Fig. 3B, lanes 5 and 6 of the H2A immunoblot were reused in lanes 7 and 8. In Fig. 3C, lanes 5 and 6 of the γ-H2AX immunoblot were reused in lanes 7 and 8. Additionally, lanes 1 and 2 of the H2A immunoblot were reused in lanes 3 and 4. In Fig. 3D, lanes 1 and 2 of the Mre11 immunoblot from lysates were reused in lanes 4 and 5. In the γ-H2AX immunoblot, lane 3 was reused in lane 7, and lane 4 was reused in lanes 6 and 8. Also in the H2A immunoblot, lanes 1 and 2 were reused in lanes 3 and 4. In Fig. 4B, lanes 2 and 6 of the Mre11 immunoblot from Ogg1−/− cells are the same. In the Ape1... Full Article
ni The Escherichia coli cellulose synthase subunit G (BcsG) is a Zn2+-dependent phosphoethanolamine transferase [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Bacterial biofilms are cellular communities that produce an adherent matrix. Exopolysaccharides are key structural components of this matrix and are required for the assembly and architecture of biofilms produced by a wide variety of microorganisms. The human bacterial pathogens Escherichia coli and Salmonella enterica produce a biofilm matrix composed primarily of the exopolysaccharide phosphoethanolamine (pEtN) cellulose. Once thought to be composed of only underivatized cellulose, the pEtN modification present in these matrices has been implicated in the overall architecture and integrity of the biofilm. However, an understanding of the mechanism underlying pEtN derivatization of the cellulose exopolysaccharide remains elusive. The bacterial cellulose synthase subunit G (BcsG) is a predicted inner membrane–localized metalloenzyme that has been proposed to catalyze the transfer of the pEtN group from membrane phospholipids to cellulose. Here we present evidence that the C-terminal domain of BcsG from E. coli (EcBcsGΔN) functions as a phosphoethanolamine transferase in vitro with substrate preference for cellulosic materials. Structural characterization of EcBcsGΔN revealed that it belongs to the alkaline phosphatase superfamily, contains a Zn2+ ion at its active center, and is structurally similar to characterized enzymes that confer colistin resistance in Gram-negative bacteria. Informed by our structural studies, we present a functional complementation experiment in E. coli AR3110, indicating that the activity of the BcsG C-terminal domain is essential for integrity of the pellicular biofilm. Furthermore, our results established a similar but distinct active-site architecture and catalytic mechanism shared between BcsG and the colistin resistance enzymes. Full Article
ni Mechanistic insights explain the transforming potential of the T507K substitution in the protein-tyrosine phosphatase SHP2 [Signal Transduction] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 The protein-tyrosine phosphatase SHP2 is an allosteric enzyme critical for cellular events downstream of growth factor receptors. Mutations in the SHP2 gene have been linked to many different types of human diseases, including developmental disorders, leukemia, and solid tumors. Unlike most SHP2-activating mutations, the T507K substitution in SHP2 is unique in that it exhibits oncogenic Ras-like transforming activity. However, the biochemical basis of how the SHP2/T507K variant elicits transformation remains unclear. By combining kinetic and biophysical methods, X-ray crystallography, and molecular modeling, as well as using cell biology approaches, here we uncovered that the T507K substitution alters both SHP2 substrate specificity and its allosteric regulatory mechanism. We found that although SHP2/T507K exists in the closed, autoinhibited conformation similar to the WT enzyme, the interactions between its N-SH2 and protein-tyrosine phosphatase domains are weakened such that SHP2/T507K possesses a higher affinity for the scaffolding protein Grb2-associated binding protein 1 (Gab1). We also discovered that the T507K substitution alters the structure of the SHP2 active site, resulting in a change in SHP2 substrate preference for Sprouty1, a known negative regulator of Ras signaling and a potential tumor suppressor. Our results suggest that SHP2/T507K's shift in substrate specificity coupled with its preferential association of SHP2/T507K with Gab1 enable the mutant SHP2 to more efficiently dephosphorylate Sprouty1 at pTyr-53. This dephosphorylation hyperactivates Ras signaling, which is likely responsible for SHP2/T507K's Ras-like transforming activity. Full Article
ni NAD+ biosynthesis in bacteria is controlled by global carbon/nitrogen levels via PII signaling [Microbiology] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 NAD+ is a central metabolite participating in core metabolic redox reactions. The prokaryotic NAD synthetase enzyme NadE catalyzes the last step of NAD+ biosynthesis, converting nicotinic acid adenine dinucleotide (NaAD) to NAD+. Some members of the NadE family use l-glutamine as a nitrogen donor and are named NadEGln. Previous gene neighborhood analysis has indicated that the bacterial nadE gene is frequently clustered with the gene encoding the regulatory signal transduction protein PII, suggesting a functional relationship between these proteins in response to the nutritional status and the carbon/nitrogen ratio of the bacterial cell. Here, using affinity chromatography, bioinformatics analyses, NAD synthetase activity, and biolayer interferometry assays, we show that PII and NadEGln physically interact in vitro, that this complex relieves NadEGln negative feedback inhibition by NAD+. This mechanism is conserved in distantly related bacteria. Of note, the PII protein allosteric effector and cellular nitrogen level indicator 2-oxoglutarate (2-OG) inhibited the formation of the PII-NadEGln complex within a physiological range. These results indicate an interplay between the levels of ATP, ADP, 2-OG, PII-sensed glutamine, and NAD+, representing a metabolic hub that may balance the levels of core nitrogen and carbon metabolites. Our findings support the notion that PII proteins act as a dissociable regulatory subunit of NadEGln, thereby enabling the control of NAD+ biosynthesis according to the nutritional status of the bacterial cell. Full Article
ni Prominins control ciliary length throughout the animal kingdom: New lessons from human prominin-1 and zebrafish prominin-3 [Cell Biology] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Prominins (proms) are transmembrane glycoproteins conserved throughout the animal kingdom. They are associated with plasma membrane protrusions, such as primary cilia, as well as extracellular vesicles derived thereof. Primary cilia host numerous signaling pathways affected in diseases known as ciliopathies. Human PROM1 (CD133) is detected in both somatic and cancer stem cells and is also expressed in terminally differentiated epithelial and photoreceptor cells. Genetic mutations in the PROM1 gene result in retinal degeneration by impairing the proper formation of the outer segment of photoreceptors, a modified cilium. Here, we investigated the impact of proms on two distinct examples of ciliogenesis. First, we demonstrate that the overexpression of a dominant-negative mutant variant of human PROM1 (i.e. mutation Y819F/Y828F) significantly decreases ciliary length in Madin–Darby canine kidney cells. These results contrast strongly to the previously observed enhancing effect of WT PROM1 on ciliary length. Mechanistically, the mutation impeded the interaction of PROM1 with ADP-ribosylation factor–like protein 13B, a key regulator of ciliary length. Second, we observed that in vivo knockdown of prom3 in zebrafish alters the number and length of monocilia in the Kupffer's vesicle, resulting in molecular and anatomical defects in the left-right asymmetry. These distinct loss-of-function approaches in two biological systems reveal that prom proteins are critical for the integrity and function of cilia. Our data provide new insights into ciliogenesis and might be of particular interest for investigations of the etiologies of ciliopathies. Full Article
ni Affinity maturation, humanization, and co-crystallization of a rabbit anti-human ROR2 monoclonal antibody for therapeutic applications [Immunology] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Antibodies are widely used as cancer therapeutics, but their current use is limited by the low number of antigens restricted to cancer cells. A receptor tyrosine kinase, receptor tyrosine kinase-like orphan receptor 2 (ROR2), is normally expressed only during embryogenesis and is tightly down-regulated in postnatal healthy tissues. However, it is up-regulated in a diverse set of hematologic and solid malignancies, thus ROR2 represents a candidate antigen for antibody-based cancer therapy. Here we describe the affinity maturation and humanization of a rabbit mAb that binds human and mouse ROR2 but not human ROR1 or other human cell-surface antigens. Co-crystallization of the parental rabbit mAb in complex with the human ROR2 kringle domain (hROR2-Kr) guided affinity maturation by heavy-chain complementarity-determining region 3 (HCDR3)-focused mutagenesis and selection. The affinity-matured rabbit mAb was then humanized by complementarity-determining region (CDR) grafting and framework fine tuning and again co-crystallized with hROR2-Kr. We show that the affinity-matured and humanized mAb retains strong affinity and specificity to ROR2 and, following conversion to a T cell–engaging bispecific antibody, has potent cytotoxicity toward ROR2-expressing cells. We anticipate that this humanized affinity-matured mAb will find application for antibody-based cancer therapy of ROR2-expressing neoplasms. Full Article
ni The mRNA levels of heat shock factor 1 are regulated by thermogenic signals via the cAMP-dependent transcription factor ATF3 [Metabolism] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Heat shock factor 1 (HSF1) regulates cellular adaptation to challenges such as heat shock and oxidative and proteotoxic stresses. We have recently reported a previously unappreciated role for HSF1 in the regulation of energy metabolism in fat tissues; however, whether HSF1 is differentially expressed in adipose depots and how its levels are regulated in fat tissues remain unclear. Here, we show that HSF1 levels are higher in brown and subcutaneous fat tissues than in those in the visceral depot and that HSF1 is more abundant in differentiated, thermogenic adipocytes. Gene expression experiments indicated that HSF1 is transcriptionally regulated in fat by agents that modulate cAMP levels, by cold exposure, and by pharmacological stimulation of β-adrenergic signaling. An in silico promoter analysis helped identify a putative response element for activating transcription factor 3 (ATF3) at −258 to −250 base pairs from the HSF1 transcriptional start site, and electrophoretic mobility shift and ChIP assays confirmed ATF3 binding to this sequence. Furthermore, functional assays disclosed that ATF3 is necessary and sufficient for HSF1 regulation. Detailed gene expression analysis revealed that ATF3 is one of the most highly induced ATFs in thermogenic tissues of mice exposed to cold temperatures or treated with the β-adrenergic receptor agonist CL316,243 and that its expression is induced by modulators of cAMP levels in isolated adipocytes. To the best of our knowledge, our results show for the first time that HSF1 is transcriptionally controlled by ATF3 in response to classic stimuli that promote heat generation in thermogenic tissues. Full Article
ni The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining {alpha}-tubulin acetylation [Signal Transduction] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Kindlins are focal adhesion proteins that regulate integrin activation and outside-in signaling. The kindlin family consists of three members, kindlin-1, -2, and -3. Kindlin-2 is widely expressed in multiple cell types, except those from the hematopoietic lineage. A previous study has reported that the Drosophila Fit1 protein (an ortholog of kindlin-2) prevents abnormal spindle assembly; however, the mechanism remains unknown. Here, we show that kindlin-2 maintains spindle integrity in mitotic human cells. The human neuroblastoma SH-SY5Y cell line expresses only kindlin-2, and we found that when SH-SY5Y cells are depleted of kindlin-2, they exhibit pronounced spindle abnormalities and delayed mitosis. Of note, acetylation of α-tubulin, which maintains microtubule flexibility and stability, was diminished in the kindlin-2–depleted cells. Mechanistically, we found that kindlin-2 maintains α-tubulin acetylation by inhibiting the microtubule-associated deacetylase histone deacetylase 6 (HDAC6) via a signaling pathway involving AKT Ser/Thr kinase (AKT)/glycogen synthase kinase 3β (GSK3β) or paxillin. We also provide evidence that prolonged hypoxia down-regulates kindlin-2 expression, leading to spindle abnormalities not only in the SH-SY5Y cell line, but also cell lines derived from colon and breast tissues. The findings of our study highlight that kindlin-2 regulates mitotic spindle assembly and that this process is perturbed in cancer cells in a hypoxic environment. Full Article
ni Chairman of Council of Lingnan University departs early By www.info.gov.hk Published On :: Tue, 08 Oct 2019 16:05:41 Full Article
ni Life Planning Education Conference 2019 held today By www.info.gov.hk Published On :: Fri, 01 Nov 2019 15:04:41 Full Article
ni SED on student protests at universities campuses By www.info.gov.hk Published On :: Mon, 04 Nov 2019 08:22:58 Full Article
ni One-stop Life Planning Information Website provided by Education Bureau By www.info.gov.hk Published On :: Fri, 22 Nov 2019 12:18:24 Full Article
ni SED on universities funding and limit of access to university campuses By www.info.gov.hk Published On :: Mon, 02 Dec 2019 10:22:55 Full Article
ni Speech by SED at opening ceremony of Learning and Teaching Expo 2019 By www.info.gov.hk Published On :: Wed, 11 Dec 2019 11:57:55 Full Article
ni Hong Kong team excels at the International Junior Science Olympiad By www.info.gov.hk Published On :: Thu, 12 Dec 2019 16:06:52 Full Article
ni Appointments to Vocational Training Council By www.info.gov.hk Published On :: Fri, 20 Dec 2019 11:11:30 Full Article
ni Appointment of Chairman of Council of Lingnan University By www.info.gov.hk Published On :: Fri, 27 Dec 2019 10:20:31 Full Article
ni Task Force on Promotion of Vocational and Professional Education and Training submits review report to EDB By www.info.gov.hk Published On :: Thu, 23 Jan 2020 16:07:31 Full Article
ni SED opening remarks at press conference By www.info.gov.hk Published On :: Sat, 25 Jan 2020 21:36:24 Full Article
ni Units under EDB continue to provide basic public services By www.info.gov.hk Published On :: Sat, 01 Feb 2020 16:39:10 Full Article
ni Suspending Classes without Suspending Learning By www.edb.gov.hk Published On :: Tue, 07 Apr 2020 12:21:10 Full Article
ni SED's opening remarks at media session By www.info.gov.hk Published On :: Thu, 13 Feb 2020 12:54:30 Full Article
ni SED opening remarks at press conference By www.info.gov.hk Published On :: Tue, 25 Feb 2020 22:51:12 Full Article